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Abstract 

 

In addition to its critical role in encoding individual episodes, the hippocampus is capable of 

extracting regularities across experiences. This ability is central to category learning, and a 

growing literature indicates that the hippocampus indeed makes important contributions to this 

kind of learning. Using a neural network model that mirrors the anatomy of the hippocampus, we 

investigated the mechanisms by which the hippocampus may support novel category learning. 

We simulated three category learning paradigms and evaluated the network’s ability to 

categorize and to recognize specific exemplars in each. We found that the trisynaptic pathway 

within the hippocampus—connecting entorhinal cortex to dentate gyrus, CA3, and CA1—was 

critical for remembering individual exemplars, reflecting the rapid binding and pattern separation 

functions of this circuit. The monosynaptic pathway from entorhinal cortex to CA1, in contrast, 

was responsible for detecting the regularities that define category structure, made possible by the 

use of distributed representations and a slower learning rate. Together, the simulations provide 

an account of how the hippocampus and its constituent pathways support novel category 

learning. 
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Introduction 

 

Learning how the entities in our environment cluster into groups with overlapping 

properties, names, and consequences allows us to communicate and act adaptively. This category 

learning often unfolds over long periods of time, for example when learning about the many 

species of dogs across development, but can also occur within a few minutes or hours, as when 

learning about different kinds of penguins on a first visit to the zoo. Much is known about how 

neocortical areas represent categories of information learned over long time scales (Martin, 

2007; Miller, Freedman, & Wallis, 2002; Miller, Nieder, Freedman, & Wallis, 2003; Spiridon & 

Kanwisher, 2002), but less is understood about the mechanisms by which the brain learns 

quickly in initial encounters. Given the ability of the hippocampus to learn rapidly (McClelland, 

McNaughton, & O’Reilly, 1995) combined with its ability to learn regularities (Schapiro, 

Kustner, & Turk-Browne, 2012), this brain area seems well-suited to make a contribution to 

rapid category learning. Indeed, neuroimaging studies provide strong evidence that the 

hippocampus is engaged in novel category learning (Bowman & Zeithamova, 2018; Mack, Love, 

& Preston, 2016; Zeithamova, Maddox, & Schnyer, 2008). Studies with hippocampal amnesics 

tend to find partial but not complete deficits in category learning (Knowlton & Squire, 1993; 

Kolodny, 1994; Reber, Knowlton, & Squire, 1996; Reed, Squire, Patalano, Smith, & Jonides, 

1999), indicating that the hippocampus—though not the sole region involved—does make an 

important causal contribution. 

In the present work, we ask what computational properties of the hippocampus might 

allow it to contribute to category learning. Using a neural network model of the hippocampus 

named C-HORSE (Complementary Hippocampal Operations for Representing Statistics and 

Episodes), we previously demonstrated how the hippocampus might contribute to learning 

temporal regularities embedded in sequences of stimuli and to inference over pairwise 

associations (Schapiro, Turk-Browne, et al., 2017; Zhou, Singh, Tandoc, & Schapiro, 2021). We 

showed that the heterogeneous properties of the two main pathways within the hippocampus may 

support complementary learning systems—a microcosm of hippocampus-neocortex relationship 

(McClelland, McNaughton, & O’Reilly, 1995), with one pathway specializing in the rapid 

encoding of individual episodes and another in extracting regularities over time. The present 

work evaluates whether this ability to extract statistical regularities may also support learning the 

structure of novel categories. 

C-HORSE comes from a lineage of models developed to account for episodic memory 

phenomena (Ketz, Morkonda, & O’Reilly, 2013; Norman & O’Reilly, 2003; O’Reilly & Rudy, 

2001). It instantiates the broad anatomical structure of the hippocampus: hippocampal subfields 

dentate gyrus (DG), cornu ammonis (CA3) and CA1 are represented as three hidden layers; they 

receive input and process output through entorhinal cortex (EC; Figure 1). The subfields are 

connected via two main pathways: the trisynaptic pathway (TSP) and the monosynaptic pathway 

(MSP). The TSP runs from EC to DG, CA3, and then CA1. The projections within the TSP are 

sparse, enabling the formation of orthogonalized representations even with highly similar input 

patterns (i.e., pattern separation). It has a high learning rate, which supports rapid, even one-shot 

learning. The TSP also contributes to the process of retrieving previously encoded patterns from 

partial cues (i.e., pattern completion) via recurrent connections in CA3. The TSP is thus critical 

for carrying out the episodic memory function of the hippocampus.  

The MSP connects EC directly to CA1. These projections do not have the specialized 

sparsity of those in the TSP, allowing for more overlapping representations to emerge. In 
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addition, the MSP seems to learn more slowly (Lee, Rao, & Knierim, 2004; Nakashiba, Young, 

McHugh, Buhl, & Tonegawa, 2008). These properties of relatively more overlapping 

representations and more incremental learning mirror those of neocortex (McClelland et al., 

1995). In earlier versions of this model (Norman & O’Reilly, 2003), the MSP was seen as merely 

a translator between the TSP representations and neocortex, but we have argued that its 

properties may make the MSP well-suited to learning structured information across episodes 

(Schapiro, Turk-Browne, et al., 2017).  

To investigate the role of the hippocampus in category learning, we tested how the MSP 

and TSP of C-HORSE contribute to forming category representations across three different types 

of categories. First, we evaluated the network’s ability to learn simple nonoverlapping categories 

of exemplars consisting of multiple discrete features, with some features shared among the 

members of a category and others unique to each exemplar (Schapiro, McDevitt, et al., 2017; 

Schapiro, McDevitt, Rogers, Mednick, & Norman, 2018). We assessed the model’s memory for 

these different kinds of features as well as its ability to generalize to novel exemplars. Second, 

we simulated the probabilistic Weather Prediction Task (Djonlagic et al., 2009; Eldridge, 

Masterman, & Knowlton, 2002; Knowlton, Mangels, & Squire, 1996; Knowlton, Squire, & 

Gluck, 1994; Reber et al., 1996). In this task, four different cards with shapes are each 

probabilistically associated with one of two categories: On each trial, a prediction about the 

weather (sun or rain) is made based on a combination of one, two, or three presented cards. We 

assessed the model’s categorization ability as well as recognition of particular card 

combinations. Third, we tested the network’s ability to learn categories with varying typicality 

defined along a continuum of overlapping features (Zeithamova et al., 2008). Prototypes of two 

categories have no features in common, and category exemplars then fall on a continuum 

between the two prototypes. Exemplars that share more features with the prototype are more 

typical category members. We assessed the model’s categorization and recognition, as a function 

of typicality. 

Across the three category learning tasks, C-HORSE was able to both determine the 

category membership of exemplars and recognize individual studied exemplars. There was a 

division of labor across the two pathways of the hippocampus in these functions: The MSP was 

critical for learning the regularities underlying category structure and was responsible for 

generalization of knowledge to novel exemplars. The TSP also contributed to behavior across the 

tasks, but only to the extent that memorizing unique properties of exemplars was useful. The 

rapid binding and pattern separation abilities of the TSP that make the pathway well-suited to 

episodic memory are also advantageous for encoding arbitrary relationships in category learning. 

