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Abstract  

Elucidating the design principles of regulatory networks driving cellular decision-making has 
important implications in understanding cell differentiation and guiding the design of synthetic 
circuits. Mutually repressing feedback loops between ‘master regulators’ of cell-fates can exhibit 
multistable dynamics, thus enabling multiple “single-positive” phenotypes: (high A, low B) and 
(low A, high B) for a toggle switch, and (high A, low B, low C), (low A, high B, low C) and (low A, 
low B, high C) for a toggle triad. However, the dynamics of these two network motifs has been 
interrogated in isolation in silico, but in vitro and in vivo, they often operate while embedded in 
larger regulatory networks. Here, we embed these network motifs in complex larger networks of 
varying sizes and connectivity and identify conditions under which these motifs maintain their 
canonical dynamical behavior, thus identifying hallmarks of their functional resilience. We show 
that an increased number of incoming edges onto a motif leads to a decay in their canonical 
stand-alone behaviors, as measured by multiple metrics based on pairwise correlation among 
nodes, bimodality of individual nodes, and the fraction of “single-positive” states. We also show 
that this decay can be exacerbated by adding self-inhibition, but not self-activation, loops on the 
‘master regulators’. These observations offer insights into the design principles of biological 
networks containing these motifs, and can help devise optimal strategies for integration of these 
motifs into larger synthetic networks. 
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Introduction  

Gene Regulatory Networks (GRNs) are an integral part of the control structure involved in various 
cellular processes such as cell-fate decisions made during embryonic development, cellular 
reprogramming, and phenotypic switching among two or more cell types. A pluripotent cell is 
capable of differentiating to more than one cell type in response to varying stimuli. This property 
of coexistence of more than one stable steady state (phenotypes) is referred to as multi-stability 
and it underlies the dynamics of many GRNs involved in decision-making during differentiation 1. 
Such multi-stability has been seen during cellular reprogramming as well as phenotypic switching 
under many circumstances. Thus, elucidating the dynamical principles of multi-stable GRNs and 
network motifs holds promise for understanding many biological processes and control 
applications in synthetic biology2–5.   
 
One of the most frequently observed and extensively investigated network motifs is the ‘Toggle 
Switch’ (TS), i.e., two mutually repressing regulators A and B, each driving a different cell fate 6–

8. The TS enables two mutually exclusive “single-positive” outcomes - (high A, low B) and (low A, 
high B), thus showing bistable dynamics and allowing a pluripotent cell to choose from two cell 
fates 2,8,9. For instance, PU.1 and GATA1 form a TS that drives hematopoietic stem cells to either 
a common myeloid progenitor (PU.1 high, GATA1 low) or an erythroid one (PU.1 low, GATA1 
high) 2,10. Also, in Escherichia coli, the construction of a TS exhibiting bistability and switching 
between the two states in response to external signals has driven an extensive design of synthetic 
genetic circuits 8,11,12. Another network motif is a ‘Toggle Triad’ (TT), i.e., three mutually repressing 
regulators A, B, and C, each driving a respective cell fate 13–16. TT can enable a progenitor cell to 
differentiate into three distinct cell fates; for instance,  the case of naïve CD4+ T helper cells 
differentiating to Th1, Th2, and Th17 cells 13,17,18.  The three canonical “single-positive” states 
enabled by TT are: (high A, low B, low C), (low A, high B, low C) and (low A, low B, high C), as 
also seen in a recent synthetically constructed TT based on protein dimerization instead of 
transcriptional regulation 19. 
 
While the dynamics of TS and TT have been extensively investigated deterministically and 
stochastically, most such investigations have considered them in isolation, i.e. TS or TT are 
assumed to be not connected to any other network components 13–15,20–22. However, in reality, a 
TS or TT is only a small part embedded in a larger network of interconnected proteins and 
signaling components. Here, we investigate and quantify the behavior of TS and TT network 
motifs when embedded in much larger networks, using three properties: bimodality of individual 
nodes, pairwise correlation coefficient between nodes, and fraction of canonical “single-positive” 
states.  We noticed that for a TS, an increase in the number of incoming edges on the two nodes 
of a TS (i.e. in-degrees for A and B) resulted in deviation from stand-alone behavior, as captured 
by changes in all the three abovementioned properties. Further, an asymmetry in the in-degrees 
for both nodes also compromised bistability. However, for a TT, the fraction of “single-positive” 
(F1) states and maximum correlation coefficient (MaxCC) were reliable metrics to quantify its 
deviation from stand-alone dynamics. We observed that as the net in-degree of a TT increased, 
“single-positive” steady states (e.g. (high A, low B, low C)) were replaced by “double-positive” 
ones (e.g. (high A, high B, low C)). The value of the maximum of the three pairwise correlation 
coefficients (Max CC, i.e. maximum of (CC AB, CC BC, CC AC)) also increased with increasing 
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in-degree of TT. These observations suggest that in addition to the previously studied factors 
influencing the dynamics of TS or TT,  the local density around these motifs, when embedded in 
larger networks, could also influence their functional properties. 

Results  
Stand-alone properties of toggle switch and toggle triad 
 
We first investigated the stand-alone properties of a toggle switch (TS) and toggle triad (TT), 
before embedding them in larger networks. RACIPE formalism 23 was used to simulate these 
networks for 10,000 randomized parameter sets sampled from a predetermined parameter space. 
Three such replicates (each with 10,000 parameter sets * 100 initial conditions per parameter set) 
were performed for each motif. The resultant steady state values for each node were normalized 
and converted to z-scores. Pairwise correlation coefficients (CC) were then calculated between 
the steady state values of nodes in a TS or TT. Also, for the TS, we calculated Sarle’s bimodality 
coefficient (BiC) 24 values for each node. BiC values range from 0 to 1, with values closer to 1 
representing higher bimodality, and any value above 0.55 considered to represent a bimodal 
distribution 23.  
 

