
Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Subject Section

The minimizer Jaccard estimator is biased and
inconsistent*

Mahdi Belbasi 1, Antonio Blanca 1, Robert S. Harris 2, David Koslicki 1, 2, 3, and
Paul Medvedev 1, 3, 4 ‹

1Department of Computer Science and Engineering, The Pennsylvania State University,
2Department of Biology, The Pennsylvania State University,
3Huck Institutes of the Life Sciences, The Pennsylvania State University, and
4Department of Biochemistry and Molecular Biology, The Pennsylvania State University

‹Corresponding author, pzm11@psu.edu.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Sketching is now widely used in bioinformatics to reduce data size and increase data
processing speed. Sketching approaches entice with improved scalability but also carry the danger of
decreased accuracy and added bias. In this paper, we investigate the minimizer sketch and its use to
estimate the Jaccard similarity between two sequences.
Results: We show that the minimizer Jaccard estimator is biased and inconsistent, which means that
the expected difference (i.e., the bias) between the estimator and the true value is not zero, even in the
limit as the lengths of the sequences grow. We derive an analytical formula for the bias as a function of
how the shared k-mers are laid out along the sequences. We show both theoretically and empirically that
there are families of sequences where the bias can be substantial (e.g. the true Jaccard can be more
than double the estimate). Finally, we demonstrate that this bias affects the accuracy of the widely used
mashmap read mapping tool.
Availability: Scripts to reproduce our experiments are available on GitHub [26].
Contact: pzm11@psu.edu

1 Introduction
Sketching is a powerful technique to drastically reduce data size and
increase data processing speed. Sketching techniques create a smaller
representation of the full dataset, called a sketch, in a way that makes
algorithms more efficient, ideally without much loss of accuracy. This
property has led to sketching methods being increasingly used to meet
the scalability challenges of modern bioinformatics datasets, though
sometimes without understanding the detrimental effects on accuracy.

*Authors are listed in alphabetical order.

A thorough treatment of sketching in bioinformatics can be found
in the excellent surveys of [29, 21], but we mention a few notable
examples next. The seminal Mash paper [25] showed how estimating
the Jaccard similarity of two sequences from their minhash sketches [3]
enables clustering of sequence databases at unprecedented scale. The
hyperloglog sketch [10] is used to compute genomic distances [1];
the modulo sketch [34] is used to search sequence databases [27];
strobemers [30] and minhash with optimal densification [36, 39] are
used for sequence comparison; order minhash is used to estimate edit
distance [19]; and count minsketch [5] is used for k-mer counting [6].

One of the most widely used sketches, which forms the basis of
our work, is the minimizer sketch [34, 28], which selects, for each
window of w consecutive k-mers, the k-mer with the smallest hash
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value. Minimizer sketches are used for transcriptome clustering [31]
and error correction [32], as well as for seed generation by the Peregrine
genome assembler [4] and the widely used minimap [16, 17] and
mashmap [12, 13] aligners.

Just as with other sketching techniques, in order for the minimizer
sketch to be useful, it must come with theoretical (or at least
empirical) bounds on the loss of accuracy that results from its use.
For instance, the minhash Jaccard estimator used by Mash has the
property of being unbiased [3], i.e. its expected value is equal to
the true Jaccard. Such a theoretical guarantee, however, cannot be
assumed for other sketches. Here, we will consider the example of the
minimizer Jaccard estimate [12, 13, 15], which computes the Jaccard
similarity using minimizer sketches and forms the basis of the widely
used mashmap [12, 13] aligner. This estimator is useful for sequence
alignment because the minimizer sketch has the nice property that,
roughly speaking, the sketch of a long string contains the sketches of
all its substrings. However, its theoretical accuracy has not been studied
and empirical evaluations have been limited.

In this paper, we study the accuracy of the minimizer Jaccard
estimator pJ , both theoretically and empirically. We prove that pJ is in
fact biased and inconsistent (i.e. the bias is not zero, and it remains so
even as the sequences lengths grow). We derive an approximate formula
for the bias that is accurate up to a vanishingly small additive error
term, and give families of sequence pairs for which pJ is expected to
be only between 40% to 63% of the true Jaccard. We then empirically
evaluate the extent of the bias and find that in some cases, when the
true Jaccard similarity is 0.90, the estimator is only 0.44. We also study
both theoretically and empirically the bias of pJ for pairs of sequences
generated by a simple mutation process and find that, while not as
drastic, the bias remains substantial. Finally, we show that the bias
affects the mashmap aligner by causing it to output incorrect sequence
divergence estimates, with up to a 14% error. Our results serve as a
cautionary tale on the necessity of understanding the theoretical and
empirical properties of sketching techniques.

2 The minimizer sketch and minimizer Jaccard
estimator

In this section, we will define the minimizer sketch [34, 28] and the
Jaccard estimator derived from it [12]. Let k ą 2 and w ą 2 be two
integers. This paper will assume that we are given two duplicate-free
sequences A and B of L k-mers, with L ě 7pw ` 1q. A sequence is
duplicate-free if it has no duplicate k-mers, but A and B are allowed
to share k-mers. These requirements on the sequences do not limit
the general scope of our results. In particular, since we will show the
existence of bias for these constrained cases, it immediately implies the
existence of bias within broader families of sequences.

