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Abstract

Within-host spread of pathogens is an important process for the study

of plant-pathogen interactions. However, the development of plant-pathogen

lesions remains practically difficult to characterize beyond the common

traits such as lesion area. Here, we address this question by combining

image-based phenotyping with mathematical modelling.

We consider the spread of Peyronellaea pinodes on pea stipules that

were monitored daily with visible imaging. We assume that pathogen

propagation on host-tissues can be described by the Fisher-KPP model

where lesion spread depends on both a logistic growth and an homoge-

neous diffusion. Model parameters are estimated using a variational data

assimilation approach on sets of registered images.

This modelling framework is used to compare the spread of an aggres-

sive isolate on two pea cultivars with contrasted levels of partial resistance.

We show that the expected slower spread on the most resistant cultivar

is actually due to a decrease of diffusion and, to a lesser extent, growth

rate.

These results demonstrate that spatial models with imaging allows

one to disentangle the processes involved in host-pathogen interactions.

Hence, promoting model-based phenotyping of interactions would allow a

better identification of quantitative traits thereafter used in genetics and

ecological studies.

keywords: ascochyta blight of pea, disease phenotyping, quantitative host

resistance, computer vision, reaction-diffusion model, variational optimization

1 Introduction

Assessing life-history traits of pathogen on host plants is central to understand

the adaptation of pathogens to plant resistance and to determine quantitative

trait loci for both host resistance and pathogen aggressiveness [25]. The quan-

titative traits of host-pathogen interaction the most frequently measured are

incubation and latency periods, spore production and lesion size [39]. In prac-

tice, they are often obtained after inoculating host, monitoring the development

of the lesions caused by the pathogen and finally estimating the traits of inter-

est. However, phenotyping the dynamics of host-pathogen interactions remains

challenging and is often performed through inaccurate traits that, though they

already contrast phenotypes, poorly describe the processes and can hide or skew
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differences between individuals [26]. The lesion size is a good example to illus-

trate this as there are an infinity of spatial dynamics than can produce identical

size at a given time. Considering the lesion growth rate is more informative

but again, it ignores lesions shapes and depends on processes such as the local

growth and the diffusion. Mechanistic models offer a mean to decipher the pro-

cesses involved in host-pathogen interactions but are still seldom considered for

analyzing plant disease phenotypic data [28, 26]. In this case the model should

remain parsimonious enough so that the parameters can be identified from the

data.

The recent development of image-based phenotyping methods enables in

vivo non-destructive longitudinal monitoring of infected tissues. Besides allow-

ing precise and automated quantification of necrotic plant tissues, that already

improved disease phenotyping [e.g 23, 8, 51], imaging opens new possibilities to

further investigate the spatial dimension of host-pathogen interactions. As illus-

trated by works on the development of human lesions, imaging data can be par-

ticularly interesting for fitting spatially explicit process-based models [21, 33].

It provides new insights into the main mechanisms involved in lesion develop-

ment in relation with host immunity but also modelling tools for phenotyping.

Perhaps surprisingly, although the main physiological mechanisms of plants and

their parasites have been described by mathematical models [e.g 6, 47] the spread

of lesions has received little attention by modellers [41, 31, 19, 26] and rarely

validated against images [4].

In this study we consider the fungal pathogen Peyronellaea pinodes (for-

merly Mycosphaerella pinodes and Didymella pinodes) on pea as an example

pathosystem to analyze its spread using modelling and imaging. With the

two fungi Phoma medicaginis and Ascochyta pisi, P. pinodes belongs to the

Ascochyta blight of pea disease complex that causes substantial yield losses

worldwide [10]. In Europe, P. pinodes is generally the predominant and the

most destructive species, though P. medicaginis is also prevalent and tends to

develop later in the growing season [13, 14]. P. pinodes is able to infect all aerial

parts of its host plant and induces necrotic growing lesions. The development

of resistant cultivars to P. pinodes has been central for the integrated manage-

ment of this disease, but difficult as only quantitative (or partial) resistance

was available [42, 10]. For most fungal pathogens, quantitative host resistance

alters spore production and infection as well as within-host growth [39, 25, 26].