 
Figure 1: Stand-alone dynamics of two-node and three-node mutually repressing motifs. A) A toggle 
switch (TS) motif comprises two nodes A and B that mutually inhibit each other. B) Probability density plot 
of steady state values of nodes in a TS. The two dense clusters correspond to “single-positive” 01 and 10 
steady states (F1) of a TS. C) Regression plot between the steady states values of two nodes, A and B of 
a TS. Correlation coefficient (CC AB) between them is -0.83. D) A toggle triad (TT) motif comprises three 
mutually repressing nodes A, B, and C. E) Probability density plot of steady-state values of two TT nodes 
A and B; the three clusters represent three “single-positive” steady states (F1), 001, 010, and 100. F) 
Regression plot between steady state values of nodes B and C of a TT. Correlation coefficient (CC BC) = 
-0.39. Other pairwise correlation coefficient values are also mentioned: CC (AC) = -0.39, CC (AB) = -0.40. 
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The TS motif (Fig 1A) mainly showed two “single-positive” steady states: ((low A, high B); (A, B) 
= (0, 1)) and ((high A, low B); (A, B) = (1, 0)), as observed in the bivariate plot (Fig 1B). The 
steady state values of both nodes in a TS showed a bimodal distribution (BiC A = BiC B = 0.78), 
with the peaks representing the corresponding high and low steady state values. Because the 
two nodes of a TS repress each other, the correlation coefficient between steady state values of 
the nodes was strongly negative (CC AB = - 0.83) (Fig 1C). The steady state values for a TT motif 
(Fig 1D), for any given pair of TT nodes, had three distinct clusters, which represent the three 
“single-positive” stable steady states namely ((low A, low B, high C); (A, B, C) = (0, 0, 1)) state, 
((low A, high B, low C); (A, B, C) = (0, 1, 0)) state and ((high A, low B, low C); (A, B, C) = (1, 0, 
0)) state. One node shows higher expression in these states while the other two nodes have 
repressed expression (Fig 1E, S1A-B). In contrast to TS, the average BiC of a node in TT is 0.43 
(standard deviation = 0.004), implying a more unimodal-like distribution with little difference in the 
high and low steady state values of a node in a TT. Although negative, the magnitude of pairwise 
correlation coefficient between the steady state values of any two nodes of a TT was less than 
that of a TS (CC AB = CC AC = - 0.39, CC BC = -0.40) (Fig 1F, S1C-D). This decrease could be 
because although any pair of two nodes mutually repress, due to the dominance of “single-
positive” steady states, two nodes of TT can still show similar low-expression steady state values, 
thus leading to a relatively lower magnitude of correlation coefficient between them. On the other 
hand, two nodes of a TS are strictly confined to having opposing expression profiles, leading to a 
strongly negative correlation. 
 
 
Functional traits of toggle switch depend on density rather than the size of the larger 
networks it is embedded in 
 
Next, we embedded TS and TT motifs in different larger networks having combinations of four 
different network orders and three distinct densities (mean connectivity) to understand how the 
above mentioned stand-alone dynamic traits of TS and TT change. The four network orders are 
5N, 10N, 15N and 20N, where N is the number of nodes in a network in which these motifs were 
embedded. The three mean connectivity values are E:2N, E:4N, and E:6N, where E:xN signifies 
that the number of edges (E) is x times the number of nodes (N). The combinations of the four 
network orders (5N, 10N, 15N and 20N) and three mean connectivity (E:2N, E:4N and E:6N) 
resulted in twelve different types of networks (Fig 2A). For each type of network, n=100 random 
network topologies were generated. TS motifs were then embedded into these 1200 (12 types x 
n=100) randomly generated networks to study the motif’s behavior. For instance, a TS embedded 
in a 5N, E:4N network will have 7 nodes (5 nodes + 2 nodes of TS) and 22 edges (5*4 edges + 2 
edges of TS) (Fig 2B). The same process was repeated for TT motif to generate 1200 random 
networks. RACIPE was used to simulate dynamics of these larger networks of varying sizes and 
mean connectivity, with each network being simulated three times (Fig 2C). The generated 
outputs were normalized by z-scoring and then analyzed to characterize the behavior of TS and 
TT motifs upon embedding. Three metrics were assessed to quantify the dynamic resilience of 
TS and TT motifs when embedded in larger networks: bimodality coefficient (BiC), correlation 
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coefficient (CC) and frequency of canonical ‘single-positive’ states as a fraction of all steady states 
observed (F1).  
 
To evaluate how network size and density can independently influence the behavior of a TS when 
embedded in larger networks of varying orders and mean connectivity, we compared the behavior 
for networks sharing the same mean connectivity but having different network orders or vice 
versa. Interestingly, for networks with same mean connectivity, CC between the two nodes in a 
TS (CC AB) did not show any significant variation for varied network orders (Fig 3A, i). However, 
when controlling for network order, CC AB reduced as the mean connectivity increased (Fig 3A, 
ii). A similar trend, i.e., the dependence on network density rather than on network size and a 
decrease in magnitude with increasing network density, was also observed in distributions of BiC 
values: BiC A and BiC B (Fig 3B, i-ii; S1E-F) and for F1 (Fig 3C, i-ii).  
 
For some cases, the decrease observed in metrics between E:4N and E:6N mean connectivity 
values was not significantly different, potentially because the TS dynamics was compromised 
enough in the E:4N case but not in the E:2N case. Put together, all the three metrics considered 
here to capture the behavior of a TS - CC (how strongly are the two nodes in  a TS anti-correlated), 
BiC (how clearly the high and low levels of a node are segregated), and F1 (how strong is the 
dominance of mutually exclusivity of the two nodes) - tend to show trends indicating a weakening 
of the dynamical behavior of a TS, as it is embedded in increasingly denser large networks.  
 

 
Figure 2: Schematic of the pipeline used to generate, simulate and analyze the motifs embedded in 
random networks. A) Table showing the twelve types of networks which were created as combinations of 
three mean connectivity and four network orders. B) Schematic showing the process of embedding the 
motifs into the created networks. C) Simulation pipeline of RACIPE used to get the steady state values for 
these larger networks containing embedded TS or TT, for further analysis. 
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Figure 3: Functional traits of TS embedded in large networks. A) Comparison between the distributions 
of  CC AB for TS embedded in: i) networks of same mean connectivity but having different orders and (i) 
networks of same order having different mean connectivity. B) Comparison between the distributions of  
BiC A for TS embedded in: i) networks of same mean connectivity but having different orders and ii) 
networks of same order having different mean connectivity. C) Comparison between the distributions of  F1 
for TS embedded in: i) networks of same mean connectivity but having different orders and ii) networks of 
same order having different mean connectivity. p-values of pairwise Mann-Whitney U tests are denoted by: 
ns - p <= 1, * -  0.01< p <= 0.05 , ** - 0.001 < p <= 0.01, *** - 0.0001 < p <= 0.001, **** - p <= 0.0001 
 
 
 