Let Ai denote the k-mer starting at position i of A, with A0 and
AL´1 being the first and last k-mers, respectively. Let SpkpAq be the
set of all k-mers in A. We define IpA,Bq to be the number of k-mers
shared between A and B, and UpA,Bq to be the number of k-mers
appearing in either A or B. Formally,

IpA,Bq fi |SpkpAq X SpkpBq|

UpA,Bq fi |SpkpAq Y SpkpBq|

The Jaccard similarity between the sequences A and B is defined as

JpA,Bq fi
IpA,Bq

UpA,Bq
.

Suppose we have a hash functionh that takes an element from the set
of all k-mers and maps it to a real number drawn uniformly at random
from the unit interval r0, 1s. Under this hash function, the probability
of a collision is 0. We denote by ai the hash value assigned to k-mer
Ai and for integer w ě 2 define the minimizer sketch of A as

MSpA;wq fi
ďL´w

i“0

!

Ap : p “ argmin
jPri,i`w´1s

aj

)

.

An element in MSpA;wq is called a minimizer of A. The
minimizer intersection and the minimizer union of A and B are defined,
respectively, as

pIpA,B;wq fi |MSpA;wq X MSpB;wq|

pUpA,B;wq fi |MSpA;wq Y MSpB;wq|.

The minimizer Jaccard estimator between A and B is defined as

pJpA,B;wq fi JpMSpA;wq,MSpB;wqq

“
pIpA,B;wq

pUpA,B;wq
.

3 Main theoretical results
In this section, we state our main theoretical results and give some
intuition behind them. We can think of the relationship between the
shared k-mers of A and B as the subset of pA0, . . . , AL´1q ˆ

pB0, . . . , BL´1q that corresponds to pairs of equal elements; i.e.,
to pairs pAi, Bjq with Ai “ Bj . Because A and B are duplicate-
free, this relationship is a matching. We call this the k-mer-matching
between A and B. Our main result is stated in terms of a term denoted
by BpA,B;wq, which is a deterministic function of the window size
w and of the k-mer-matching between A and B. We postpone the
exact definition of BpA,B;wq until Appendix A.1, since it requires
the introduction of cumbersome notation. The main technical result of
this paper is:

Theorem 1. Let w ě 2, k ě 2, and L ě 7pw ` 1q be integers. Let
A and B be two duplicate-free sequences, each consisting of L k-mers.
Then there exists ε P r0, 15w2

3?
L

s such that

BpA,B,wq ´ ε ď Er pJpA,B;wqs ´ JpA,Bq ď BpA,B,wq ` ε.

In other words, the difference between the expected value of the
minimizer Jaccard estimator and the true Jaccard is BpA,B;wq, up
to a vanishingly small additive error. We now investigate the value of
the term B, which approximates the bias. First, we can show that for
padded sequences, BpA,B;wq ă 0, except that BpA,B;wq “ 0

when JpA,Bq “ 0. We say two sequences are padded if they do not
share any minimizers in the first or last w k-mers. (We note that the
effect of padding becomes negligible for longer sequences.)

Theorem 2. Letw ě 2, k ě 2, andL ě 7pw`1q be integers. LetA
and B be two duplicate-free padded sequences, each consisting of L k-
mers. Then BpA,B;wq ă 0 unless JpA,Bq “ 0; when JpA,Bq “

0, we have BpA,B;wq “ 0.

Moving forward, we may omit A, B, and w from our notation
when they are obvious from the context. Theorems 1 and 2 state that pJ
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Fig. 1: Examples of the Jaccard and the minimizer Jaccard estimator. Each example shows the k-mers of a sequence A on top, the k-mers of a
sequence B on the bottom, and lines connecting k-mers show the k-mer-matching between A and B. Each k-mer is labeled by its hash value. In
Example 1, JpA,Bq “ 1{3. The minimizers for w “ 3 are circled in bold red. Here, pIpA,B; 3q “ 1, pUpA,B; 3q “ 4, and pJpA,B; 3q “ 1{4.
Examples 2a and 2b give intuition for why the minimizer Jaccard estimator is biased. Here, ai refers to the hash value assigned to position i and
x and y are k-mers shared between A and B. The expected minimizer Jaccard for w “ 2 is different in the two examples but the Jaccard is not
(J “ 0.2); hence the expected minimizer Jaccard cannot be equal to the true Jaccard.

is biased for padded sequences as long as ε is sufficiently small (e.g. L
is sufficiently large or w is sufficiently small). Here, we use “biased” in
the statistical sense that Er pJs ‰ J . Intuitively, pJ is biased because it
depends on the layout of the shared k-mers along the sequences (i.e. on
the k-mer-matching), while J only depends on the number of shared k-
mers but not on their layout. Note that our results hold for any duplicate-
free choice of A and B and do not assume any background distribution,
e.g. that A is generated uniformly at random.

