Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Climate change impacts on the abiotic degradation of acyl-homoserine lactones in the fluctuating conditions of marine biofilms

View ORCID ProfileChristina C. Roggatz, Daniel R. Parsons
doi: https://doi.org/10.1101/2022.01.12.476096
Christina C. Roggatz
1Energy and Environment Institute, University of Hull, HU6 7RX, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christina C. Roggatz
  • For correspondence: roggatz@outlook.com
Daniel R. Parsons
1Energy and Environment Institute, University of Hull, HU6 7RX, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Marine biofilms are functional communities that shape habitats by providing a range of structural and functional services integral to coastal ecosystems. Impacts of climate change on biological aspects of such communities are increasingly studied, but impacts on the chemicals that mediate key interactions of biofilm organisms have largely been overlooked. Acyl-homoserine lactones (AHLs), crucial bacterial signals within biofilms, are known to degrade through pH and temperature-dependent hydrolysis. However, the impact of climate change on AHLs and thus on biofilm form and function is presently unknown. This study investigates the impact of changes in pH and temperature on the hydrolysis rate, half-life time and quantitative abundance of different AHLs on daily and seasonal timescales for current conditions and future climate change scenarios.

We established the mathematical relationships between pH, hydrolysis rates/ half-life times and temperature, which revealed that natural daily pH-driven changes within biofilms cause the greatest fluctuations in AHL concentration (up to 9-fold). Season-dependant temperature enhanced or reduced the observed daily dynamics, leading to higher winter and lower summer concentrations and caused a shift in timing of the highest and lowest AHL concentration by up to two hours. Simulated future conditions based on climate change projections caused an overall reduction of AHL degradation and led to higher AHL concentrations persisting for longer across both the daily and seasonal cycles.

This study provides valuable quantitative insights into the theoretical natural dynamics of AHL concentrations. We highlight critical knowledge gaps on the scale of abiotic daily and seasonal fluctuations affecting estuarine and coastal biofilms and on the biofilms’ buffering capacity. Detailed experimental studies of daily and seasonal dynamics of AHL concentrations and assessment of the potential implications for a suite of more complex interactions are required. Substantial fluctuations like those we show in this study, particularly with regards to concentration and timing, will likely have far reaching implications for fundamental ecosystem processes and important ecosystem services such as larval settlement and coastal sediment stabilisation.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted January 13, 2022.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Climate change impacts on the abiotic degradation of acyl-homoserine lactones in the fluctuating conditions of marine biofilms
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Climate change impacts on the abiotic degradation of acyl-homoserine lactones in the fluctuating conditions of marine biofilms
Christina C. Roggatz, Daniel R. Parsons
bioRxiv 2022.01.12.476096; doi: https://doi.org/10.1101/2022.01.12.476096
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Climate change impacts on the abiotic degradation of acyl-homoserine lactones in the fluctuating conditions of marine biofilms
Christina C. Roggatz, Daniel R. Parsons
bioRxiv 2022.01.12.476096; doi: https://doi.org/10.1101/2022.01.12.476096

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Microbiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3479)
  • Biochemistry (7318)
  • Bioengineering (5296)
  • Bioinformatics (20197)
  • Biophysics (9976)
  • Cancer Biology (7703)
  • Cell Biology (11250)
  • Clinical Trials (138)
  • Developmental Biology (6418)
  • Ecology (9916)
  • Epidemiology (2065)
  • Evolutionary Biology (13280)
  • Genetics (9352)
  • Genomics (12554)
  • Immunology (7674)
  • Microbiology (18939)
  • Molecular Biology (7417)
  • Neuroscience (40893)
  • Paleontology (298)
  • Pathology (1226)
  • Pharmacology and Toxicology (2126)
  • Physiology (3140)
  • Plant Biology (6838)
  • Scientific Communication and Education (1270)
  • Synthetic Biology (1891)
  • Systems Biology (5296)
  • Zoology (1085)