Local density around a toggle switch impacts its dynamic behavior 
 
Mean connectivity of a network is the ratio of the total number of edges to the number of nodes 
in the network, i.e. a measure of global network density. Thus, assuming that the network, on 
average, is equally sparse or dense, with an increase in mean connectivity of the network, the 
average in-degree of the nodes of a TS embedded in the network also increases. To ascertain 
whether this increase in the in-degree (in A and in B) for the TS nodes (as a consequence of the 
increased mean connectivity of the network) contributed to divergence from stand-alone TS 
dynamics, we analyzed the variation in the three metrics (CC, BiC, and F1) with a change in the 
in-degrees of the TS nodes. We observed that as the in-degree of both nodes of a TS increased, 
the mean CC AB values decreased in magnitude, i.e. the TS nodes A and B were not as strongly 
negatively correlated with one another as in a stand-alone case (Fig 4A, i). For an in-degree of 
one for both the nodes in a TS, i.e. the case when the two nodes only had outgoing edges apart 
from their mutual inhibitions, we noticed a mean CC AB value of -0.83 (Fig 4A, i), the same as 
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that of an isolated TS motif (Fig 1B). Furthermore, the magnitude of CC AB showed the fastest 
decline when both the nodes had equally increasing in-degrees (along the diagonal of the 
heatmap shown in Fig 4A, i). Similarly, F1 decreased steadily with in-degrees increasing equally 
for the two nodes (Fig 4A, ii). On the other hand, the BiC of a given node in TS changed only with 
the in-degree for that node, and not with the in-degree for the other node, or with overall in-degree 
of a TS (Fig S2A: i, ii). Additionally, the mean BiC values for nodes with in-degree more than two 
were lower than the typical cut-offs considered for bimodality (~0.55), indicating the compromised   
canonical bimodal distributions observed in the nodes of an isolated TS.  
 

 
 
Figure 4: Influence of in-degree of TS on its functional traits. A) Heatmaps of values of i) CC AB and 
ii) F1 for varying in-degree of the two nodes in a TS. iii) Scatter plot of log2 (in A/in B) values against their 
CC AB values, with points colored according to their log2 (BiC A/BiC B) values. B) Bivariate plots of steady 
state values of TS nodes with varying in-degree ratios. C) Heatmap of the ratio of the fraction of bistable 
parameter sets which show ‘single-positive’ (01 or 10) steady states to the fraction of monostable parameter 
sets showing 01 or 10 steady states (B:M), with varying in-degree combinations for the two nodes of a TS. 
D) Heatmap of the pairwise correlation coefficients of in-degree metrics, in-degree of A (in A), in-degree of 
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B (in B) and in-degree of TS (in TS) against various TS properties. *: p-value < 0.05 according to Spearman 
correlation test. E) Summary of the effect of local density on the dynamics of an embedded TS motif. 
 
Further, we quantified the impact of asymmetry in terms of incoming edges on a TS by considering 
the impact of the ratio of in-degree of A to that of B (log2 (in A/in B)) on CC AB and relative BiC 
values simultaneously. We noticed that the higher the asymmetry in terms of in-degree (log2 (in A 
/in B) > 1 or log2 (in A/in B) < -1), the stronger the negative correlation between the two TS nodes 
(CC AB < -0.5) (Fig 4A, iii).  Importantly, as the magnitude of log2 (in A/in B) increased, the range 
of CC AB values (initially even spanning positive values; above the red dotted horizontal line), 
narrowed to highly negative values close to those observed in isolated TS nodes (-0.83) (Fig 4A, 
iii). Similarly, the value of F1 approached closer to that observed in an isolated TS, as the 
magnitude of (log2 (in A/in B)) increased (Fig S2B, i).  Also, we noted that the higher the in-degree 
of a node, the more likely it becomes for that node to lose its bimodality seen in a stand-alone TS 
(log2 (BiC A/BiC B) < -1 for log2 (in A /in B) > 1 and log2 (BiC A/BiC B) > 1 for log2 (in A/in B) < -1) 
(Fig 4A, iii). Together, this analysis suggest that while F1 (fraction of single positive states) and 
CC (AB) (correlation coefficient) depend on the in-degree of a TS, the BiC of individual nodes 
depend on the in-degree of respective node.  
 
To substantiate this trend further, we investigated representative cases of varied in-degrees of A 
and B. When the TS has only outgoing connections and there is no asymmetry between the in-
degree of A and B (in A= in B= 1; the only incoming links on A and B are from each other), the 
bivariate plot of A and B is very similar to that of an isolated TS (compare Fig 1B with Fig 4B, i). 
But, upon asymmetry in the in-degrees of nodes in a TS (in A=2, in B=6, in TS = 2 + 6 = 8), the 
node with higher in-degree (B) starts to lose its switch-like behavior and shows a more unimodal 
distribution of its steady state values (Fig4B, ii). However, the strongly negative correlation 
between the TS nodes and concomitantly the fraction of “single-positive” states does not decrease 
as sharply compared to those for the stand-alone case (compare F1 and CC (AB) in Fig 4B, ii 
with those in Fig 4B, i). To deconvolute the impact of higher in-degree of TS vs. asymmetry in 
the in-degree of both the nodes, we considered a case with the same in-degree for both nodes, 
without changing the net in-degree for a TS (in A= 4, in B= 4, in TS = 4 + 4 =8). Here, the switch-
like behavior of both nodes is largely lost and they show a unimodal distribution of their respective 
steady state values (Fig4B, iii). However, CC (AB) and F1 are comparable to the case of 
asymmetric in-degrees (compare CC (AB) and F1 values in Fig 4B, ii with those in Fig 4B, iii), 
further supporting that while the higher the in-degree of a toggle switch, the weaker the negative 
correlation between nodes and the smaller the fraction of “single-positive” states, the bimodality 
patterns for each node depend on in-degree of that individual node and not on in-degree for TS.  
 
After looking at these representative trends showcasing an increasing in-degree of a node leading 
to loss of bimodality in steady state distributions of the corresponding node, we investigated how 
generic these trends were for embedded TS motifs. We hypothesized that with an increasing in-
degree of TS, the frequency of co-occurring ‘single positive’ states (01 and 10 states in a bistable 
setting) should decrease, with a concomitant increase in having either of these two states, i.e. 01 
or 10 states in a monostable setup. This feature can be quantified by the ratio of the fraction of 
bistable parameter sets showing 01 and 10 steady states to the fraction of monostable parameter 
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sets showing 01 or 10 steady states (B:M). When the TS has only outgoing connections to the 
network (in A= in B= 1; the only incoming links on A and B are from each other), the B:M ratio is 
greater than 1 (Fig 4C). But, as the in-degree for the TS increases, B:M decreases to values 
below 1, with the sharpest decline when both nodes have equal in-degrees (along the diagonal 
of the heatmap in Fig4C). These results show that as the in-degree of TS increases, the canonical 
bistable behavior (co-existing ‘single positive’ states)  starts to decrease, and simultaneously, the 
fraction of monostable ‘singe-positive’ steady states increases, implying a loss of bistable traits of 
the TS motif.  
 