We illustrate the point with Examples 2a and 2b in Figure 1. In both
examples, the expected size of pI is the probability that x is a minimizer
in A and in B plus the probability that y is a minimizer in A and in
B. These two probabilities are equal to each other in these examples
and ErpIs “ 2τ , for some τ . When w “ 2, in Example 2a, τ is the
probability that a1 is the smallest hash value out of five independently
chosen hash values a0, a1, a2, b0, and b2. In Example 2b, however,
b2 “ a2, and τ is the probability that a1 is the smallest hash value out
of four independently chosen hash values (a0, a1, a2, b0). Hence, the
values of τ are different in the two examples, and therefore ErpIs is also
different.

The discrepancy on ErpIs turns out to be crucial since it induces a
bias. Specifically, as part of the proof of Theorem 1, we will show that

Er pJs «
Er pIs

4L
w`1

´Er pIs
, and, since the difference between the expected

sizes of the minimizer intersections varies for the two examples, we
have that Er pJs is also different; in particular, Er pJs is affected by the
layout of thek-mer-matching. Note, however, that the Jaccard similarity
in both examples is the same, with J “ 0.2, leading to the intuition that
pJ is biased when w “ 2. Theorems 1 and 2 show that this bias extends
beyond this contrived example and holds for most sequences of interest.

Next, we consider the value of BpA,B;wq for some more concrete
families of sequence pairs. First, consider the case where any pair of
k-mers that are shared between A and B are separated by at least w
positions. This may approximately happen in practice whenA andB are
biologically unrelated and the k-mer matches are spurious. Formally,
we say two padded sequences A and B are sparsely-matched if for all p
and q such that Ap “ Bq , tAp´w, . . . , Ap´1, Ap`1, . . . , Ap`wu R

SpkpBq, and tBq´w, . . . , Bq´1, Bq`1, . . . , Bq`wu R SpkpAq. In
such a case, one could imagine that since the shared k-mers do not
interfere with each other’s windows, the estimator might be unbiased.
It turns out this is not the case.

Theorem 3. Letw ě 2, k ě 2, andL ě 7pw`1q be integers. LetA
andB be two duplicate-free, padded, sparsely-matched sequences, each
consisting of L k-mers. Then BpA,B;wq ď ´JpA,Bq 3w2´3w

8w2´2
.

A direct consequence of combining this with Theorem 1 is that for
sparsely-matched sequences with JpA,Bq ą 0,

Er pJpA,B;wqs

JpA,Bq
ď

5w2 ´ 3w ´ 2

8w2 ´ 2
`

ε

JpA,Bq
.

For example, for w “ 20 and sufficiently long sequence pairs with a
fixed (i.e. independent of L or w) Jaccard similarity, pJ is at most 61%
of the true Jaccard. The bias cannot be fixed by changing w, since at
w “ 2, pJ is at most 40% of J , and, as w grows, pJ is at most 63% of the
true Jaccard. This example also shows that pJ is not only biased but also
inconsistent, i.e. Er pJs does not converge to J even as the sequences
grow long.

Let us now consider the opposite side of the spectrum, where instead
of being sparsely-matched, A and B are related by the simple mutation
model (i.e. every position is mutated with some constant probability [2]).
Deriving the bias for this case proved challenging, since the mutation
process adds another layer of randomness. Instead, we derive the bias in
a simpler deterministic version of this process, where there is a mutation
every g positions, for some g ą w ` 2k.

Theorem 4. Let 2 ď w ă k, g ą w ` 2k, and L “ ℓg ` k for
some integer ℓ ě 1. Let A and B be two duplicate-free sequences with
L k-mers such that A and B are identical except that the nucleotides
at positions k ´ 1 ` ig, for i “ 0, . . . , ℓ, are mutated. Then,

BpA,B;wq “
2ℓpℓg ` kqhpwq

pℓpg ` kq ` 2k ´ ℓhpwqqpℓpg ` kq ` 2kq
,

where hpwq “
pw`1qp1´2pH2w´Hwqq

2
and Hn “

řn
j“1

1
j

denotes
the n-th Harmonic number.

We can use this theorem in combination with Theorem 1 to obtain
a precise approximation of the bias of pJ for this family of sequences.
For instance, taking k “ 15, w “ 10, L “ 9992, and g “ 43 yields
that pJ is « 10% smaller than the true Jaccard. As g increases, the bias
decreases, e.g. for g “ 100 and L “ 10, 016, pJ is 4% smaller than the
true Jaccard.
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4 Overview of Theorem 1 proof
Due to space constraints, we will focus only on the main theorem
(Theorem 1) in the main text, providing the intuition and giving an
overview of the technical highlights. The proofs of all the theorems,
as well as all the building blocks, are deferred to the Appendix. Our
main technical novelty is the derivation of a mathematical expression,
CpA,B;wq, that approximates the expected value of the size of the
minimizer intersection pIpA,B;wq between two sequences A and B.

Lemma 1. CpA,B;wq ď ErpIpA,B;wqs ď CpA,B;wq ` 2.