The findings together motivate a theory of hippocampal contributions to category learning, with 

the MSP responsible for true understanding of category structure and the TSP for encoding the 

specifics of individual exemplars.  
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Figure 1. C-HORSE architecture: The model consists of dentate gyrus (DG), CA3 and CA1 subfields which 

map inputs from superficial to deep layers of the entorhinal cortex (EC). The trisynaptic pathway (TSP) 

connects EC to CA1 via DG and CA3 (blue arrows), and the monosynaptic pathway (MSP) connects EC 

directly with CA1 (green arrows).  
 

Methods 

 

 We adopted a neural network model of the hippocampus developed after a lineage of 

models used to explain episodic memory phenomena (Ketz et al., 2013; Norman & O’Reilly, 

2003; O’Reilly & Rudy, 2001). This variant, C-HORSE, was developed recently to account for 

the role of the hippocampus in statistical learning (Schapiro, Turk-Browne, et al., 2017; Zhou et 

al., 2021). Simulations were performed in the Emergent simulation environment (version 7.0.1, 

Aisa, Mingus, & O’Reilly, 2008). Files for running the model can be found at 

github.com/schapirolab/hip-cat. The following section provides a brief description of the model; 

for more information on the model see Schapiro et al. (2017), and for full parameters and 

stimulus specifics for these simulations see the Supplementary Material. 

Model architecture. The model has three hidden layers, representing DG, CA3, and CA1 

hippocampal subfields, which learn to map input from superficial to deep layers of entorhinal 

cortex (ECin and ECout; Figure 1). There is also a separate Input layer (not shown in Figure 1) 

with the same dimensionality as ECin, where external input was clamped, allowing activity in 

ECin to vary as a function of external input as well as ECout activity. There were one-to-one 

connections between Input and ECin and between ECin and ECout. Each layer contains units (400 

in DG, 80 in CA3, 100 in CA1, and other layer sizes varying as a function of the task) with 

activity levels ranging from 0 to 1, implementing a rate code. A unit’s activity is proportional to 

the activity of all units connected to it, weighed by connection weights between them. Unit 

activity is also modulated by inhibition between units within a layer. The inhibition is 

implemented using a set-point inhibitory current with k-winner-take-all dynamics, and simulates 

the action of inhibitory interneurons (O’Reilly, Munakata, Frank, Hazy, & Contributors, 2014). 

The trisynaptic pathway (TSP) connects EC to CA1 via DG and CA3. Connections are 

sparse, reflecting known physiological properties of the hippocampus: DG and CA3 units receive 

input from 25% of units in the ECin layer, and CA3 receives directly from 5% of DG. Both DG 

and CA3 have high levels of within-layer inhibition. CA3 also has a full recurrent projection 

(every unit connected to every other). Finally, CA3 is fully connected to CA1.  

The monosynaptic pathway (MSP) is formed by a direct connection from ECin to CA1, 
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and bidirectional connections between CA1 and ECout. CA1 has lower inhibition than CA3 and 

DG, allowing a higher proportion of units in the layer to be simultaneously active.  

 We ran 100 networks for each simulation. Each network had a randomized configuration 

of the sparse projections in the TSP and randomly initialized weights throughout the network. 

All analyses were conducted within each network and the results averaged across the networks.  

Learning. The model was trained as an autoencoder, adjusting connection weights to 

reproduce patterns presented to ECin on ECout. Weights were updated via Contrastive Hebbian 

Learning, with two ‘minus’ phases each contrasted to a ‘plus’ phase on every training trial (Ketz 

et al., 2013). One of the minus phases simulates the trough of the hippocampal theta oscillation, 

when EC has a strong influence on CA1, and the connection from CA3 to CA1 is inhibited. The 

second minus phase simulates the theta peak, when CA3 has a stronger influence on CA1, and 

connections from ECin to CA1 are inhibited. During the plus phase, the target output is directly 

clamped on ECout. Weights are adjusted after each trial to reduce the local differences in unit 

coactivities between each of the two minus phases and the plus phase. The learning rate on the 

TSP was set to be 10 times higher than the MSP (Ketz et al., 2013; Schapiro, Turk-Browne, et 

al., 2017), except in the third simulation, where the MSP learning rate was even smaller to 

accommodate stimuli with high degrees of overlap (which can lead to degenerate learning at 

relatively higher learning rates). 

Simulations had a fixed number of training trials except in the Weather Prediction Task, 

where we used a stopping rule: after a minimum of 25 training trials, the model had to achieve 

five consecutive trials with sum squared error below 1.2. The stopping rule was introduced 

because of the probabilistic nature of the categories, where it is not possible to eliminate all error. 

Testing. Connection weights were not changed during test. Networks were tested before 

any training (epoch 0) and after every training epoch. For each set of simulations, we assessed 

the model’s categorization ability and its ability to remember item-specific information.   

Lesions. We simulated lesions of the MSP and TSP in order to assess the contributions of 

each pathway to performance. The MSP lesion was performed by setting the strength of the 

projection from ECin to CA1 to 0. We did not lesion connections between CA1 and ECout because 

they are necessary for producing output. The TSP lesion was performed by setting weights from 

CA3 to CA1 to 0. The lesions were implemented in a version of the model that did not use the 

theta-inspired learning scheme described above, as only one minus phase is appropriate with 

only one pathway intact. Lesions were implemented during both learning and testing.  

Statistical analysis. To compare performance in the intact and lesioned networks, the 

mean accuracy was submitted to an ANOVA with a between-network factor Condition (intact, 

MSP-only, and TSP-only network), a within-network factor Trial (number of training trials prior 

to test) and Network initialization as a random effects factor (100 random initializations). 

Following the omnibus ANOVA, to determine which conditions may differ, we ran three 

separate ANOVAs with a between-network factor Condition which included two out of three 

conditions (intact vs MSP-only, intact vs TSP-only, and MSP-only vs TSP-only). Data 

visualization and statistical analyses were performed in R, version 3.6.1 (R Core Team, 2019). 
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Figure 2. An overview of categories simulated. (a) Satellite categories: Distinct categories of novel 

“satellites” consisting of unique and shared features (Schapiro, Turk-Browne, et al., 2017). (b) Weather 

Prediction Task: each abstract card is probabilistically related to a category (sun or rain), and on a given 

trial, category must be guessed from a combination of cards (Knowlton et al., 1994). (c) Intermixed 

categories with varying typicality: Categories where each item consists of 10 binary features. The two 

prototypes on opposite sides of the feature space have no features in common, and the rest of the exemplars 

have a varying number of features in common with the prototypes (Zeithamova et al., 2008). 

 

 

Results 

 

Learning distinct categories of items with unique and shared features  

First, we examined C-HORSE’s ability to learn categories of items that consist of 

multiple discrete features, with some features unique to individual items and others shared 

amongst members of the same category, and no features overlapping across categories. To test 

the network’s ability to learn these categories, we presented a set of novel objects representing 

three categories of “satellites,” with five satellites in each category, following empirical work 

with this paradigm (Schapiro, McDevitt, et al., 2017; Schapiro et al., 2018). The model and 

humans were given a comparable number of training trials: 140 for the model and on average 

122 for humans (Schapiro et al., 2018). 