The evaluation of quantitative host resistance on pathogen life-history traits is

often performed in controlled conditions with ad hoc protocols. In the case of P.
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pinodes partial resistance of pea can be assessed on inoculated detached leaflets,

or stipules, by measuring necrotic lesions either manually [36] or with imaging

[13].

We begin by presenting the experiment, including the image acquisition pro-

tocol and the processing framework, that allowed the longitudinal monitoring of

lesions on inoculated pea stipules. Then, we consider the Fisher-KPP reaction-

diffusion model to describe the spread of necrotic lesions on host tissues which

is fitted to image sequences. We show that combining imaging and spatially

explicit models enables a finer description of within-host spread of pathogen,

including lesions coalescence, and allows one to disentangle local growth and

diffusion of the necrosis. The comparison of estimated parameters obtained

on two cultivars provides new insights into the effects of host quantitative re-

sistance on lesion spread. We finish by discussing our work and how further

developments inspired from biomedical research may contribute to improve our

understanding of host-pathogen interactions and provide mathematical tools for

precision phenotyping.

2 Materials and methods

2.1 Host inoculation experiment

The aggressive isolate of P. pinodes named Mp 91.31.12 was inoculated on two

pea cultivars previously tested in our laboratory: Solara, a common susceptible

reference, and James, that reduces symptom development in controlled con-

ditions [36]. These two cultivars are semi-leafless without conventional leaves

but extended pairs of hypertrophied stipules below each stem node. For each

cultivar, leaf stipules were inoculated according to a standard biotest protocol

developed in our laboratory [36, 13]. Plants were grown in a climate chamber,

kept at 18◦C and with a 12h photoperiod, in 9cm diameter pots containing

vermiculite and five pea seeds. When they reached the 6 leaf stage, stipules

from nodes 3 and 4 were sampled and placed on tap water in a compartmented

square Petri dish. The inoculum consisted in a pycnidiospore suspension whose

concentration was determined with a haemocytometer and adjusted at 5 × 104

spores ml−1 following Onfroy et al. [36] protocol. For both cultivar, 16 pairs

of attached stipules were inoculated by placing a 10µl droplet at their center.

Afterwards, the Petri dishes containing the inoculated stipules were placed into

transparent plastic containers to avoid drop evaporation and incubated in a
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climatic chamber kept at 20◦C and with a 14 h photoperiod. The protocol is

summarized into a schematic diagram given in appendix (Fig. S1).

2.2 Image acquisition

The spread of lesions caused by the pathogen was assessed daily from 3 to 7 days

after inoculation (Fig.1) following a standardized acquisition protocol developed

for plant disease phenotyping [8, 13, 9]. Image acquisition was performed using

two FotoQuantum LightPro 50 × 70 cm soft boxes, placed on both sides of the

Petri dish with four daylight bulbs each (5400 K, 30 W). Pictures were taken

with a Nikon D5300 digital camera equipped with an AF-S DX Micro Nikkor

40 mm 1:2.8G lens, on a Kaiser Repro stand, and with computer control using

DigiCamControl software ver. 2.1.1.0. Aperture was set at F22 for maximal

depth of field, iso 125, daylight white balance. Initial pictures were saved as

RGB images with a resolution of 6000 × 4000 pixels.

2.3 Image processing

As illustrated in Figure 1, several processing steps were required to enable model

fitting to image sequences. First, stipules (i.e. our region of interest) were ex-

tracted from raw images using the Simple Interactive Object Extraction algo-

rithm [17] (Fig.1a). Second, images were registered (i.e. aligned to each other)

using the Coherent Point Drift method [35], assuming rigid transformations

and the first image (3 days after inoculation) as the reference (Fig.1b). Third,

images were segmented by classifying pixels in either healthy, symptomatic or

background states. The prediction of each pixel-class was based on several non-

linear image features that captured local image characteristics. In particular we

computed features for colours (e.g. Gaussian blur), edges (e.g. Laplacian), and

textures (e.g. Hessian) at different scales using spherical filters with radii vary-

ing from 1 to 16 pixels. Based on these features, Random Forest classifiers were

trained for each date of observation using the Trainable Waikato Environment

for Knowledge Analysis (Weka) [2]. They were tested on ground truth images

from an independent study [13] and showed good performances to classify pixels

(Table S1), and thus separate background, leaf and symptomatic areas. After-

wards, these classifiers were used to process the full dataset and to get three

probability images giving the probabilities of each pixel to be in each state (e.g.