CpA,B;wq is function ofw, L, and of the k-mer-matching between
A and B. In particular, when these parameters are known, then
CpA,B;wq can be easily computed. We define CpA,B;wq formally
in Appendix A.1, since it requires the introduction of additional notation.
In Section 4.1, we give a high level proof of overview of Lemma 1 that
does not require the definition of C.

To prove Theorem 1, we first use Lemma 1 to approximate the value
of Er pJpA,B;wqs.

Lemma 2. Let w ě 2, k ě 2, and L ě 7pw ` 1q be integers. Let A
and B be two duplicate-free sequences, each consisting of L k-mers.
Then there exists ε P r0, 15w2

3?
L

s such that

CpA,B;wq

dL ´ CpA,B;wq
´ ε ď Er pJpA,B;wqs ď

CpA,B,wq

dL ´ CpA,B;wq
` ε,

where d “ 4{w ` 1.

Section 4.2 provides a sketch of the proof. Finally, to
prove Theorem 1, we show that

BpA,B,wq «
CpA,B,wq

dL ´ CpA,B;wq
´ JpA,Bq,

up an additive error that vanishes as the number of k-mers growths;
when combined with Lemma 2 this approximation yields Theorem 1
immediately. In the following subsection, we will use pI as shorthand
for pIpA,B;wq; we will similarly use pU, pJ, C.

4.1 Lemma 1

In this section, we give an intuition for the proof of Lemma 1 and
for where CpA,B;wq comes from. Let MA

p be the indicator random
variable for the event that Ap is a minimizer in A. The expected size
of the minimizer intersection can then be written in terms of MA

p as
follows:

pIpA,B;wq “

L´1
ÿ

p“0

L´1
ÿ

q“0

MA
p MB

q 1pAp “ Bqq (1)

Here, we use 1 in as an indicator function, i.e. 1pAp “ Bqq

is 1 if Ap “ Bq and 0 otherwise. Next, we use the notion of a
charged window from [34, 20]. Given a position p P r0, L ´ 1s we
say that p charges an index i if i P rmaxt´1, p ´ wu, p ´ 1s, ap “

mintai`1, . . . , aminpL´w´1,i`wqu and either i “ maxt´1, p´wu

or ai ă ap. Figure 2 illustrates the definition. For p P r0, L ´ 1s and
i P r´1, L ´ w ´ 1s we define XA

i,p as an indicator random variable
for the event that index i is charged by position p.

The following fact was already shown in [34] and states that a
minimizer charges exactly one window; Figure 2 shows the intuition
behind it.

Fig. 2: Illustration of charging. Each row shows a possible way that
position p can charge an index, with w “ 4. A minus sign indicates the
value is less than ap, a plus sign indicates the value is larger than ap,
and no sign indicates that it does not matter. The circle at the index that
is charged is shown in bold red. Note that no two rows are compatible
with each other, i.e. every row pair contains a column with both a plus
and a minus. As a result, the index that gets charged is unique.

Fact 1. Let p P r0, L ´ 1s. Position p is a minimizer in A iff there
exists a unique i P r´1, L ´ w ´ 1s such that p charges index i. In
other words, MA

p “
řL´w´1

i“´1 XA
i,p.

Let us assume for the sake of simplicity and for this section only
that A and B are padded. This allows us to combine Eq. 1 with Fact 1
while avoiding edge cases and get:

pI “

L´w´1
ÿ

i“0

L´w´1
ÿ

j“0

i`w
ÿ

p“i`1

j`w
ÿ

q“j`1

XA
i,pX

B
j,q 1pAp “ Bqq

Applying linearity of expectation, the law of total probability, and
the uniformity of the hash value distribution, we can show that

ErpIs “

L´w´1
ÿ

i“0

L´w´1
ÿ

j“0

i`w
ÿ

p“i`1

j`w
ÿ

q“j`1

ż 1

0
F dx, (2)

where

F “ PrrXA
i,p “ 1, XB

j,q “ 1 | ap “ bq “ xs1pAp “ Bqq.

To derive the value of the probability term F , let us fix p and q such
that Ap “ Bq and fix ap and bq to be some value x. Observe that in
order for XA

i,p and XB
j,q to both be one, there are certain positions that

need to have a hash value less than x (which happens with probability
x for each position) and certain positions that need to have a hash value
more than x (which happens with probability 1 ´ x for each position).
The hash values are pairwise independent, unless the two positions
are in the k-mer-matching; in that case, the hash values are forced to
be identical. If XA

i,pX
B
j,q “ 1 imply contradictory values for at least

one position, then F is zero. Otherwise, let α be the number of hash
values that need to be less than x, but counting matched pairs only once.
Similarly, let β denote the number hash values that need to be more than
x, counting the matched pairs only once. Then,

PrrXA
i,pX

B
j,q “ 1 | ap “ bq “ xs “ xαp1 ´ xqβ ;

Figure 3 gives some examples.
Observe that 0 ď α ď 2 and 0 ď β ď 2pL ´ 1q. Therefore, the

number of distinct terms in the summation of Eq. 2 is at most 6pL´1q.
The number of times each term is included in the summation is the
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Fig. 3: Some examples of PrrXA
i,pX

B
j,q “ 1 | ap “ bq “ xs, with

w “ 4. The two horizontal lines correspond to sequences A and B, and
a circle corresponds to ak-mer whose value is relevant to the probability.
The lines between A and B show the k-mer-matching, i.e. they indicate
that the corresponding k-mers are the same. A plus or minus sign at
a position reflects that the hash value must be greater or less than x,
respectively.

number of i, j, p, q that induce the corresponding values of α and β.
In Appendix A.1, we formalize this notion using configuration counts;
but, for the purposes of intuition, it suffices to observe that Eq. 2 reduces
to a function of the k-mer-matching, w, and L. We call this function
CpA,B;wq and then obtain Lemma 1.