Each category had a prototype, defining the shared features for that category. Four other 

exemplars of the category had one out of five features swapped away from the prototype, such 

that they had one unique feature and four shared features (Figure 2a). This structure means that 
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one of the shared features is present across all exemplars in a category, which effectively serves 

as a category name/indicator and will be used to assess categorization ability. Each feature was 

assigned to one unit in the input layer. If the feature was present, the input unit representing the 

feature took on a value of 1, and otherwise 0. Thus, there were 27 input units in total, 9 per 

category. Within each category, there were 5 units representing shared features and 4 units for 

unique features (Supplementary Table 1). 

To characterize the network’s behavior, we investigated its ability to recognize unique 

features of individual trained satellites (unique feature recognition), recognize the prototypical 

feature shared across all trained members of a category (categorization), and fill in shared 

features for novel satellites not presented during training (generalization). For unique feature 

recognition, we presented the network with the unique feature of a trained satellite as input and 

evaluated the network’s ability to activate that feature on the output, compared to unique features 

of other members of the same category (Supplementary Table 2). Accuracy was determined by 

dividing the activation of the correct unit by the total activation in the four units representing 

unique features for that category (chance accuracy expected to be around 0.25). As shown in 

Figure 3a, the network learned to recognize unique features of individual satellites. With 140 

total training trials, the intact model reached an accuracy of .51, similar to the levels observed 

empirically in humans after one learning session (.53; Schapiro, McDevitt, et al., 2017). A 

version of the network with access only to the MSP was completely unable to output the correct 

unique features, whereas a version with only the TSP could do this well above a chance, and 

even slightly better than the intact model (accuracy of .55). This reveals that the TSP is 

responsible for the network’s ability to remember unique features. Differences between model 

types across time were all highly reliable (all ps < .001).  

To test categorization ability, we examined the network’s ability to indicate the correct 

category of a satellite, operationalized as activating the category-prototypical feature shared 

across all members of the satellite’s category. We presented the network with the unique feature 

of a satellite and divided output activity for the correct prototypical feature by the sum of 

activation of the three prototypical features for the three categories (with chance expected to be 

around 0.33). Across 140 trials, the intact network reached categorization accuracy of .79 (Figure 

3b). We re-analyzed the published human data (Schapiro, McDevitt, et al., 2017) to calculate the 

analogous measure of accuracy and found a comparable accuracy level of 0.68. The MSP-only 

network exhibited much better performance than the intact network (1 at the end of training). 

The TSP-only network had poorer performance (.71), but still well above chance. Because this 

test involved trained satellites, categorization could be solved using either a memorization 

strategy or an extraction of regularities, leading to relatively good performance even for the TSP-

only network. Because the MSP is unable to remember unique features (Figure 3a), it expresses 

knowledge only of the prototypical features, leading to excellent categorization performance. 

The intact network combines information from both sources, resulting in intermediate 

performance (see below for discussion of the idea that a control mechanism might allow 

selective enhancement of pathways depending on task). All differences between model types 

were again highly reliable (all ps < .001). 

The strongest test of category understanding is the ability to generalize to novel instances. 

To test generalization, we presented the network with a set of 18 satellites (6 per category) that 

were not presented during training (Supplementary Table 3). Each input satellite consisted of two 

shared features (not including the category-prototypical feature) and two unique features, and we 

tested the network’s ability to output the category-prototypical feature. A similar pattern was 
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observed as with the categorization of familiar items, but the TSP-only network showed poorer 

performance (.53) in comparison to the intact network (.94) while the MSP-only network was 

even better (Figure 3c). The MSP was able to ignore the unique features of these novel satellites, 

resulting in perfect generalization behavior relatively early in training (Figure 3c). All 

differences were reliable (ps < .001). 

To assess network representations, we performed representational similarity analysis for 

each hidden layer of the network. We used Pearson correlation to relate the patterns of unit 

activities evoked by presentation of each satellite’s unique feature (for the 12 satellites with a 

unique features). There was no structure in the representations prior to training, and the 

representations that emerged with training revealed sensitivity to the category structure. This was 

particularly evident in CA1 (Figure 3d), with items from the same category represented much 

more similarly than items from different categories. This result is consistent with our recent 

neuroimaging findings using this paradigm, where CA1 was the only subfield of the 

hippocampus to show significant within versus between category multivoxel pattern similarity 

(Schapiro et al., 2018). There was different representational similarity in the initial response, 

after 45 cycles of processing, versus the settled response, after there was time for recurrent 

activity to spread throughout the network. In the initial response, there was no sensitivity at all to 

category structure in DG and CA3—items were represented orthogonally. CA1, in contrast, was 

immediately sensitive to the category structure. The settled response revealed sensitivity to 

category structure in all three hidden layers, as the structure in CA1 had time to influence the rest 

of the network via the ECout to ECin “big loop” connection (Kumaran & Maguire, 2007; 

Schapiro, Turk-Browne, et al., 2017). All sensitivity to the category structure in this network was 

thus driven by the learned representations in CA1. 

In sum, these results suggest that the network is capable of learning categories and 

generalizing to novel instances. To achieve this, the MSP and the TSP take on complementary 

roles: the MSP extracts regularities and learns information that defines category structure, while 

the TSP encodes individual exemplars and handles unique feature recognition. These properties 

map directly to our prior simulations, where we found that the MSP detects statistical structure 

while the TSP encodes episode-unique information (Schapiro, Turk-Browne, et al., 2017). There 

are two key properties that differ between the pathways that lead to these results: 1) slower 

learning in the MSP than TSP, which allows integration of information overall longer periods of 

time in the MSP and quick learning in the TSP, and 2) more overlapping representations in the 

MSP than TSP, which helps the MSP see commonalities across experiences and helps the TSP 

separate experiences to avoid interference. 
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Figure 3. Satellite task. Performance of the intact network, a version of the network with only the MSP, and 

a version with only the TSP: (a) unique feature recognition, (b) categorization of trained items, and (c) 

categorization of novel items (generalization). (d) Representational similarity for the initial and settled 

response. Each item appears in the rows and columns of the heatmaps. The diagonals are always 1, as this 

reflects items correlated to themselves, and the off-diagonals are symmetric. Black boxes delineate 

categories. All plots represent mean performance averaged across random network initializations. Error 

bars denote ±1 s.e.m. across network initializations (some are too small to be visible).  

 

Learning probabilistic categories  

While the previous set of simulations focused on deterministic categories, i.e. categories 

in which each item could belong to only one category, in this section we test the network’s 

ability to learn probabilistic categories. The Weather Prediction Task is a canonical probabilistic 

category learning task (Djonlagic et al., 2009; Eldridge et al., 2002; Knowlton et al., 1996, 1994; 

Reber et al., 1996). In this task, there are a total of four cards with abstract shapes, and a 

combination of one, two, or three cards is presented on each trial (Figure 2b). The combination 

of cards predicts a weather outcome, sunshine or rain. To learn these weather outcome 

categories, the network needs to keep track of the probability of each card being associated with 

each category and combine information about the probability of the cards presented together.  

As in Knowlton et al. (1994), all 14 possible card combinations were presented. The 

number of times a particular combination of cards was presented and frequency of its association 

to each category was identical to the experimental procedure used in Knowlton et al. (1994; 

Supplementary Table 4). Two combinations of cards that had an equal probability of being 

associated with each category were removed from analysis. Each card was represented by one 
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unit in the input and output, and each weather outcome (category) was represented by two units. 