Finally, across larger networks of varying sizes and mean connectivity values, we interrogated 
how in-degrees for individual nodes as well as for a TS (In A, In B and In TS) correlates with 
various metrics – F1, CC AB, BiC A, BiC B and B:M ratio. Net in-degree of the TS (in TS) was 
found to best explain the decline in the magnitude of CC AB, F1 and the B:M ratio (Fig 4D). The 
bimodality coefficients (BiC A and BiC B), on the other hand, were more influenced by the in-
degree of their respective nodes and not inTS (Fig4D). Therefore, it is the local density on the TS 
motif (given by in TS) that drives the divergence from TS-like behavior rather than the properties 
of the whole network in which a TS is embedded. 
 
 
In a toggle triad, the fraction of single-positive states capture its functional resilience  
 
After investigating the patterns seen in a TS embedded in large networks, we focused our attempt 
to understand the functional resilience of the TT motif. We embedded it into the previously 
described 12 types of large random networks. Similar to observations in TS, the distributions of 
pairwise correlation coefficients – CC AB, CC BC and CC AC – did not show any significant 
consistent variation when they were grouped by mean connectivity and compared across the 
different network orders (Fig 5A, i; S3A, i; S3B, i). Intriguingly, unlike the observations in TS, we 
did not observe any significant differences when the CC values between the TT nodes were 
grouped by their network orders and compared across the three mean connectivity either (Fig 
5A, ii; S3A, ii; S3B ii), despite a visible increase in the range of values. Thus, we investigated 
how the maximum of the three pairwise correlation values (MaxCC) between the TT nodes – CC 
AB, CC BC and CC AC – varied as a function of network order and/or mean connectivity. We 
observed that when grouped by order, the higher the mean connectivity, the higher the average 
MaxCC value; however, no such trend was seen when grouped by mean connectivity (Fig 5B, i-
ii). Reminiscent of observations in TS, the fraction of “single-positive” (010, 100, and 001) steady 
states (F1) also decreased overall when comparisons were made across their mean connectivity 
(Fig 5C, i), but not across their network orders (Fig 5C, ii). Consistently, the fraction of “double-
positive” (011, 110, 101) states (F2), and the fraction of “all-positive” or “all-negative” (111, 000) 
states (F3) increased across different mean connectivity values when grouped by network orders 
(Fig 5D, i-ii), but not when grouped by mean connectivity and compared across network orders. 
(Fig S4A, i-ii). The ratio of the fraction of “single-high” to that of “double-high” states (F1/F2) also 
showed the same trend, asymptotically reaching the value of one (Fig 5D, iii; S4, iii). These 
observations help understand the trend seen for MaxCC tending towards positive values with 
increasing mean connectivity. With decreasing frequency of “single-positive” states, the negative 
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pairwise correlation between the TT nodes starts to weaken, and in some cases, one or more of 
the correlation coefficient values can be positive, suggesting a decay of stand-alone TT dynamics. 
 

 
 
Figure 5: Functional traits of TT embedded in larger networks. A) Comparison between distributions 
of CC AB for TT embedded in i) networks of same mean connectivity but having different orders and ii) 
networks of same order having different mean connectivity. B) Comparison between the distributions of  
MaxCC for TT embedded in i) networks of same mean connectivity but having different orders and ii) 
networks of same order having different mean connectivity. C) Comparison between the distributions of the 
F1, for TT embedded in (i) networks of same mean connectivity but having different orders and (ii) networks 
of same order having different mean connectivity. D) Comparison of the distributions of i) F2 ii) F3 iii) F1/F2 
for TT embedded in networks of the same order having different mean connectivity.  p-values of pairwise 
Mann-Whitney U tests are denoted by: ns - p <= 1, * -  0.01< p <= 0.05 , ** - 0.001 < p <= 0.01, *** - 0.0001 
< p <= 0.001, **** - p <= 0.0001 
 
 
We next investigated how the in-degree of the embedded TT motif affected its behavior. MaxCC 
values correlated positively (ρ = 0.41, p < 0.05) with the in-degree of TT, indicating that the higher 
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the in-degree of TT, the stronger the decay of TT dynamics (Fig 6A, i). Consistently, F1/F2 values 
decreased as the in-degree of TT increased (ρ = -0.51, p < 0.05), tending towards a value of 1 for 
high in-degrees of TT (Fig 6A, ii), driven by decrease in F1 and increase in F2 and F3 (Fig S5A). 
Moreover, Max CC correlated negatively with F1 (ρ = -0.48, p < 0.05) and F1/F2 (ρ = -0.45, p < 
0.05) but positively with F2 (ρ = 0.37, p < 0.05) and F3  (ρ = 0.35, p < 0.05) (Fig 6A, iii; S5B). 
Therefore, with an increasing in-degree of a TT, the fraction of “single-positive”  states diminish 
as they are replaced by “double-positive” (and, to some extent, by “all-positive” or “all-negative”) 
states. Subsequently, this change in frequencies of different states can weaken the canonical 
mutual inhibition among nodes in a stand-alone TT, driving one or more of pairwise correlation 
values to be positive, thus validating our choice of Max CC as a metric to assess the decay of TT 
dynamics.   
 
After characterizing the effect of net in-degree of TT on its behavior, we investigated how the 
three pairwise correlation between the TT nodes (CC AB, CC BC, and CC AC) varied with varying 
in-degrees for the nodes. Unlike the observations for embedded TS where the  CC AB decreased 
with network mean connectivity and in-degree for motif nodes (Fig 4A, i; S6), the pairwise CCs 
did not show any discernible trend in an embedded TT, therefore, we excluded them from any 
further analysis. On the other hand, F1, F2 and F3 changed significantly as the in-degrees of any 
two nodes in the TT increased (F1 decreased while F2 and F3 increased); at high in-degrees for 
any two nodes, F2 is approximately equal to F1 and 6-7 times the corresponding F3 values (Fig 
S7). Next, we quantified changes in these metrics brought about by simultaneously varying the 
in-degree of the third node as well. An increase in in C, while maintaining the values of in A and 
in B, led to a lower F1, higher F2 and F3 values, as expected (compare corresponding cells in 
Fig S8B with Fig S8A), thereby showcasing the impact of increasing net in-degree on the 
breakdown of stand-alone TT dynamics.  
 