4.2 Lemma 2

In this section, we will prove Lemma 2, though we defer the proofs of the
building blocks to the Appendix. Lemma 1 gives a tight approximation
of ErpIs in terms of C. Now, we need to do the same for Er pUs.

Lemma 3.

4L

w ` 1
´CpA,B;wq´10 ď Er pUpA,B;wqs ď

4L

w ` 1
´CpA,B;wq.

Now, with Lemmas 1 and 3, we can approximate Er pIs

Er pUs
. The next

step is to show that this ratio of expectations is a good approximation
for the expectation of the ratio pI

pU
, since pJ “

pI
pU

. For this, we require

asymptotically tight bounds on the variances of the random variables pI

and pU .

Lemma 4.

(i) V arppIpA,B;wqq ď 8w2 IpA,Bq;
(ii) V arp pUpA,B;wqq ď 32w2 L.

By isolating the central part of the distributions and bounding the
effect of the tails using Chebyshev’s inequality [22], we then obtain the
following approximation for E

“

pI
pU

‰

.

Lemma 5.
ˇ

ˇ

ˇ
E

”

pI
pU

ı

´
Er pIs

Er pUs

ˇ

ˇ

ˇ
ď 11w2

3?
L

.

We now have the components to prove Lemma 2.

Proof (Lemma 2). For the lower bound, we note that

Er pJs “ E
”

pI

pU

ı

ě
ErpIs

Er pUs
´

11w2

3
?
L

(Lemma 5)

ě
C

4L
w`1

´ C
´

11w2

3
?
L

(Lemmas 1 and 3)

as claimed. For the upper bound, from Lemma 5, we know that

Er pJs “ E
”

pI

pU

ı

ď
ErpIs

Er pUs
`

11w2

3
?
L

.

The bounds from Lemmas 1 and 3 imply

Er pJs ď
C ` 2

4L
w`1

´ C ´ 10
`

11w2

3
?
L

.

To complete the proof, we require two additional (and straightforward)
bounds.

Fact 2. CpA,B;wq ď 2L
w`1

.

Fact 3. For all y ą 20 and 0 ă x ď y{2, x`2
y´x´10

´ x
y´x

ď 12
y´y

.

Letting x “ C and y “ 4L
w`1

, we have 0 ă x ď y{2 and y ą 20

(since L ě 7pw ` 1q) and so

Er pJs ď
C

4L
w`1

´ C
`

12
4L

w`1
´ 5

`
11w2

3
?
L

“
C

4L
w`1

´ C
`

3pw ` 1q

L ´
5pw`1q

4

`
11w2

3
?
L

.

Plugging in w ` 1 ď L{7 and then using the fact that w ě 2, we get

Er pJs ´ JpA,Bq ď
C

4L
w`1

´ C
`

84pw ` 1q

23L
`

11w2

3
?
L

ď
C

4L
w`1

´ C
`

15w2

3
?
L

.

5 Empirical results

5.1 Experimental setup

We use two different models to generate sequence pairs. In the unrelated

pair model, we take a desired Jaccard value j, set L “
2j4k

j`1
, and

independently and randomly generate two duplicate-free strings A and
B with L k-mers. We chose L in this way so that under the assumption
that A and B are uniformly chosen, j is the expected value of JpA,Bq,
over the randomness of the generative process. While such string pairs
are unlikely to occur in practice for higher values of j, they allow
us to observe the bias of unrelated pairs for whole range of Jaccard
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Fig. 4: Empirical bias for unrelated and related sequence pairs. For the
unrelated pairs, we used w “ 20 and k “ 8 for J ě .4 and k “ 7 for
J ď .3. For related pairs, we set k “ 16, w P t20, 200u, L “ 10000,
and r1 P t.001, .005, .01, .05, .1u, with one mutation replicate. The
colored bands show the 2.5th and the 97.5th percentiles. The dashed line
shows the expected behavior of an unbiased estimator, with sJ “ J .