Figs.1c & S2 for state symptomatic). Pixels classification is actually obtained
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using a standard cutoff of 0.5 on each probability. To finish with, we considered

the Jaccard index (i.e. the intersection over the union of the two sets, that can

vary between 0 and 100%) as a measure of stipules deformation, that was com-

puted for each date assuming the 3rd day as the reference set. All the images

and classifiers are available in an open dataverse [22, 27].

2.4 Spatial lesion growth model

Most existing models for the spread of plant pathogens within host tissues are

rather spatially implicit and generally assume a constant radial growth rate and

a simplified geometry of the host organ [41, 31, 19]. Yet, these models were able

to fit non-spatial lesion size data [26], including for the particular P. pinodes-pea

pathosystem [13].

Here, we consider the Fisher-KPP equation as a model for the spatio-temporal

dynamics of lesions. Because pathogen density cannot be directly inferred from

common observations of symptoms in biotests, we describe the spread of the

probability of infection, and thus the appearance of host tissues, rather than

pathogen load. The Fisher-KPP equation was introduced in 1937 by Fisher

[16] and Kolmogorov-Petrovsky-Piskunov [24] as a semilinear parabolic partial

differential equation (PDE) combining Fick’s diffusion with logistic growth. Let

Ω ⊂ R2 be the stipules area, the Fisher-KPP equation reads as the following

reaction-diffusion equation, for the position x = (x, y) ∈ Ω and the time t > t0

∂u

∂t
(x, t) = D∆u(x, t) + au(x, t) (1− u(x, t)) . (1)

where u(x, t) the probability that the host is infected at location x and time t,

D > 0 is the diffusion coefficient, a ≥ 0 the growth rate. The initial conditions

are given by an initial image u0 as

u(x, t = t0) = u0(x) in Ω.

Assuming the pathogen cannot move out of the leaf, homogeneous Neumann

boundary conditions are imposed

∂u

∂n
(x, t) = 0 on ∂Ω.

This model exhibits traveling waves with asymptotic speed 2
√
aD which is

coherent with the assumption of a constant radial growth rate considered in
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Figure 1: Schematic representation of lesion growth monitoring through imag-
ing. The initial RGB images (a) are first registered to align stipules in time
(b). Afterwards, a supervised segmentation is performed to produce probability
maps indicating the probability of each pixel to be in either healthy, symp-
tomatic or background classes. Probability images of the symptomatic state (c)
are used for fitting the Fisher-KPP model. Images of day 3 are used as ini-
tial conditions while the remaining 4 images are used to estimate the pathogen
local growth rate â and diffusion coefficient D̂ that are actually two distinct
life-history traits of within-host pathogen spread.
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several studies and supported by non-spatial lesion data [26, 13].

Numerical solutions of the model are obtained by computing the spatial do-

main Ω with a level-set formalism so the boundaries ∂Ω match those of the leaves

in the image [37, 48], and solving the partial differential equations using explicit

Euler finite differences in time and second order centered finite differences in

space. More details on these numerical aspects are provided in supplementary

information 4.

2.5 Parameters estimation from image sequences

For each inoculated stipule, the observations consisted in a set of registered

images ureg(x, t) for times after inoculation t = {t3, t4, t5, t6, t7} (Fig. 1). Pa-

rameters identification consisted in seeking estimates θ̂ such that the output of

the spatial model u(x, t, θ) matches these observations. Depending on the es-

timation problem, inverse problems or statistical inference of reaction-diffusion

can be addressed by several methods such as mathematical analysis, maximum

likelihood or non-linear least-squares [49]. When observations are image se-

quences it is more relevant to rely on data assimilation methods that have been

developed and used to fit models in fluid dynamics [38] or biomedical modelling

[33]. We consider a variational data assimilation approach based on optimal

control theory [3]. The estimation procedure is based on the nonlinear least-

squares cost function:

J(θ) =
1

2

∑
t∈t

∑
x∈Ω

(u(x, t, θ)− ureg(x, t))
2. (2)

Following the variational assimilation framework [3], estimates θ̂ are found

by minimizing J(θ) thanks to the Lagrangian function L(θ) and a numerical

procedure both detailed in appendix S4.2.