Because pairwise correlation coefficients between TT nodes were unable to gauge the changes 
in TT dynamics, we performed multiple linear regression (MLR) on steady state values of the TT 
nodes to understand the changes in inter-node dependence brought about by embedding of the 
TT. MLR was performed by taking steady state values of A and B as independent variables and 
steady states of C as the dependent variable. The distributions of coefficients of A and B (ACoeff 
and BCoeff, respectively, i.e. the slopes of the regression plane) and the model's scores (R2 
values) were then compared across network orders by grouping them according to common mean 
connectivity and vice versa. As the mean connectivity of the network increased, the magnitude of 
the mean values of ACoeff and BCoeff decreased, indicating that the repressing effect of the two 
nodes on C decreased as the network density increased (Fig S9A-B, i-ii). Also, the scores of 
MLR models declined as the mean connectivity of the network increased, pointing towards a 
decline in the predictive power of the MLR model as the TT dynamics deviated from their 
canonical behavior with the increasing network density (Fig S9A iii; S9B, iii). Further, the higher 
the in-degree of TT, the less the model's score and the magnitudes of ACoeff and BCoeff values 
(Fig S9C), reiterating the disruptive impact of in-degree of TT on its canonical behavior. 
Intriguingly, for E:6N, we noticed some ACoeff and BCoeff values to be positive (Fig S9C), 
reminiscent of MaxCC values also becoming greater than zero for high mean connectivity (Fig 
6A, iii).  
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Next, we performed a meta-analysis across network orders and mean connectivity in terms of 
correlation of various metrics with in-degree of individual nodes as well as net in-degree of TT.  
With all metrics considered here (F1, F2, F3, Max CC, F1/F2), In TT showed a stronger correlation 
(ρ > 0 for F2, F3; ρ < 0 for F1, F2/F2, MaxCC) than the in-degree of any of the individual nodes 
(in A, in B, in C), indicating that net in-degree was the best predictor of embedded TT dynamics. 
(Fig 6B), and reinforcing the trends seen in embedded TS (Fig 4D). This trend was consistent 
even when the individual in-degree or combined in-degree of two nodes, normalized by net in-
degree (in A/in TT, in B/in TT, in C/in TT, in AB/in TT, in BC/in TT, in AC/in TT) was considered 
(Fig 6C). Intriguingly, while in TT correlated strongly with MaxCC (i.e. the pair of nodes whose 
“mutual exclusion” is the weakest), it did not correlate as strongly with individual pairwise 
correlation coefficient (CC AB, CC BC, C AC) (Fig 6C). Also, while MaxCC correlated strongly 
with individual in-degree as well as with net in-degree, Min CC (the minimum value among three 
pairwise correlation coefficients, i.e. the pair of nodes showing strongest mutual inhibition 
properties) did not show any such association (Fig 6B, C). This difference in terms of MaxCC vs. 
MinCC is consistent with observations that all three individual pairwise correlation coefficients 
show only a weak correlation with both in-degree of TT and with F1 (Fig 6D), thus justifying our 
choice of using MaxCC as a metric to track the dynamics of embedded TT.  
 
Put together, these results highlight that while the total in-degree of a TT motif is a good indicator 
of the decay of TT dynamics (decrease in “single-positive” states and simultaneous increase in 
“double-positive”), it often does not contain precise information on which out of the three possible 
pairs of nodes in a TT have their mutual repression compromised and thus drive a decay in the 
stand-alone dynamical behavior of a TT. Despite this limitation, similar to the results seen for TS, 
the dynamics of embedded TT was determined not by network order, network density, or 
individual in-degrees of the motif nodes, but by the total in-degree of the motif (In TT) (Fig 6E). 
Moreover, both for the TS and TT motifs, the nature of these in-degrees - being either activating 
or repressing - did not affect the nature of divergence from canonical behavior (Fig S10), 
highlighting that the motif is sensitive to total number of incoming edges, not their distributions in 
terms of their sign/effect. 
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Figure 6: Influence of the in-degree of TT on its dynamics. A) i) Plot showing the dependence of change 
in distribution of the MaxCC values with changing in-degree of a TT motif. ii) Plots showing the dependence 
of change in the distribution of F1/F2 values with changing in-degree of a TT motif iii) Plots showing the 
dependence of change in the distribution of MaxCC with changing F1 values. Each dot is  colored according 
to its respective network mean connectivity. Spearman correlation coefficients (rho) and p-values are given 
in upper right corner of each plot. B) Heatmap of the pairwise correlation coefficients of in-degree metrics 
against various TS properties. C) Heatmap of pairwise correlation coefficients of normalized in-degree 
metrics against various TS properties. In panels B and C. D) Heatmap of the pairwise correlation coefficients 
of inTT and F1 against various CC metrics. * in the heatmap cells signify p-value < 0.05 according to 
Spearman correlation test. E) Schematic summary of the effect of increase in-degree on the dynamics of a 
TT. 
 
 
Effect of self-activation and self-inhibition of nodes on the modularity of motifs 
 
Many “master regulators” often driving cell-fate decisions and forming a TS or TT can self-activate 
2,13. To evaluate the effects of self-activations and self-inhibitions on the motif nodes, the TS and 
TT motifs containing self-activation (TS-SA and TT-SA) and self-inhibition edges (TS-SI and TT-
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SI) on all nodes were embedded into combinations of two network orders (5N and 20N) and two 
mean connectivity (E:2N and E:6N), resulting in four types of networks. The same pipeline as 
before was followed to generate the networks, with n=100 for each type of network (i.e. 400 
networks per motif).  The motifs TS-SA, TS-SI, TT-SA and TT-SI were then embedded into these 
networks and simulated with RACIPE, and corresponding metrics were compared. First, we 
compared the TS, TS-SA and TS-SI embedded in networks having the same mean connectivity. 
For all the three metrics (CC AB, F1 and BiC), TS, TS-SA and TS-SI showed significantly different 
distributions (Fig 7A, i-iii). While including self-activation moderately strengthened the correlation 
between A and B, self-inhibition significantly weakened it (Fig 7A, i). Similarly, while including 
self-activation led to slightly increased F1 and BiC values, conversely, including self-inhibition on 
TS nodes reduced the F1 and BiC values (Fig 7A, ii-iii). These results suggest that while adding 
self-activation on nodes can preserve dynamical features of a TS embedded in large networks, 
self-inhibition can accelerate the decay of TS dynamics, possibly offering a reason for observed 
higher frequency of self-activating ‘master regulators’ rather than the self-inhibiting ones 25.  
 