Fig. 5: The effect of w on the empirical bias for a pair of related
sequences as a function of the window size. Here, r1 “ 0.1, L “

10, 000, k “ 16, w P t20, 100, 200, . . . , 1000u, and there are 50
mutation replicates.

similarities. In the related pair model,A is a randomly selected substring
of E. coli [8] with L k-mers. String B is created by sweeping along A,
at each position deciding with probability r1 whether to mutate and
then choosing a new nucleotide from those that would not create a
duplicate k-mer. More details about the handling of special cases are
in Appendix A.6

For each model, we generated 50 hash replicates hash function
(unless otherwise noted) where each replicate uses a different seed for
the hash function. We then report sJ , which is the average of pJ over the
hash replicates and is the empirical equivalent ofEr pJs. We used the hash
function that is part of minimap2 [16], since the idealized hash function
we assumed for the convenience of our theoretical proofs is not practical
in software. For the mutation model, we also generated some number
of mutation replicates, where each replicate is the result of re-running
the random mutation process. In any experiment, the same set of hash
seeds were used for every mutation replicate. Scripts to reproduce our
experiments are available on GitHub [26].

Fig. 6: The empirical bias that occurs during a mapping process. Each
point represents a comparison of a read A against a putative mapping
locationB. Note that the points visually blur into lines. We used k “ 16

and window size w “ 200 to match the default of mashmap. One hash
replicate was used.

5.2 The extent of the empirical bias on real sequences

Figure 4 shows that there is considerable bias across a wide range of
Jaccard values, for both related and unrelated sequence pairs. There are
pairs of sequences with a dramatic bias, e.g. for unrelated pair with a
Jaccard of 90%, the estimator gives only 44%. In more practically
relevant cases, the bias can remain substantial; e.g. when the true
Jaccard of related pairs is 76%, the estimator gives only 65% (when
w “ 200). The extent to which this bias is detrimental to the biological
interpretation of the result depends on the downstream application. For
example, using pJ to estimate the average nucleotide identity in order to
build phylogenies, in the style of Mash [25], may be inadvisable.

Figures 4 and 5 show the extent to which the empirical bias depends
on the window size w. Figure 4 shows that the bias for related pairs can
be twice as large for w “ 200 compared to w “ 20. Figure 5 gives a
more fine-grained picture and shows how the absolute bias for a related
sequence pair increases withw. We note that it plateaus for larger values
of w.

We also wanted to understand the extent of the bias in a scenario
where the sequences are being compared as part of a read mapping
process. To that end, we mimicked the behavior of the mashmap
mapper [12, 13] by taking one arbitrary substring A from E.coli, with
L “ 1, 000, and comparing it to each substring B of E.coli with
L “ 1, 000. Figure 6 show that during the alignment process, we
encounter the whole range of true Jaccard values, and, for each one,
there is a substantial but not drastic bias in pJ . Unlike the prediction
of Theorem 2, the bias is sometimes positive; after further investigation,
this happens because the A and B in this experiment are not always
padded, which is a condition of Theorem 2.

5.3 Effect of bias on mashmap sequence identity
estimates

Mashmap is a read mapper that, for each mapped location, uses the
Mash formula [25] to estimate the divergence (i.e. one minus the
sequence identity) from pJ . It was previously reported that the Mash
formula’s use of a Poisson approximation makes it inaccurate for
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mashmap estimator true divergence

10.00 5.00 1.00

unmodified 11.07 5.88 1.42
corrected 10.48 5.71 1.41
corrected + unbiased 10.05 4.99 1.00

Table 1. The median sequence divergence reported by mashmap, over 100 trials, for
unmodified mashmap (first row), mashmap after Binomial-correction (second row) and,
in addition, the removal of the pJ bias.

Related pairs

r1 0.001 0.005 0.010 0.050 0.100
J 0.10 0.27 0.74 0.90 0.99
B -0.02 -0.05 -0.04 -0.02 -0.00

Error of B (mm2) 0.001 0.000 0.000 0.000 0.001
Error of B (mmh3) 0.001 0.000 0.001 0.001 0.000
Error of B (sm64) 0.000 0.000 0.002 0.000 0.000

Table 2. The empirical error of our theoretically predicted bias (Equation (3))
on the related pair sequences of Figure 4. The error is measured with respect
to three different hash function families: the minimap2 hash function (mm2),
the Murmurhash3 hash function (mmh3), and the SplitMix64 hash function
(sm64).

Unrelated pairs

J 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
B -0.04 -0.08 -0.13 -0.17 -0.22 -0.28 -0.33 -0.39 -0.45

mm2 0.001 0.002 0.001 0.005 0.001 0.004 0.002 0.004 0.007
mmh3 0.001 0.000 0.000 0.002 0.003 0.002 0.001 0.003 0.003
sm64 0.001 0.000 0.001 0.002 0.002 0.003 0.002 0.001 -0.003

Table 3. The empirical error of our theoretically predicted bias (Equation (3))
on the unrelated pair sequences of Figure 4. The error is measured with
respect to three different hash function families: the minimap2 hash function
(mm2), the Murmurhash3 hash function (mmh3), and the SplitMix64 hash
function (sm64).