As in prior simulations, the model was trained as an autoencoder, meaning that both the cards 

and category information were presented as input and the model was asked to reconstruct all of 

these features on the output layer. This training regimen is more akin to an “observational” than 

“feedback” mode of the task, which is appropriate given evidence that the medial temporal lobe 

is more engaged by observational variants (Poldrack et al., 2001; Shohamy et al., 2004). We 

trained the network for 50 trials, simulating Task 2 in Knowlton et al. (1994), where patients also 

saw 50 trials. 

To examine the network’s performance, we tested its ability to reconstruct individual 

combinations of cards (recognition) and to predict category based on the presented cards 

(categorization). For recognition performance, we evaluated reconstruction of the correct card 

output units given a set of input cards. Since all possible card combinations are presented during 

training, this does not involve discriminating old from new combinations, but is rather a simple 

measure of the network’s ability to process information about each distinct card configuration. 

Recognition score was calculated by dividing the mean activation of correct card units by the 

mean activation across all card units. Given the stopping criteria used during training, networks 

were trained for different numbers of trials, with networks performing better stopping earlier. We 

ran as many networks as needed to obtain data from 100 networks in each of the three lesion 

conditions at trial 50. As a result, there were 739 networks at trials 0, 10 and 20, 646 networks at 

trial 30, 451 networks at trial 40, and 300 networks in the final test trial (100 per condition). The 

results indicated that the network was able to recognize individual combinations of cards ( 

Figure 4a). An ANOVA revealed significant main effects of trial, lesion type, and their 

interaction (all ps < .001). While the intact and TSP-only network showed equivalent 

performance (p = .636), both showed significantly higher recognition accuracy than the MSP-

only network (ps < .001). In sum, consistent with the prior simulations, the TSP-only network 

demonstrated better recognition than the MSP-only network, and performed in this case virtually 

identically to the intact network. For this form of recognition, the MSP-only network was able to 

perform above chance.  

Categorization performance was assessed by presenting sets of cards without any 

category input and testing the network’s ability to output the correct category. The intact and the 

MSP-only network were able to categorize the sets of cards more effectively than the TSP-only 

network (Figure 4b). The observed accuracy levels for the intact and MSP-only network were 

similar to the performance levels typically observed in healthy participants (e.g. Knowlton et al., 

1994). The TSP-only network performed close to chance on this task. An ANOVA revealed 

significant main effects of trial, lesion type, and their interaction (all ps < .001). Further analyses 

revealed significant differences between all three lesion conditions (intact vs MSP-only network: 

p = .0017, others: ps < .001).  

In sum, the network successfully learned probabilistic categories, while also being able to 

process the individual combinations of cards. The MSP was necessary for the network to learn 

categories, whereas the TSP contributed more to encoding individual combinations of cards.  
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Figure 4. Weather Prediction Task. The model’s (a) recognition and (b) categorization performance. Dashed 

line at 0.5 indicates chance level performance. 

 

Learning intermixed categories with varying typicality 

The third set of simulations tested the network’s ability to acquire categories with 

intermixed features and varying typicality. The network was exposed to a set of novel creatures 

belonging to two categories (Figure 2c; Zeithamova et al., 2008). Each creature had ten binary 

features, and prototypes of the two categories had no features in common. The rest of the items 

spanned a continuum between the two prototypes: some items have nine features in common 

with one prototype and one feature in common with the other prototype; other items have eight 

features shared with one prototype and two features shared with the other prototype, and so on. If 

an item has more than five features in common with one prototype, it is considered to belong to 

the prototype’s category (Figure 2c). Each feature was represented by 2 units (one unit for each 

of the two possible feature values), and each category label was represented by 5 units. 

During training, the network learned 20 items, 10 from each category. The model saw 

each item 5 times for a total of 100 trials, similar to Zeithamova et al. (2008), where participants 

were presented with 4 runs of 20 items, 10 from each category (80 total trials). Within each 

category, there were 2 items that shared 9 features with the prototype, 3 items with 8 shared 

features, 3 items with 7 shared features, and 2 items with 6 shared features (Supplementary Table 

5). At test, the network was presented with the training set and a test set consisting of 42 novel 

items (Supplementary Table 6): the 2 untrained prototypes and 5 items at each distance from the 

prototype (Zeithamova et al., 2008). We tested the network’s ability to remember the atypical 

features of the training items (atypical feature recognition) and the ability to predict the correct 

category for the novel items (generalization).  

Atypical feature recognition was assessed by testing the ability to activate the correct 

atypical features in the output layer when presented with trained category exemplars. For each 

item, we compared the activation of features that did not match the prototypical item (atypical 

features) to the total activation in the atypical units. The proportion of activation in the correct 

atypical features was compared against chance (0.1 for items that had only 1 atypical feature, 0.2 

for items that had 2 atypical features, etc.). As shown in Figure 5a, the network showed good 

atypical feature recognition performance. The level of recognition accuracy depended on the 

level of similarity of the item to its prototype. Atypical features of less typical category members 

were recognized more easily than atypical features for items very similar to the prototype. The 

intact network exhibited better performance than the lesioned networks in this task. The TSP-

only network performed better than the MSP-only network, which was virtually unable to 

recognize atypical category members (3 or 4 atypical features), but showed somewhat better 

performance on items more similar to the prototype (1 or 2 atypical features). The MSP can thus 
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contribute to atypical feature to some extent, when the item is overall very similar to the 

prototype. The more arbitrary the item, the more the TSP is needed. Effects of lesion, time, 

number of shared features, and their interactions were all significant (ps < .001). Follow-up 

analysis confirmed that performance of the three learning conditions differed at all levels of 

feature overlap. Initial below-chance performance for the exemplars with only 1 atypical feature 

reflects the tendency to pattern-complete these items to the highly similar prototype. 

Generalization was assessed by testing the network’s ability to predict the correct 

category for a set of novel category exemplars based on their features only (no category 

information was inputted). The mean activation in units representing the correct category was 

divided by the mean activation across units representing both the correct and incorrect 

categories. The intact network was able to categorize novel items, the MSP-only network 

performed better than the intact network, and the TSP-only network performed worse (Figure 

5b). Again, all main effects and interactions were significant (ps < .001).  

These results are convergent with the simulations above, with the TSP contributing more 

to recognition than categorization and the MSP contributing more to categorization than 

recognition. As in the satellite simulation, there was a clear trade-off across pathways in 

categorization behavior, with the MSP-only network performing better without the influence of 

the TSP. The recognition results showed an interesting new dimension of behavior as a function 

of exemplar typicality: the TSP is better than the MSP at remembering the unique features of 

more atypical exemplars. The more features an exemplar has that depart from the category 

prototype, the more important the arbitrary binding ability of the TSP. 