In our case there is no obvious link between the RGB images and the prob-

ability of infection u. To overcome this issue one can use appearance models,

trained by experts, to predict interpretable data from the features of the raw

images. In our case, we apply the supervised Random Forest classifiers to trans-

form the color images into probability images (Fig. 1), thereafter considered as

observations ureg(x, t) in the cost function (2) for parameters estimation [21].

For each image sequence, the image of the 3rd day provides the initial condi-

tions (t0 = t3 and u0(x) = ureg(x, t3)) while the remaining 4 images at times

{t4, t5, t6, t7} enables data assimilation and stable estimation of parameters [11].
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As the diffusion coefficient depends on image size, we rather consider the rela-

tive diffusion, i.e. the raw diffusion coefficient divided by stipules area (S4.3).

The model was fitted to the 2×16 inoculated stipules and we compared the two

cultivars through one-way ANOVAs on the estimated diffusion coefficient D̂ and

growth rate â. The adequacy of the Fisher-KPP model to the data was assessed

visually by looking at the raw residuals for each date, i.e. [u(x, ti, θ̂)−ureg(x, ti)]

for ti ∈ t.

3 Results

The Fisher-KPP model and its numerical resolution were able to describe the

spread and the coalescence of lesions caused by P. pinodes on pea stipules as ob-

served in standard biotests (Fig.2, Movies M1-2). The image processing frame-

work associated with the data assimilation method allowed us to fit the reaction-

diffusion model that captured the essential patterns of the spatio-temporal data.

Overall, the visual assessment of raw residuals distributions points out a good

centering with an increasing heteroscedasticity and a negative skewness with

time (Figs. S4-5). This pattern might be partially explained by the change of

the appearance of symptomatic and healthy tissues in time that become more

difficult to separate for an annotator, and thus for an algorithm. Even if the

trained Random Forest classifiers showed good performances to classify pix-

els with 0.5 thresholds, pixel classification became less certain over time with

higher and lower probabilities in respectively healthy and symptomatic areas.

Another explanation of the discrepancy between the model and the data is the

change of stipules shape. Although stipules deformation remained limited with

Jaccard indexes above 80 for all individuals (Fig.3), it may have induced some

bias in the alignment of lesions and errors between the PDE model and images

as illustrated in Figure 2b at day 7.

We successfully estimated the growth rate â and the diffusion coefficient D̂

for the 32 monitored individuals (Table S3). James cultivar was characterized

by smaller stipules than Solara with average surfaces of 4.49 and 7.93 cm2

respectively. James cultivar had mean estimated growth rate â and diffusion

coefficient D̂ of respectively 0.496 and 0.291 against 0.536 and 0.489 for the

more susceptible cultivar Solara. Analyses of variance pointed out significant

differences between cultivars for both parameters (p-values < 0.05, Table S4),

even if the gap between the distributions of estimates was higher for D̂ (Fig.

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2022. ; https://doi.org/10.1101/2022.01.13.476165doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.476165
http://creativecommons.org/licenses/by/4.0/


4a) than for â (Fig. 4b). Such results suggest that, in our particular case,

quantitative resistance reduced the propagation of the infection by decreasing

the diffusion coefficient and, to a lesser extent the growth rate. Therefore, for

inoculated stipules with identical areas and shapes, lesions caused by P. pinodes

will spread at a higher speed, and thus coalesce and reach edges earlier, on Solara

than on James.

Day 3 Day 4 Day 5 Day 6 Day 7

a) Solara no1

b) James no17

Day 3 Day 4 Day 5 Day 6 Day 7

Figure 2: Visualization of model prediction against image data. The solution
of the fitted Fisher-KPP equation, i.e. with optimal estimated parameters θ̂,
is represented through time by contours (0.2, 0.3, 0.4, 0.5) overlying the image
sequences of the symptomatic class for example stipules of Solara (a) et James
(b) cultivars. This comparison between the spatial model and the data is also
available in two movies provided as supplementary materials (Movies S1-S2).