higher divergence [33, 24], so before proceeding further, we modified
mashmap to replace this approximation with the exact Binomial-based
derivation (we derive the correction formula in Appendix A.6). We
then simulated reads from E.coli with substitution errors to achieve a
controlled divergence and mapped them back to the E.coli reference
with mashmap (see Appendix A.6 for more details). We used k “ 16

and mashmap automatically chose w “ 200 as the window size.
Table 1 shows that even after our correction, the mashmap

divergence had an error, e.g. for a true divergence of 5.00%, mashmap
reported an average divergence of 5.71% – an error of 14%. To confirm
that this remaining error was due to the minimizer sketch, we replaced
the pJ estimator in mashmap with the true Jaccard. Table 1 shows that
after this replacement, the remaining error was reduced by an order
of magnitude, e.g. mashmap now reported an average divergence of
4.99%. We therefore conclude that the bias we observe in mashmap
after the Binomial correction is dominated by the bias of pJ . In absolute
terms, the pJ bias (about half a percentage point of divergence) may be
acceptable for applications such as read alignment. However, for other
applications (e.g. a fine grained analysis of sequence divergence), this
bias may lead to downstream problems.

5.4 Empirical accuracy of our B formula (Equation (3))

Theorem 1 predicts that our formula for B (Equation (3)) approximates
the empirical bias. To empirically evaluate the quality of this
approximation, we measured the empirical error of Equation (3), which

we define to be the absolute difference between the empirically observed
bias ( sJ ´ J) and B. For the sequence pairs used in Figure 4, the
empirical error is never more than0.007 and roughly one to two orders of
magnitude smaller than the bias itself (Tables 2 and 3). This held across
three hash function families we tested: the one used by minimap2 [16],
Murmurhash3 [23], and SplitMix64 [37]. Note that this robustness to
different hash functions is not predicted by Theorem 1, which assumes
an idealized version of a hash function which is collision free and maps
uniformly to the real unit interval (in this case, none of the three functions
map to the unit interval and Murmurhash3 is not collision free).

We measured the effect of increasing w and decreasing L on the
empirical error for a related pair (Figure 7). The empirical error increases
withw but remains almost two orders of magnitude smaller than the true
Jaccard. For L ě 1000, the empirical error is less than half a percent
of the true Jaccard. Even for the smallest value of L (i.e. 100), the
empirical error is only 2.6 percent of the true Jaccard. We conclude
that Equation (3) is a high quality approximation for the empirically
observed bias.

5.5 Accuracy of the ε bound to the approximation to
Equation (3)

Theorem 1 states that the expected error of Equation (3) is at most
ε “ 100w2

3?
L

. Since this is only an upper bound, we wanted to check
the tightness with respect to w and to L. For w “ 20 and non-
astronomical values of L, ε ą 1 and thus Theorem 1 gives no
guarantee on the accuracy of the B term. Empirically, however, the
error is small (Figure 7A), indicating that, at least for related pairs,
ε is likely not a tight bound. To understand if the dependence on L

is accurate, we found the best fit of a function of the form αLβ to
the observed error curve in Figure 7A. The best fit was 0.44L´0.74,
which indicates that our dependence on L in ε is not tight. One possible
way to achieve this may be to use tighter concentration bounds than
Chebyshev’s inequality inside the proof of Lemma 5 (leveraging the
limited dependency between the events of k-mers being minimizers).
Furthermore, Figure 7B suggests that the true error may be sub-linear
in w, while ε has a w2 dependence. Thus our empirical results indicate
that ε could potentially be improved for related sequences, though it
may still be tight in the worst-case.

6 Discussion
In this paper, we showed that the minimizer Jaccard estimator suffers
from bias and inconsistency, using both theoretical and empirical
approaches. The bias can be drastic in some fairly artificial cases (i.e.
unrelated sequences with high Jaccard) but remains substantial even
on more realistically related pairs of sequences. Our theoretical results
indicate that the bias cannot be removed by decreasing the window size
(except for the pathological case whenw “ 1, where effectively there is
no sketching done). We showed how the bias manifests in the mashmap
read mapper as error in the reported sequence divergence. A future
direction would be to derive the expected value of the biasB in the simple
mutation model of [2]; ifB reduces to a function ofwwithout depending
on the k-mer layout, then it could potentially be used to correct the
bias in mashmap. Even if that were not possible, one could still use
the estimator provided that an experimental evaluation determines that
the observed bias is tolerable for the downstream application. On the
other hand, the bias problems can be sidestepped altogether by using
a similar but unbiased sketch, e.g. the modulo sketch [34]. Finally, we
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Fig. 7: The effect of the window size w and sequence length on the empirical error of Equation (3). In panel A, we use the related pair model with
50 mutation replicates, k “ 16, w “ 20, r1 “ 0.1, and L P t100, 1000, 2000, . . . , 10000u. The y-axis shows the error of B, averaged over the
mutation replicates. The dashed line shows the best fit function of the form αLβ , computed using the nls function in R. The average J , over the
mutation replicates, is between .101 and .106, and the average empirical bias ranged between ´0.023 and ´0.027, depending on L. In panel B,
we use the related pair model with 50 mutation replicates, k “ 16, L “ 10, 000, and w P t20, 100, 200, . . . , 1000u. The average J is .104.

note that while we focus on bias in this paper, it is not the only theoretical
property of importance for sketching; for example, there has been much
exploration of different hash functions [20, 18, 7, 40, 9, 11, 14, 30] to
reduce the density and/or to select k-mers that have desirable properties
such as conservation or spread [35].