 

 
Figure 5. Intermixed categories with varying typicality. The network’s (a) recognition performance, and (b) 

generalization performance.  
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Discussion 

 

We found that a neural network model of the hippocampus was readily able to learn three 

different types of categories, providing an account of how the hippocampus may contribute to 

category learning. Across paradigms, the MSP was critical for detecting the regularities that 

define category structure. Lower sparsity in this pathway enables distributed (overlapping) 

representations (Hinton, 1984), which facilitates the detection of commonalities across 

exemplars, and a relatively lower learning rate helps to integrate this information gracefully over 

time. In addition to enabling the network to categorize familiar exemplars, the MSP also supports 

categorization of novel exemplars. After learning, representations of items from the same 

category were more similar than items from different categories, and this was driven by and 

especially true in subfield CA1. This is consistent with our recent fMRI finding that CA1 shows 

stronger within- than across-category representational similarity (Schapiro et al., 2018). The 

work thus demonstrates that the principles that allowed C-HORSE to detect regularities in 

structured temporal input (Schapiro, Turk-Browne, et al., 2017) also apply to detecting 

regularities in multidimensional category spaces. 

 In contrast to the MSP’s capacity for detecting shared structure and generalizing, the 

main contribution of the TSP to category learning was encoding information about individual 

category exemplars. Higher sparsity in this pathway allowed the TSP to orthogonalize similar 

inputs and encode the details of individual exemplars. The ability to quickly bind together 

arbitrary information that is so useful for episodic memory (e.g., Norman & O’Reilly, 2003) 

translates into a specialization for remembering the details of individual exemplars in the domain 

of category learning. This ability proved especially useful for atypical exemplars. Lesioning the 

TSP resulted in poor recognition with preserved categorization ability. Consistent with these 

behaviors, a recent study found that strong TSP white matter integrity predicts the ability to learn 

category exceptions (Schlichting, Gumus, Zhu, & Mack, 2021). We thus propose that the 

properties of the TSP should make it useful beyond its traditional domain of episodic memory—

it should contribute to any new learning that requires memory for arbitrary, as opposed to 

systematic, information. 

We will consider below how our results relate to other models of categorization, the 

development of categorization ability, and recruitment of different brain regions in category 

learning in healthy and patient populations. 

 

Relationship to other models of categorization 

Our goal was to take a model with an architecture inspired by the anatomy and properties 

of the hippocampus and explore how the model might accomplish category learning. We did not 

endeavor to build in any particular strategies for categorization. Interestingly, the behaviors of 

the model components that emerged from these investigations bear resemblance to existing 

models of categorization.  

The classic exemplar model proposes that people store memory representations of 

individual category instances and perform similarity judgments on these separate representations 

at test in order to come to a categorization decision (Medin & Schaffer, 1978; Nosofsky, 2011; 

Nosofsky & Johansen, 2000). This model has been able to account for many findings across 

categorization and recognition paradigms (Nosofsky, 1988, 1991; Nosofsky & Zaki, 1998; 

Palmeri, 1997). The TSP of our model is similar to the exemplar model in that it stores separate 

traces of individual exemplars. In fact, our model provides an account of how a neural circuit 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2022. ; https://doi.org/10.1101/2022.01.12.476051doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.12.476051
http://creativecommons.org/licenses/by/4.0/


 14 

might implement exemplar-style representations: the machinery that leads to pattern separation 

of individual episodic memories in the TSP, sparse connectivity and a high learning rate, 

similarly leads to pattern separation across exemplars. The consequence in our model is high 

fidelity memory for the details of particular exemplars. Unlike the exemplar model, however, our 

model’s TSP exhibited relatively poor categorization. There may be modifications to the model 

that would allow the TSP to behave more like an exemplar model. For example, the present 

version of the model does not modulate the influence of the DG during encoding and retrieval, 

but it is possible that reducing the influence of DG during retrieval would bias the TSP toward 

pattern completion at test (Lee & Kesner, 2004; Rolls, 1995, 2018), which might enhance certain 

kinds of categorization. REMERGE (Kumaran & McClelland, 2012) is a model of how the 

hippocampus might support inference and generalization that relies on pattern separated, 

conjunctive representations, as in our TSP. The model can accomplish categorization in a 

manner closely analogous to exemplar models (Kumaran & McClelland, 2012, Appendix), 

suggesting that there may indeed be ways to increase the categorization ability of a TSP-style 

representation. Regardless, and across these models, the unique expertise of the TSP-style 

representation is in its ability to retain the details of individual exemplars.  

The classic prototype model postulates that categories are represented by the central 

tendency across exemplars in a category, without retaining traces of the individual observed 

exemplars (Minda & Smith, 2011). The prototype model explains categorization behavior well in 

the context of well-defined, high-coherence categories (Bowman & Zeithamova, 2020; Minda & 

Smith, 2001). The MSP of our model behaves similarly to a prototype model, in that it tends to 

abstract across the details of individual exemplars and represent the central tendency. However, 

this is not true in an absolute sense—the representation in the MSP is sensitive to individual 

exemplars to some extent.  

McClelland and Rumelhart (1985) showed how specifics and generalities can coexist in a 

neural network model with distributed representations. Our MSP uses distributed representations 

and shows some degree of this dual sensitivity. However, there is a tension between the 

representation of specifics and generalities in the way that the hidden layers in our model behave. 

In a hidden layer with very large capacity and a very slow learning rate, distributed internal 

representations can be carefully and gradually shaped to faithfully reflect the statistics of the 

environment, which can include representation of both arbitrary and systematic information, to 

the extent that each is present in the inputs. Neocortical areas of the brain likely have this 

property of representing arbitrary and general information in harmonious superposition, as in the 

representations described by McClelland and Rumelhart (1985). But in the case of our 

hippocampal system, capacity is somewhat more limited and, critically, learning rates are 

necessarily fast, in order to support behavior on the timescale of a few minutes to hours. The fast 

learning rate forces trade-offs: Representations can either tend to emphasis the specifics or tend 

to emphasize the generalities. Whether the hippocampus indeed operates in this parameter space 

that requires the trade-offs we observe here is a matter for empirical test. Existing data already 

points to qualitative differences in the behavior and representations of these pathways (e.g. 

Leutgeb, Leutgeb, Treves, Moser, & Moser, 2004; Nakashiba et al., 2008), but we outline below 

some specific predictions that will directly test the theory. 

Our model assumes that every item is encoded in two different ways, one representation 

focusing on its details, separating it from other similar items, and the other glossing over the 

details, emphasizing its similarity to other items. This idea is consistent with neuroimaging data 

showing coexisting neural representations that are more prototype- and exemplar-like (Bowman, 
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Iwashita, & Zeithamova, 2020). This perspective avoids the kind of discrete category decision 

making that occurs in a category learning model like SUSTAIN, where a new exemplar either 

merges with an existing category or separates into a new one (Love, Medin, & Gureckis, 2004). 

We propose that the brain may have it both ways, solving the tension between representing 

details and generalities by maintaining both representations in different systems. The solution is 

closely analogous to that proposed by the Complementary Learning Systems theory, which 

argued that the hippocampus and neocortex take on complementary roles in memory for 

encoding the specifics of new items and generalizing across them over time (McClelland et al., 

1995). The MSP in our model has properties similar to the neocortex in that framework, with 

relatively more overlapping representations and a relatively slower learning rate, allowing it to 

behave as a miniature semantic memory system. The TSP and MSP in our model are thus a 

microcosm of the broader Complementary Learning Systems dynamic, with the MSP playing the 

role of a rapid learner of novel semantics, relative to the slower learning of neocortex. 