4 Discussion

In this study we combined image processing and mathematical modelling to

investigate the dynamics of host-pathogen interactions. We showed that a

longitudinal monitoring of inoculated leaves through visible imaging provides

data to fit reaction-diffusion models that describe the spatio-temporal spread of

pathogen on host tissues. While such methodological approaches are common

in biomedical sciences [e.g 20, 33] they are original in plant pathology. Here,
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Figure 3: Visualization of stipules deformation in time. Change in the Jaccard
index with time for cultivars James (a) and Solara (b). At each time after
inoculation the Jaccard index was calculated in comparison with the image at
day 3, also used as a reference for image registration.
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Figure 4: Distributions of the estimated parameters. a) diffusion coefficient D̂
with a mean values of 0.291 for James against 0.489 for the more susceptible
cultivar Solara, b) local growth rate â with mean values of 0.496 and 0.536
for respectively James and Solara. All estimated coefficient are available in
supplementary information (Table S3).
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we considered the fungal pathogen P. pinodes on pea as an example pathosys-

tem and used the Fisher-KPP equation to model necrotrophic lesions. Using

this PDE model with a variational data assimilation method we were able to

capture the essential patterns of image-sequences data and disentangle growth

and diffusion. These processes are actually two distinct life-history traits that

both explain host colonization by the pathogen through lesions. They provide

a finer description of the interaction but cannot be determined without the use

of spatially-explicit models with spatial information, as provided by images,

as different growth rate and diffusion can lead to identical lesion speed. Fur-

thermore, while lesions coalescence, different leaves sizes, or lesion saturation

at leaves boundaries can be problematic when comparing lesion sizes in com-

mon aggressiveness biotests, the inference of parameters in parsimonious PDE

models can handle properly such situations.

We assessed the development of an aggressive isolate on two cultivars with

contrasted level of partial resistance using a standard protocol developed for

screening both pathogen aggressiveness and host resistance [36]. Our results

were consistent with previous findings as the spread of lesions caused by P. pin-

odes was slower on James than Solara. Most interestingly, in this particular case

we demonstrated that quantitative host resistance decreased significantly infec-

tion diffusion and, to a lesser extent, its local growth rate. Of course, we cannot

generalize these effects of plant resistance as they should be further confirmed

on a larger panel of pathogen isolates and host genotypes. Yet, these results

show how combining advanced imaging methods and mechanistic models can

help to improve the comparison of cultivars (or isolates) and gain new insights

into plant resistance to disease. Although the detected effects of resistance may

not be a posteriori surprising, they remain impossible to identify without the

use of spatial models and data. Optical sensors recently percolated in plant sci-

ences and contributed to recent development of precision phenotyping for plant

diseases [30, 23, 51]. On the other side the usefulness of mechanistic models for

analyzing phenotypic data is recognized [e.g. 28, 26] but remains seldom con-

sidered. We think that promoting the use of mechanistic models for processing

precision phenotyping data would be particularly relevant for assessing the ge-

netic architecture of traits, either for the plant or the pathogen, understanding

pathogen adaptation to plant resistance and developing new cultivars.

Although our modelling framework was able to describe the visible spread of

nectrotrophic lesions caused by P. pinodes and provided original knowledge on

this pathosystem, it may be improved and extended on several points. Firstly,
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for the sake of simplicity we ignored stipules deformation. This change in the

shape of host organs caused by parasitism frequently occurs in plants and would

be worth considering using existing mathematical and numerical methods for

explicit modelling of shapes [37, 40] or plant growth [5]. While such improve-

ment would increase the complexity of the model, it may contribute to de-

crease the discrepancy between the model and the data, and perhaps, help

to identify genotypes that are less susceptible to disease-induced deformation.

Secondly, the inoculated host leaves were digitalized through visible imaging

and the reaction-diffusion model was fitted to probability images obtained with

trained classifiers [21]. The appearance models, learned by experts, that trans-

form raw image into an output which match with the state variable of the

process model can have an influence on data assimilation. In our case we could

improve the classifiers to reduce the noise that occur in time by training more

advanced algorithm for pixel-based segmentation or include some filtering after

predictions (e.g. morphological closing). Comparing different appearance mod-

els and assessing how they modify parameters estimation would be interesting,

especially for pathosystems that cause unclear lesions that are difficult to anno-