Next, we probed the impact of self-activation and self-inhibition in the case of an embedded TT. 
Similar to observations in TS, self-inhibition had an opposite and a stronger impact in influencing 
the metrics as compared to self-activation. Median F1/F2 values noted for TT-SA was higher than 
those for both TT and TT-SI, irrespective of the mean connectivity (Fig 7B, i). Consistently, 
median F3 values are higher for TT-SI than for TT and TT-SA (Fig 7B, ii). Together, these results 
indicate that while adding self-activation on nodes of a TT can enrich for canonical “single-positive 
states”, adding self-inhibition can enrich for “all-positive” or “all-negative” states instead. Similarly, 
for Max CC, TT-SI had higher median values than both TT and TT-SA cases (Fig 7B, iii), resulting 
in faster decay of canonical properties of TT. In other words, the self-inhibiting “master regulators” 
can exhibit compromised phenotypic decision-making as compared to non-self-inhibiting ones.  
 
Finally, we assessed whether adding self-regulation preserves the correlation of in-degree of motif 
(TS or TT) with various metrics (BiC A, BiC B, B:M, F1 and CC AB for TS; F1, F2, F1/F2 and 
MaxCC for TT). We consistently observed that motifs with self-inhibition had lower magnitude of 
correlation with all these motif properties as compared to motifs with no self-regulation or with 
self-activation (Fig 7C, i-ii), indicating a faster loss and subsequent saturation of motif’s dynamical 
properties. These trends reaffirm that the addition of self-activating loops preserves the canonical 
behavior of the motif while adding self-inhibition loops diminishes it remarkably.  
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Figure 7: Effect of self-activating and self-inhibiting loops on modularity of TS and TT motifs. A) 
Comparison between the distributions of i) CC AB, ii) fraction of 01 and 10 steady states, iii) BiC A for TS, 
TS-SA and TS-SI when embedded in networks of same mean connectivity. B) Comparison between the 
distributions of i) F1/F2, ii) MaxCC, iii) F3 for TT, TT-SA and TT-SI when embedded in networks of same 
mean connectivity. C) Comparison of the correlation coefficients of different properties of regular motifs, 
motifs with self-activation (SA) and self-inhibition (SI) against their respective in-degrees i) For TS ii) For 
TT. D) Schematic showing the effect of self-activating and self-inhibiting edges on motif nodes when 
embedded in larger networks.     
 
 

Discussion  
Investigating the modularity of biological networks has been an active area of research. Modularity 
has been loosely defined as corresponding to a highly interconnected set of nodes such that 
density of connections within that module is significantly higher than that of density of connections 
of this module with other modules 26. Thus, modularity has been mostly studied from a network 
topology perspective, rather than a functional one. Similarly, the concept of network motifs - 
recurring sets of regulatory interactions that appear more frequently than expected in a given 
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network - also highlights network sub-structures based on their topology 27. While the dynamics 
of such motifs has received extensive attention 27; how insular or intact the dynamics of these 
network motifs are when embedded in a large network, remains largely underexplored. 
 
Here, we investigated how ‘modular’ the behavior of a TS or TT is when embedded in random 
large networks of varying sizes and densities. For both these motifs, we observed that an increase 
in local density around them (i.e., number of incoming edges on TS or TT) was capable of 
changing their dynamical behavior rather than any global topological properties associated with 
the large network. Although we witnessed how increasing mean connectivity of the network 
changed the distributions of the metrics we have used to characterize the dynamical behavior of 
TS or TT, further analysis revealed that it was the increasing in-degree of the motif (reflected, in 
part, by mean connectivity as well) that was driving this change in motif behavior. For the TS, it 
was found that all the three metrics, BiC, CC, and the fraction of ‘single-positive’ (01, 10) states 
were suitable to gauge its change in dynamics. On the other hand, for a TT motif, CC metrics 
were not suitable to gauge its behavior, as they did not show extensive variation upon being 
embedded in large networks. This trend could be because CC, being a pairwise metric, is not 
optimal to capture the variations in the steady state values of all three nodes. On the other hand, 
the maximum value of all the 3 pairwise correlation coefficients between the TT nodes, MaxCC, 
was found to be suitable to gauge the change in dynamics of TT. MaxCC values being correlated 
positively with double-positive states (F2), was able to capture the enrichment of these states as 
the in-degree of TT increased. Similar to TS, the fraction of ‘single-positive’ states was also found 
to be a good metric to observe the variations in the dynamics of an embedded TT. We found that 
as the in-degree of an embedded TT increased, the single-positive states and double-positive 
states were almost comparable in frequency. This observation suggests that in the case of CD4+ 
T-helper cell differentiation - a case study of TT dynamics - the “double positive” cell-states (hybrid 
Th1/Th2, Th1/Th17, and Th2/ Th17 phenotypes) seen experimentally 28,29 could exist due to the 
TT between GATA3, RORγT and T-bet being driven by various other stimuli that impinge on these 
nodes via activation or repression. Therefore, besides self-activation 2,30, embedding in large 
networks can be an additional way to enrich such ‘hybrid’ states, as being increasingly reported 
in various biological systems 31–33, both in cases of TS and TT.  
 
The bistable dynamics of a TS motif have been extensively investigated. The nodes of a TS motif 
show a bimodal distribution 34–36 of their steady states dependent upon a balance between the 
kinetic parameters of the two nodes 14,37. An asymmetry in these parameters bringing an 
imbalance in inhibitory strength can lead to a one-way cause-effect relation between the two TS 
nodes, with only one node showing bimodality while the other node showing unimodal behavior 
14,20,34,37. Besides, an increase in the number of downstream interacting elements can also induce 
competition between produced proteins to bind to the promoter sites of the TS genes, changing 
the dynamics of motifs and potentially leading to a loss of bimodality 38. Here, we show that the 
relative in-degrees of the nodes can also contribute to this behavior. A skew in the in-degrees led 
to a divergence from the bistable behavior of a TS,  much like the skew in the kinetic parameters. 
Thus, our analysis uncovers an important design principle of gene regulatory networks (GRNs) 
that in order to maintain bistable features for a TS, the in-degree, which represents the number 
of regulators acting at a given point of time, should be minimal. This observation is reminiscent of 
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previous studies demonstrating that in an E. coli transcriptional network, no transcription factor 
had an in-degree or out-degree greater than two, and this feature played a key role in enabling 
robustness of the network 39. Thus, the in-degrees we report here for robustness are in good 
agreement with those seen in networks for GRNs of various organisms 39. Similarly, another 
recent study associated dynamical robustness of networks with their low in-degree 40. Together, 
these results can help us design optimal strategies to design and integrate synthetic circuits into 
GRN of a cell rather than developing stand-alone/isolated modules. 
 