 

Coordinating the contributions of the MSP and TSP 

 Having two different representations of the same item leads to a problem at retrieval: 

which representation should be used? In our current work, we have assumed that both 

representations contribute, and the retrieved information reflects basically an average of the two. 

But in many cases, there is a trade-off in the utility of the representations, depending on the task. 

Such trade-offs between representing specifics and regularities have been documented in the 

literature (e.g. Sherman & Turk-Browne, 2020). We found several cases of trade-offs playing out 

in our simulations. For example, generalization in the satellite categories is strong in the intact 

model, which uses both pathways, but much stronger in the version of the model that only uses 

the MSP. This suggests that a control mechanism that enhances one pathway over another 

depending on the task could be beneficial for behavior. In a recent paper, we adopted a version 

of C-HORSE that implemented such a control function in order to explain behavior across tasks 

with different demands in an associative inference paradigm (Zhou et al., 2021). Medial 

prefrontal cortex could potentially carry out a control function of this kind, as it participates in 

category learning (Mack, Preston, & Love, 2020) and is known to modulate CA1 representations 

as a function of task (Eichenbaum, 2017; Guise & Shapiro, 2017). As the TSP and MSP are both 

routed through CA1, mPFC control over CA1 could conceivably help coordinate information 

flow there for optimal behavior. This will be an interesting hypothesis to explore in future 

modeling and empirical work.  

 

Hippocampal maturation and development of categorization abilities  

In humans, the hippocampus has a protracted development, with hippocampal subfields 

exhibiting different maturations rates (Lavenex & Banta Lavenex, 2013). While the CA1 

subfield develops during the first two years of life and reaches adult-like volume around two 

years, the DG and CA3 subfields develop at a slower pace (Bachevalier, 2013; Gómez & Edgin, 

2016; Lavenex & Banta Lavenex, 2013). The projection from the EC to CA1, i.e. the MSP, 

develops prior to the projection from EC to DG in the TSP (Hevner & Kinney, 1996; Jabes, 

Lavenex, Amaral, & Lavenex, 2011).  

Given the MSP’s role in detecting regularities, early maturation of CA1 suggests that the 

ability to detect regularities should emerge early in development. Indeed, even before their first 

birthday infants show evidence of categorization (Eimas & Quinn, 1994; Mareschal & Quinn, 

2001; Younger & Cohen, 1983) and statistical learning abilities (Fiser & Aslin, 2002; Kirkham, 
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Slemmer, & Johnson, 2002; Saffran, Aslin, & Newport, 1996). There is evidence for 

involvement of the anterior hippocampus in statistical learning as young as three months (Ellis et 

al., 2021). Our model predicts that infants should struggle with learning categories that require 

greater involvement of the TSP (categories with more atypical exemplars or arbitrary features), 

and that infants should have a poor memory for category exceptions. In line with these 

predictions, infants’ ability to learn categories is found to be affected by the level of category 

coherence, with less coherent categories being more difficult (Gómez & Lakusta, 2004; 

Younger, 1990; Younger & Gotlieb, 1988). Moreover, young children demonstrate poorer 

memory for category exceptions than for typical category members (Savic & Sloutsky, 2019).  

Our model may resolve the puzzle in the developmental literature about the discrepancy 

between infants’ precocious performance on categorization tasks on the one hand, and poor 

episodic memory abilities on the other hand (Keresztes, Ngo, Lindenberger, Werkle-Bergner, & 

Newcombe, 2018). To the extent that infants have access to the MSP and not TSP, early stages 

of development would correspond to our MSP-only simulations, where we find poor recognition 

performance (especially for atypical category instances) but intact categorization and even 

enhanced generalization. A fully operating basic hippocampal circuitry is eventually needed for 

learning low-coherence categories and for successful episodic memory functions which emerge 

later in development (Gómez & Edgin, 2016). 

 

Neuropsychological accounts of hippocampal contributions to category learning 

Initial accounts of the role of the hippocampus in category learning came from studies of 

patients with medial temporal lobe (MTL) damage. Patients have been tested on a range of 

category learning tasks, including random dot patterns, probabilistic categories, faces, scenes, 

and painting categorization (Kéri, Kálmán, Kelemen, Benedek, & Janka, 2001; Knowlton & 

Squire, 1993; Kolodny, 1994; Reber et al., 1996; Reed et al., 1999; Zaki, Nosofsky, Jessup, & 

Unverzagt, 2003). Knowlton and Squire (1993) tested amnesics’ ability to learn abstract novel 

categories of random dot patterns and observed similar categorization performance as in healthy 

controls, but impaired recognition, leading to the proposal that the MTL is not involved in 

category learning. However, amnesics do show impairment on a more difficult version of this 

task (learning categories A vs. B, as opposed to simply A vs. not-A; Zaki et al., 2003). Amnesics 

are also impaired on categorizing paintings by artist (Kolodny, 1994), and while they succeed in 

a categorization task with faces, they fail with scenes (Graham et al., 2006). When learning 

probabilistic categories, amnesic patients show similar performance to control participants 

initially (first 50 trials), but fail to reach accuracy levels observed in healthy controls with more 

exposure (Knowlton et al., 1994). In addition, amnesics are impaired in flexibly using new 

category knowledge (Reber et al., 1996).  

Studies with Alzheimer’s disease patients have revealed a similar pattern of performance 

as in amnesic patients. Alzheimer’s patients show intact performance on the A/not-A task (Kéri 

et al., 2001; Zaki et al., 2003) but poor performance on the A/B task (Zaki et al., 2003). 

Categorization performance deteriorates as the disease progresses (Kéri et al., 2001). Overall, 

patients with MTL damage clearly have some ability to learn novel categories, indicating that the 

hippocampus is not the only region involved in category learning, but they also show clear 

deficits, especially when aggregating evidence across studies (Zaki, 2004), indicating that the 

hippocampus makes a causal contribution. 
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Neuroimaging evidence of hippocampal involvement in category learning  

Neuroimaging studies provide strong additional evidence for hippocampal involvement 

in category learning (Bowman & Zeithamova, 2018; Mack et al., 2016; Mack, Love, & Preston, 

2018; Zeithamova et al., 2008). This evidence has motivated the proposal that categorization has 

computational needs in common with episodic memory (Mack et al., 2018) and decision making 

(Seger & Peterson, 2013), with the hippocampus as a central neural substrate. The hippocampus 

and medial prefrontal cortex appear to work together in learning new categories (Bowman & 

Zeithamova, 2018; Mack et al., 2020), with the hippocampus perhaps playing an especially 

important role in generalizing knowledge to novel situations (Kumaran, Summerfield, Hassabis, 

& Maguire, 2009). Using a model-based fMRI approach, Mack and colleagues (2016) showed 

that the object representations within the hippocampus reflect dynamic updating of category 

knowledge, and that the representation of an object can change as a function of categorization 

rules. In the paradigm used in our third simulation, Zeithamova and colleagues (2008) found that 

activation of the hippocampus correlated with behavioral performance during the categorization 

task, and Bowman and Zeithamova (2018) found that the hippocampus contributes to 

generalization in this paradigm.  