tate. Moreover, because there is no direct relationship between the appearance

of symptoms and pathogen density in infected tissues we rather considered the

spread of the probability of infection. Although this choice could be criticized

it seems to describe well enough the dynamics of infections. In further studies

it would be very interesting to assess the spread of pathogen density using de-

structive sampling with real-time quantitative PCR [29, 1] and non-destructive

monitoring, e.g. with bioluminescence imaging [50]. Thirdly, as lesions caused

by P. pinodes appeared to spread at a constant speed with quite homogeneous

patterns we choose the Fisher-KPP equation. Albeit this first model already

described the essential patterns of the data it would be interesting to relax some

of its assumptions to improve the description of the observed spatial dynam-

ics. For instance, one could consider a heterogeneous diffusion to capture the

acceleration that seems to occur at the end of the experiment. Moreover, the

Fisher-KPP equation won’t be appropriate to describe the spreading processes

that occur in all pathosystems. The spatial dynamics of plant-pathogen le-

sions remains poorly addressed and further works could benefit from theoretical

knowledge on PDE for propagating systems and existing models for the spread

of invasive organisms [32, 45], microbial populations and fungal colonies [6], or

human lesions [21, 33]. For example, the effect of leaf veins that can guid lesion

spread in some pathosystems could be considered through advection terms or
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by considering hybrid reaction-diffusion models with different dynamics on host

tissues (2D) and veins (1D) [45]. On the other side, like microbial populations

in controlled media, plant-pathogen lesions can be an interesting experimental

systems to test and feed some mathematical theories [34, 18]. Fourthly, our

model ignored any host response to infection and further development could

take into account some key physiological and immune processes. For instance

it would be worth including ontogenetic and disease-induced changes in host

susceptibility, e.g. caused by senescence or hypersensitive responses, that are

known to occur in several pathosystems and can be spatially localized on leaf

tissues [12, 43].

From an epidemiological point of view the within-host dynamics of the

pathogen is an important phase that can have strong impact on epidemics at

the population level. Scaling-up the behaviour of epidemics from individuals

to populations is still a difficult question for mathematical and computational

epidemiology and, at least in the case of plant diseases, the within-host spread

of pathogens is either ignored or extremely simplified compared to other epi-

demiological processes such as spores production [46, 41, 19, 32]. This is mainly

due to the challenges of multiscale and spatial modelling, but perhaps, also to

the lack of spatial models for within-host pathogen development. Thus, we be-

lieve that besides providing new fundamental knowledge and phenotyping tools,

spatial lesions models that describe observable spread of pathogen on host or-

gans would also contribute to improve modelling works focused on higher scales.

In addition, new insights into the effects of host resistance on within-host dy-

namics would also feed models for understanding the durability plant resistance

to diseases [7, 15, 44]. For instance, the impact of partial resistance on either

the diffusion coefficient or the local growth rate may affect differently pathogen

fitness and have contrasted impacts on pathogen invasion, persistence and evo-

lution.
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à la surface de feuilles par imagerie. In 25ème Colloque GRETSI sur le

Traitement du Signal et des Images, page 4, 2015.

[5] A. Bonneu, Y. Dumont, H. Rey, C. Jourdan, and T. Fourcaud. A minimal

continuous model for simulating growth and development of plant root

systems. Plant and soil, 354(1):211–227, 2012.

[6] G. P. Boswell, H. Jacobs, F. A. Davidson, G. M. Gadd, and K. Ritz. Growth

and function of fungal mycelia in heterogeneous environments. Bulletin of

Mathematical Biology, 65(3):447–477, 2003.

[7] R. Bourget, L. Chaumont, C.-E. Durel, and N. Sapoukhina. Sustainable

deployment of qtls conferring quantitative resistance to crops: first lessons

from a stochastic model. New Phytologist, 206(3):1163–1171, 2015.

[8] L. Bousset, M. Palerme, M. Leclerc, and N. Parisey. Automated image

processing framework for analysis of the density of fruiting bodies of lep-

tosphaeria maculans on oilseed rape stems. Plant Pathology, 68(9):1749–

1760, 2019.

[9] L. Bousset, P. Vallée, R. Delourme, N. Parisey, M. Palerme, and M. Leclerc.

Besides stem canker severity, oilseed rape host genotype matters for

the production of Leptosphaeria maculans fruit bodies. Fungal Ecol-

ogy, 52:101076, Aug. 2021. ISSN 1754-5048. doi: 10.1016/j.funeco.2021.