Often, various cellular processes are viewed as generally being robust to noise and perturbations, 
but in diseased states such as cancer, due to a change in network topology, protein production 
rates or short decay times can potentially perturb these steady states and encourage the 
progression of disease into states which are more robust and hard to reverse 37,41–43. Our results 
show that in addition to these factors, the local density can also deviate a motif from its canonical 
behavior and can hence help us develop better algorithms to identify potential drug targets which 
are more susceptible to alterations in their local neighborhood, to devise treatment strategies to 
escape these diseased states 36,44. The ability to understand the behavior of these multistable 
states and modulate them in larger networks can help us potentially traverse through the 
trajectories set by cellular differentiation branching tree by targeting the adjacent incoming edges 
of the master regulators, in addition to master regulators themselves, to modify the dynamics of 
cellular decision-making they are involved in, to reprogram cells into the desired cell fate(s) 4,36,45.  
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Materials and Methods    

Random Network Generation 

A total of 12 types of randomized networks were generated for each motif. These network types 
were combinations of four network orders, with the number of nodes (N) equal to 5, 10, 15, and 
20 and three mean connectivities E:2N, E:4N and E:6N with edge to node ratios E:xN, where the 
number of edges, E, is x times the number of nodes N (Fig S11A). One hundred random networks 
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were generated for each class of network . Thus, 1200 networks were simulated for each motif 
(TS and TT) to characterize their properties. This analysis was then repeated in triplicates for 
statistical tests/comparisons. 
 
A custom python3 script was written to generate random networks of a given size and mean 
connectivity by creating square null matrices (of order N+y, where N is the order of the network 
and y the number of nodes in the embedded motif) and later populating it with the motif edges, 
i.e. for a TS embedded in a 5N, E:4N networks, there were total 7 (= 5 + 4) nodes and 22 (= 5*4 
+ 2) edges. Activating and inhibiting edges were then randomly added depending on the mean 
connectivity of the network  (Fig S11B-C; S12; S13). It was also ensured that no self-activating 
and self-inhibition edges were formed in any of the network nodes. Generated networks were 
checked if they were connected using the isconnected function of the networkx library of python3, 
and if found to be not connected, they were replaced by a newly generated network. When 
duplicate networks were found, they were replaced by newly generated networks to avoid any 
skew in data due to the repetition of network topologies. 

Random Circuit Perturbation (RACIPE) 

Random Circuit Perturbation (RACIPE) formalism generates a system of ordinary differential 
equations (ODEs) for a given network topology and simulates the ODEs by pooling parameters 
from a randomized predetermined range to identify dynamical properties of a network topology 
23. 
 
For a node T in the network having Pi activating and Ni inhibiting nodes with incoming edges, the 
ODE generated by RACIPE to represent the node T will be given by: 

𝑑𝑇
𝑑𝑡

= 𝐺! ∗'
"

𝐻#)𝑃" , 𝑃"		!!
% 𝑛&"! , 𝜆&"!.
𝜆&"!

∗'
"

𝐻' /𝑁( , 𝑁(		!!
% 𝑛)#! , 𝜆)#!1 − (𝑘! ∗ 𝑇)	

 
where the terms T, Pi and Ni are the concentrations of the nodes at time t, n is the Hill coefficient 
showing the influence of Pi or Ni on T, λ is the fold change in expression caused by node Pi or Ni 
upon acting on node T, Pi

0 or Ni
0 are the threshold values of Hill function, GT is the production 

rate, and kT is the degradation rate of the node T.  
 
HS represents the shifted Hill equation and is defined by: 

𝐻')𝐵, 𝐵*%, 𝑛+*, 𝜆+*. =
𝐵*
%	,$%

𝐵*
%	,$% + 𝐵,$%

+ 𝜆+* ∗
𝐵,$%

𝐵*
%	,$% + 𝐵,$%

	

	
For a particular topology file, RACIPE generates multiple randomized parameter sets and 
simulates them over multiple initial conditions to identify the steady state levels of the nodes. The 
parameters are randomized by sampling from their respective pre-defined ranges given below:  

Table 1: Ranges of randomized parameters in RACIPE 
Parameter Minimum Value Maximum Value 
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Production Rate (G) 1 100 
Degradation Rate (k) 0.1 1 
Inhibition Fold Change (λ-) 0.01 1 
Activating Fold Change (λ+) 1 100 
Hill’s Coefficient (n) 1 6 
Threshold  Half-Functional Rule: Sets the threshold 

depending on the in-degree of the node. 
 
Simulations for all the networks were done in triplicates, with 10000 parameter sets per replicate 
and 100 initial conditions for each parameter set.  

Normalizing the steady state values 

The following formula first normalized the steady state values obtained from RACIPE simulations 
for each network: 

Si
N = Si / (Gi/ki) 

Here, Si
N is the normalized steady state value of the ith node; Si is the steady state value of ith 

node given in RACIPE output; Gi is the production rate, and ki is the degradation rate parameter 
value of the ith node. The normalized values were then converted to z-scores using the zscore 
function of the SciPy library of python3. If a node showed a z-score above zero, it was considered 
to be showing higher expression and was considered to be in “ON” state represented by 1 and if 
it showed a z-score below zero, it was inferred to be in “OFF” state represented by 0. This criteria 
was then used to convert the steady state values into a string of zeros and ones representing the 
binarized steady state shown for a particular parameter set.  

Sarle’s Bimodality Coefficient (BiC) 

Sarle’s bimodality coefficient (BiC) 24 was used to identify the nature of the distribution of nodes’ 
steady state values as either bimodal or not. The formula used to calculate bimodality is given by: 

𝐵𝑖𝐶 =
𝑚-
. + 1

𝑚/ + 3 ⋅
(𝑛 − 1).