Hippocampal subfields have not generally been investigated directly in imaging studies 

of category learning, with one exception being our finding that CA1 (but not CA3/DG) 

represented category structure in the satellite stimuli (Schapiro, Turk-Browne, Norman, & 

Botvinick, 2016). However, there is a more indirect way to assess our theory of a division of 

labor within the hippocampus: Anterior hippocampus has a much larger proportion of the CA1 

subfield than posterior hippocampus (Poppenk, Evensmoen, Moscovitch, & Nadel, 2013), so our 

account predicts that anterior hippocampus should preferentially reflect the learning of category 

structure. Indeed, several studies have found that activation in the anterior hippocampus is 

related to category learning (Mack et al., 2016, 2018; Zeithamova et al., 2008) and to prototype-

style learning specifically (Bowman & Zeithamova, 2018). Further, activation in the 

hippocampal body and tail is associated with learning categories that involve exceptions (Davis, 

Love, & Preston, 2012), which is also consistent with the finding that TSP white matter integrity 

predicts exception learning (Schlichting et al., 2021). Thus, neuroimaging evidence suggests a 

strong involvement of the hippocampus in category learning, with some evidence consistent with 

our account of the nature of this involvement.  
 
Recruitment of multiple neural systems during rapid category learning 

As described above, we know that the hippocampus is not the only region contributing to 

category learning, with the basal ganglia and various regions of the neocortex known to be 

critically involved (Ashby & Maddox, 2005; Seger & Miller, 2010). While the hippocampus and 

basal ganglia seem especially important for rapid category learning, on the timescale of minutes 

to hours, cortical regions likely support slower learning, across days, weeks, and months (Seger 

& Miller, 2010).  

The extent to which different neural systems are involved in category learning relates to 

properties of the learning task. For example, an fMRI study found that A vs. B category learning 

primarily engages the MTL, while A vs. not-A task recruits the striatum (Zeithamova et al., 

2008), providing an explanation for the pattern of neuropsychological results described above 

(with MTL damage leading to deficits on A/B but not A/not-A). The need to bind features 

together to differentiate two separate categories (A vs. B) may be better suited to the 

computational abilities of the hippocampus. Another important task property that influences the 
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involvement of different systems is the presence of feedback during learning. For example, 

feedback preferentially engages the basal ganglia in the weather prediction task, whereas the 

observational version of the same task tends to mainly engage MTL (Poldrack et al., 2001).  

Important insights into the flexible recruitment of different neural systems in category 

learning come from studies with patients suffering from Parkinson’s disease (PD; affecting basal 

ganglia function) relative to amnesic patients (primarily affecting MTL function). PD patients 

recruit the MTL in category learning to a larger extent than do controls (Moody, Bookheimer, 

Vanek, & Knowlton, 2004). In addition, PD patients show deficits when learning categories in 

the feedback-based version of the Weather Prediction Task, but show preserved performance in 

the observational version of the task (Shohamy et al., 2004). On the other hand, MTL amnesic 

patients tend to have relatively intact performance in the initial stages of learning, but show 

deficits as learning progresses (Knowlton et al., 1994; Poldrack et al., 2001).  

A neuroimaging study with healthy controls found negatively correlated activity in the 

MTL and basal ganglia during learning, leading to the proposal that the MTL-based and striatal-

based memory systems compete during category learning (Poldrack et al., 2001). There is also 

evidence, however, that the systems can be recruited in parallel, indicating the possibility for 

independent or cooperative contributions (Cincotta & Seger, 2007). 

In sum, the hippocampus (and MTL more broadly) and basal ganglia are both involved in 

rapid category learning, with some hints of situations where one or the other may be more 

important, though more work is needed to flesh this out. Our view, based on the above literature 

as well as literatures outside the domain of category learning, is that the hippocampus should be 

especially important in situations that involve more neutral, observational learning, with less 

motor response, feedback, or reward. Our current model has provided an account of the potential 

contributions of the hippocampus to category learning, but future modeling and empirical work 

should expand to explore the interactions with the basal ganglia (as well as mPFC, as described 

above) in this learning. 

 
Consolidation of category knowledge 

The hippocampus plays a role in the rapid learning of novel categories, but ultimately 

these new representations need to be integrated into neocortical knowledge structures.  Offline 

hippocampal-cortical replay, especially during sleep, may play an important role in this 

integration process (Klinzing, Niethard, & Born, 2019; Marshall & Born, 2007; McClelland et 

al., 1995; Rogers & McClelland, 2004). We found that a night of sleep after learning the satellite 

stimuli improves memory for the category-relevant information, i.e. shared object features, and 

preserves exemplar-specific information (Schapiro, McDevitt, et al., 2017). There is also 

evidence that sleep benefits categorization in the Weather Prediction Task (Djonlagic et al., 

2009) and the classic dot pattern task (Graveline & Wamsley, 2017). Hippocampal replay is 

often thought to be a relatively veridical record of experience, though generalized replay has 

been observed as well (Gupta, van der Meer, Touretzky, & Redish, 2010). The hippocampal 

replay and behavioral sleep findings are at this point consistent with replay driven by the TSP or 

a combination of the TSP and MSP (replay driven only by the MSP should not benefit unique 

features). Regardless of whether hippocampal representations tend to emphasize the specific or 

the general, new neocortical representations of recent information should help to bring out the 

shared, general category structure (McClelland et al., 1995), consistent with this literature. 
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Predictions and conclusions 

 We have put forward an account of the possible contributions of the hippocampus to 

rapid, novel category learning. We propose that the TSP, known for its rapid binding and pattern 

separation computations, contributes to remembering the arbitrary aspects of categories — the 

specifics of individual exemplars or observations and the exceptions to the category rules. The 

MSP, with a relatively slower learning rate and more distributed representations, contributes to 

the systematic aspects of categories — the structure shared across category exemplars. This 

proposal for two systems within the hippocampus with complementary expertise makes specific 

predictions about the response properties in the two pathways during learning as well as 

consequences of damage or anatomical variation in the pathways.  

 The neural responses to exemplars from the same category should tend to be more similar 

in CA1 than in CA3 and DG. This should be especially true immediately after presentation of a 

stimulus, as the circuit is recurrent, so information in CA1 can spread through EC back to DG 

and CA3 with more processing time (as in Fig. 3d). To be concrete, assume a human or animal 

has learned that stimuli A, B, and C belong to the same category. In an experiment recording 

from neurons from several subfields, the model predicts that when viewing A, the initial pattern 

of activity in DG and CA3 should look dissimilar to that for B and C, whereas the initial pattern 

of activity in CA1 should look similar to B and C. With additional processing time, DG and CA3 

may start to show some of that similarity structure as well. The degree of within-category 

similarity structure in CA1 should predict the ability to remember shared structure and to 

generalize to novel exemplars, and the degree of separation in DG and CA3 should predict the 

ability to remember unique aspects of the exemplars. 

 There are many changes to the human brain that are known to, or could plausibly result 

in, differential strength of the two pathways, including development, aging, psychiatric disorders, 

and neurological disease. In rodent models, it is possible to separately lesion the two pathways 

(Nakashiba et al., 2008). There is also variance across people (or animals) in the normal 

anatomical integrity of the two pathways that can be measured (Schlichting et al., 2021). In 

general, we expect double dissociations in the behavior resulting from strength vs. weakness of 

the TSP vs. MSP: Weakness specifically in the TSP should result in poor memory for specific, 

arbitrary features of exemplars but preserved memory for structure shared across exemplars. 