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2022. ; https://doi.org/10.1101/2022.01.13.476165doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.476165
http://creativecommons.org/licenses/by/4.0/


101076. URL https://www.sciencedirect.com/science/article/pii/

S1754504821000386.

[10] T. Bretag, P. J. Keane, and T. Price. The epidemiology and control of

ascochyta blight in field peas: a review. Australian Journal of Agricultural

Research, 57(8):883–902, 2006.

[11] M. Cristofol and L. Roques. Stable estimation of two coefficients in a

nonlinear fisher–kpp equation. Inverse problems, 29(9):095007, 2013.

[12] A. Dolatabadian, J. Batley, D. Edwards, and M. Barbetti. Viru-

lence/avirulence patterns among leptosphaeria maculans isolates deter-

mines expression of resistance, senescence and yellowing in cotyledons of

brassica napus. European Journal of Plant Pathology, 156(4):1077–1089,

2020.

[13] A. Dutt, D. Andrivon, S. Jumel, G. Le Roy, A. Baranger, M. Leclerc, and

C. Le May. Life history traits and trade-offs between two species of the

ascochyta blight disease complex of pea. Plant Pathology, 69(6):1108–1124,

2020.

[14] A. Dutt, R. Anthony, D. Andrivon, S. Jumel, G. Le Roy, A. Baranger,

M. Leclerc, and C. Le May. Competition and facilitation among fungal

plant parasites affect their life-history traits. Oikos, 130(4):652–667, 2021.

[15] F. Fabre, J.-B. Burie, A. Ducrot, S. Lion, Q. Richard, and R. Djidjou-

Demasse. An epi-evolutionary model for predicting the adaptation of spore-

producing pathogens to quantitative resistance in heterogeneous environ-

ments. Evolutionary applications, 15(1):95–110, 2022.

[16] R. Fisher. The wave of advance of an advantageous gene. Annu. Eugenics,

7(355-366), 1937.

[17] G. Friedland, K. Jantz, and R. Rojas. Siox: Simple interactive object

extraction in still images. In Seventh IEEE International Symposium on

Multimedia (ISM’05), pages 7–pp. IEEE, 2005.

[18] S. R. Gandhi, E. A. Yurtsev, K. S. Korolev, and J. Gore. Range expansions

transition from pulled to pushed waves as growth becomes more coopera-

tive in an experimental microbial population. Proceedings of the National

Academy of Sciences, 113(25):6922–6927, 2016.

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2022. ; https://doi.org/10.1101/2022.01.13.476165doi: bioRxiv preprint 

https://www.sciencedirect.com/science/article/pii/S1754504821000386
https://www.sciencedirect.com/science/article/pii/S1754504821000386
https://doi.org/10.1101/2022.01.13.476165
http://creativecommons.org/licenses/by/4.0/


[19] G. Garin, C. Fournier, B. Andrieu, V. Houlès, C. Robert, and C. Pradal. A

modelling framework to simulate foliar fungal epidemics using functional–

structural plant models. Annals of botany, 114(4):795–812, 2014.

[20] A. Habbal, H. Barelli, and G. Malandain. Assessing the ability of the

2d fisher–kpp equation to model cell-sheet wound closure. Mathematical

Biosciences, 252:45–59, 2014.

[21] C. Hogea, C. Davatzikos, and G. Biros. An image-driven parameter esti-

mation problem for a reaction–diffusion glioma growth model with mass

effects. Journal of mathematical biology, 56(6):793–825, 2008.

[22] S. Jumel, A. Dutt, M. Leclerc, and N. Parisey. Segmentation of ascochyta

blight symptoms on pea stipules, 2022. URL https://doi.org/10.57745/

5B1XGU.

[23] P. Karisto, A. Hund, K. Yu, J. Anderegg, A. Walter, F. Mascher, B. A.

McDonald, and A. Mikaberidze. Ranking quantitative resistance to septo-

ria tritici blotch in elite wheat cultivars using automated image analysis.

Phytopathology, 108(5):568–581, 2018.

[24] A. Kolmogorov, I. Petrovsky, and N. Piscounoiv. Etude de l’équation de

la diffusion avec croissance de la quantité de la matière et son application
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