(𝑛 − 2)(𝑛 − 3)

	

Where m3 is the skew of the distribution, m4 is the excess kurtosis, and the sample size is denoted 
by n. BiC varies from 0 to 1, with values above 0.55 (i.e. 5/9) representing bimodality in the 
distribution and those below this threshold indicating a unimodal distribution 24. Skew and excess 
kurtosis were calculated using functions of the SciPy library of python3. The values were then 
plugged into the above equation to obtain the bimodality coefficients. 

Correlation Coefficient (CC) 

Correlation coefficients (CC) was calculated using the function spearmanr of the SciPy library of 
python3. 
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Data and Code Availability  

The Github repository for RCAIPE-1.0 23 can be found at 
https://github.com/simonhb1990/RACIPE-1.0.  
 
Custom python3 (python3 version 3.8.10) scripts were also written to analyze the RACIPE 
output files further and can be found at 
https://github.com/MoltenEcdysone09/ModularityCodes. 
 
 
Supplementary Information 

 
Figure S1: A) Probability density plot of steady state values of two TT nodes B and C, the three clusters 
represent the three single-positive steady states, 001, 010, and 100 shown by the TT motif. B) Probability 
density plot of steady state values of two TT nodes A and C, the three clusters represent the three single-
positive steady states, 001, 010, and 100 shown by the TT motif. C) Regression plot between steady state 
values of nodes A and B of a TT. D) Regression plot between steady state values of nodes A and C of a 
TT.  E) Comparison between the distributions of BiC B for TS embedded in networks of same mean 
connectivity but having different orders. F) Comparison between the distributions of BiC B for TS embedded 
in networks of the same order but having different mean connectivity. p-values of pairwise Mann-Whitney 
U tests are denoted by: ns - p > 0.05, * -  0.01< p <= 0.05 , ** - 0.001 < p <= 0.01, *** - 0.0001 < p <= 0.001, 
**** - p <= 0.0001 
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Figure S2: A) Heatmap of the variation in  (i) BiC A  and (ii) BiC B with change in the in-degree of the two 
nodes of a TS. (B) (i) Scatterplot of the log2 (in A/in B) values against F1 values. The points are colored 
with respect to log2 (BiC A/ BiC B) values.  
 
 
 

 
Figure S3: A) Comparison between the distributions of a metric for TT embedded in networks of the same 
mean connectivity but having different orders for: (i) CC BC and (ii) CC AC. B) Comparison between the 
distributions of a metric for TT embedded in networks of the same order but having different mean 
connectivity for: (i) CC BC and (ii) CC AC. p-values of pairwise Mann-Whitney U tests are denoted by: ns - 
p > 0.05, * -  0.01< p <= 0.05 , ** - 0.001 < p <= 0.01, *** - 0.0001 < p <= 0.001, **** - p <= 0.0001 
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Figure S4: A) Comparison between the distributions of a metric for TT embedded in networks of the same 
mean connectivity but having different orders for: (i) F2, (ii) F3 and (iii) F1/F2. 
 
 
 

 
Figure S5: A) Plots showing the dependence of change in the distribution of a metric with changing in-
degree of a TT, for: (i) F1, (ii) F2, and (iii) F3. B) Plots showing the dependence of change in the distribution 
of a metric with changing MaxCC, for: (i) F2, (ii) F2, and (iii) F1/F2. Each dot is  colored according to their 
respective network mean connectivity values. The spearman correlation coefficients (rho) and p-values are 
given in the upper right corner of each plot. 
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Figure S6: Heatmaps showing the variation of pairwise correlation values against different pairs of in-
degrees of TT nodes. 
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Figure S7: Heatmaps showing the variation of  A) F1, B) F2, and C) F3 values against different pairs of in-
degrees of TT nodes. 
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Figure S8: Heatmaps of the variation of F1, F2, F3 and F1/F2 metrics respectively for different 
combinations of in A and in B for (i) in C = 2 and (ii) in C = 7. Empty cells (shown in white) indicate that no 
corresponding networks were found in the ensemble of networks we investigated here. 
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Figure S9: A) Comparison between the distributions of a metric for TT embedded in networks of the same 
mean connectivity but having different orders for: (i) ACoeff, (ii) BCoeff and (iii) Score. B) Comparison 
between the distributions of a metric for TT embedded in networks of the same orders but having different 
mean connectivities for: (i) ACoeff, (ii) BCoeff and (iii) Score. p-values of pairwise Mann-Whitney U tests 
are denoted by: ns - p > 0.05, * -  0.01< p <= 0.05 , ** - 0.001 < p <= 0.01, *** - 0.0001 < p <= 0.001, **** - 
p <= 0.0001 C) Plots showing the dependence of change in the distribution of a metric with changing in-
degree of a TT, for: (i) Score, (ii) ACoeff, and (iii) BCoeff. ACeoff and BCoeff are the coefficients 
corresponding to A and B terms, respectively, of the equation of plane given by linear multiple regression. 
Score is the  r2 value of the linear regression model.  
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Figure S10: (A) Comparison of the variation of (i) CC AB and (ii) F1 values against the skew in positive to 
negative in-degrees of TS nodes. Each point is colored by their respective metric values as given by the 
color bar. (B) Comparison of the variation (i) MaxCC and (ii) F1/F2 values against the skew in positive to 
negative in-degrees of TT nodes. Each point is colored by their respective metric values as given by the 
color bar. 
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Figure S11: A) Representative network of 5N and E:2N i.e 10 edges with (i) TS embedded in it and (ii) TT 
embedded in it. TS and TT motifs are represented by purple colored nodes. B) Distribution of fraction of (i) 
positive and (ii) negative edges of the larger networks with embedded TS motifs. C) Distribution of fraction 
of (i) positive and (ii) negative edges of the larger networks with embedded TT motifs. 
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Figure S12:  A) Distributions of fraction of  positive in-degrees of TS motifs embedded in larger networks 
of i) differing network orders and ii) differing mean connectivities of networks. B) Distributions of fraction of  
negative  in-degrees of TS motifs embedded in larger networks of i) differing network orders and ii) differing 
mean connectivities of networks. 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2022. ; https://doi.org/10.1101/2022.01.13.475824doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.475824
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Figure S13: A) Distributions of fraction of  positive in-degrees of TT motifs embedded in larger networks of 
i) differing network orders and ii) differing mean connectivities of networks. B) Distributions of fraction of  
negative  in-degrees of TT motifs embedded in larger networks of i) differing network orders and ii) differing 
mean connectivities of networks. 
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