Weakness specifically in the MSP should result in poor memory for shared structure and 

relatively preserved memory for specifics. We predict behavioral consequences to be stronger in 

paradigms that involve more passive, observational learning, as the basal ganglia is more likely 

to be able to pick up the slack in tasks involving motor responses and feedback. 

 There are several empirical datapoints that already fit these predictions, including 

category-related similarity structure in CA1 (Schapiro et al., 2016), TSP white matter integrity 

predicting exception learning (Schlichting et al., 2021), and behavioral exception learning that 

unfolds in accordance with MSP and TSP properties (Heffernan, Schlichting, & Mack, 2021). 

But more work is needed to establish the extent to which, and the conditions under which, this 

account correctly characterizes the contribution of the hippocampus to category learning. We 

hope the model inspires new empirical theoretically diagnostic work, which will in turn inform 

model development and expansion. 
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Supplementary Table 1. Satellites: Input patterns used in training and for categorization test (based on 

Schapiro, McDevitt, Rogers, Mednick, & Norman, 2018). If a feature is present in an item, the input is 1, 

otherwise 0. Each of the three categories has one prototype (items 1, 6, and 11) that consists of entirely 

shared features, and exemplars that have four shared features and one unique feature. C1=Category 1; 

C2=Category 2; C3=Category 3. 

 Features 

Cat Item Shared (C1) Unique (C1) Shared (C2) Unique (C2) Shared (C3) Unique (C3) 

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 2 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 3 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 4 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 5 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 6 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

2 8 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 

2 9 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

2 10 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 

3 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 

3 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 

3 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 

3 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 

3 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 
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Supplementary Table 2. Satellites: Input patterns for the unique and shared feature memory test.  

 Features 

Cat Item Shared (C1) Unique (C1) Shared (C2) Unique (C2) Shared (C3) Unique (C3) 

1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

3 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

3 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

3 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

3 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 
 

 
Supplementary Table 3. Satellites: Input patterns for the generalization test set. Each exemplar consists 

of two shared and two unique features. 

 Features 

Cat Item Shared (C1) Unique (C1) Shared (C2) Unique (C2) Shared (C3) Unique (C3) 

1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 2 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 3 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 4 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 5 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 6 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 7 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

2 8 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

2 9 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 

2 10 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 

2 11 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 

2 12 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

3 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 

3 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 

3 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 

3 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 

3 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 

3 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 
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Supplementary Table 4. Weather prediction task: input patterns (based on Knowlton, Squire, & Gluck, 

1994). There are four cards and each pattern consists of a combination of 1, 2 or 3 cards. Each card is 

represented by one unit (if the card is presented in a pattern, the input is 1, otherwise it is 0).  

Pattern 
Card 

1 

Card 

2 

Card 

3 

Card 

4 
P(outcome 1) 

Pattern 

probability 

1 0 0 0 1 0.15 0.14 

2 0 0 1 0 0.38 0.084 

3 0 0 1 1 0.1 0.087 

4 0 1 0 0 0.62 0.084 

5 0 1 0 1 0.18 0.064 

6 0 1 1 0 0.5 0.047 

7 0 1 1 1 0.21 0.041 

8 1 0 0 0 0.85 0.14 

9 1 0 0 1 0.5 0.058 

10 1 0 1 0 0.82 0.064 

11 1 0 1 1 0.43 0.032 

12 1 1 0 0 0.9 0.087 

13 1 1 0 1 0.57 0.032 

14 1 1 1 0 0.79 0.041 

 

 

 
Supplementary Table 5. Intermixed categories with varying typicality: training set (based on 

Zeithamova, Maddox, & Schnyer, 2008). Each exemplar consists of ten binary features, and each feature 

is represented by two units (one unit for each possible feature value).  

 Features 

1 2 3 4 5 6 7 8 9 10 

Cat Item A B A B A B A B A B A B A B A B A B A B 

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 

1 2 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

1 3 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 

1 4 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 

1 5 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 

1 6 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 

1 7 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 1 0 

1 8 1 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 1 0 

1 9 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 

1 10 0 1 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 

2 11 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 

2 12 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 

2 13 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 

2 14 0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 

2 15 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 1 

2 16 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 

2 17 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 

2 18 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 

2 19 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

2 20 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 
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Supplementary Table 6. Intermixed categories with varying typicality: test set. Items 1 and 42 represent 

prototypes of the two categories and have no overlapping features, and the rest of the items span the 

continuum between the two prototypes. 

 

Features 

1 2 3 4 5 6 7 8 9 10 

Cat Item A B A B A B A B A B A B A B A B A B A B 

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

1 2 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

1 3 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 

1 4 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

1 5 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 

1 6 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 

1 7 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 

1 8 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 

1 9 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 

1 10 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 

1 11 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 

1 12 0 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 

1 13 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 

1 14 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 

1 15 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0 

1 16 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 

1 17 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 

1 18 1 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 

1 19 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 

1 20 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 0 1 0 

1 21 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 1 0 

2 22 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 

2 23 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 

2 24 1 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 

2 25 0 1 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 1 

2 26 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 

2 27 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 

2 28 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 

2 29 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 

2 30 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 

2 31 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 

2 32 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 

2 33 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 1 

2 34 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 

2 35 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 
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2 36 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 

2 37 0 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

2 38 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 

2 39 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 

2 40 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 

2 41 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 

2 42 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

 

 

Supplementary Table 7. Layer size and inhibition parameters. All values the same as Schapiro, Turk-

Browne, Botvinick, & Norman, 2017 except EC size and corresponding kWTA pct.  

Area # Units kWTA type Proportion activity (kWTA pct) kWTA pt 

ECin and ECout 27 / 8 / 30 kWTA Avg Inhib K = 5 / K = 6 / K = 10 0.5 

DG 400 kWTA Avg Inhib 0.01 0.9 

CA3 80 kWTA Avg Inhib 0.06 0.7 

CA1 100 kWTA Avg Inhib 0.25 0.7 

 
 

Supplementary Table 8. Parameters for projections between layers. All values the same as Schapiro, 

Turk-Browne, Botvinick, & Norman, 2017 except where underlined. 

Projection Weight range Scale  
(abs / rel) 

Connectivity lrate 
sim1 / sim2 / sim3 

Input → ECin 0.25 – 0.75 1 / 1 1 to 1 0 

ECin → DG 0.25 – 0.75 1 / 1 25% 0.2 

ECin → CA3 0.25 – 0.75 1 / 1 25% 0.2 

DG → CA3 (mossy fiber) 0.89 – 0.91 1 / 8 25% 0 

CA3 → CA3  0.25 – 0.75 1 / 1 5% 0.2 

CA3 → CA1 (Schaffer) 0.25 – 0.75 1 / 1 100% 0.05 

ECin → CA1 0.25 – 0.75 3 / 1 100% 0.02 / 0.02 / 0.002  

CA1 → ECout 0.25 – 0.75 1 / 1 100%  0.002 / 0.002 / 0.02  

ECout → CA1  0.25 – 0.75 1 / 1 100% 0.002 

ECout → ECin 0.49 – 0.51 2 / .5 1 to 1 0 

 

 
 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2022. ; https://doi.org/10.1101/2022.01.12.476051doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.12.476051
http://creativecommons.org/licenses/by/4.0/