Our results also relate to the minhash minimizer Jaccard estimator
( pJminhash) described by [12]. In this variant, the set of k-mers in a
minimizer sketch is further reduced by taking the s smallest values (i.e.
their minhash sketch); the Jaccard estimator is then computed between
these reduced sets. If the minhash sketch is taken using a different hash
function than was used for computing minimizers, then the classical
result of [3] implies that Er pJminhashs “ Er pJs. This estimator would
therefore suffer from the same bias that we have shown in this paper. If,
on the other hand, the same hash values are reused, then the result of [3]
is not applicable, because it assumes that the hash values being selected
are uniformly random; in our case, the hash values being selected in
the minhash step have already “won the competition” of being smallest
in their window. Though we did not explore the bias of this variant
of pJminhash, it would seem surprising if the minhash step somehow
magically unbiased pJ .
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A Appendix
In this appendix, we will prove the main theorems of the paper as well as provide experimental details to aid reproducibility.

A.1 Matching configurations and the definition of CpA,B;wq and BpA,B;wq

In this section, we define the notion of matching configurations and then use them to define CpA,B;wq and BpA,B;wq. As discussed in Section 3,
the bias of pJ depends on the layout of the shared k-mers along the sequence. It turns out that the aspects of their sharedness that contribute to the
bias are captured by the amount and location of k-mers that are shared between windows tAi, . . . , Ai`wu and tBj , . . . , Bj`wu, for any i and j.

Let us define Spi, j, ℓq fi |tAi, . . . , Ai`ℓ´1u X tBj , . . . , Bj`ℓ´1u|, i.e. the number of shared k-mers in the windows of length ℓ starting at
positions i and j in A and B, respectively. We then define a matching configuration as a 5-tuple, written as

vCa,left, Ca,right;Cb,left, Cb,right; sw,

where s P t0, . . . , wu andCa,left, Ca,right, Cb,left, Cb,right P t0, 1, 2u. We then say that an index pair pi, jq with i, j P r0, L´w´1s has configuration
vCa,left, Ca,right;Cb,left, Cb,right; sw if the windows tAi`1, . . . , Ai`wu and tBj`1, . . . , Bj`wu share s k-mers (i.e., s “ Spi` 1, j ` 1, wq) and

Ca,left “

$

’

’

&

’

’

%

0 if Ai “ Bj ,

1 if Ai P tBj`1, . . . , Bj`wu,

2 otherwise;

Ca,right “

$

’

’

&

’

’

%

0 if Ai`w “ Bj`w ,

1 if Ai`w P tBj`1, . . . , Bj`w´1u,

2 otherwise;

Cb,left “

$

’

’

&

’

’

%

0 if Bj “ Ai,

1 if Bj P tAi`1, . . . , Ai`wu,

2 otherwise;

Cb,right “

$

’

’

&

’

’

%

0 if Bj`w “ Ai`w ,

1 if Bj`w P tAi`1, . . . , Ai`w´1u,

2 otherwise.

An index pair pi, jq has exactly one configuration, and not all configurations are possible; in particular, configurations where exactly one of
Ca,left or Cb,left is zero, or exactly one of Cb,right and Ca,right is zero, are impossible. Figure S1 shows some examples of configurations. We may
label configuration elements as sets (e.g. Ca,left “ t0, 2u) to indicate all the configurations that can be formed using values from that set, except for
impossible configurations. We use ˚ as shorthand for the set t0, 1, 2u of all possible values. For example, v˚, 0;˚, 0; sw refers to the configurations
v0, 0; 0, 0; sw, v1, 0; 1, 0; sw, v2, 0; 1, 0; sw, v1, 0; 2, 0; sw, v2, 0; 2, 0; sw. For a configuration C we use NpCq to denote the number of pairs pi, jq

such that the configuration of pi, jq is C.
In order to define BpA,B;wq, we define first the quantity CpA,B;wq. Let t0 “ 1

2w´s
, t1 “ 1

p2w´sqp2w´s`1q
, and t2 “

1
p2w´sqp2w´s`1qp2w´s`2q

.

CpA,B;wq fi
ÿw

s“0
t0Npv1, 0; 1, 0; swq ` t0Npv1, 0; 2, 0; swq ` t0Npv2, 0; 1, 0; swqq

`t1Npv2, t1, 2u; 1, 1; swq ` t1Npv1, 1; 2, t1, 2u; swq ` 2wt1Npv0, 0; 0, 0; swq

`t1sNpv0, 1; 0, 1; swq ` t1sNpv0, 1; 0, 2; swq ` t1sNpv0, 2; 0, 1; swq

`t1sNpv0, 2; 0, 2; swq ` 2t2sNpv2, 2; 2, 2; swq ` 4t2wNpv2, 1; 2, 1; swq

`t2ps ` 2wqNpv2, 1; 2, 2; swq ` t2ps ` 2wqNpv2, 2; 2, 1; swq

`t2p6w ´ s ` p2w ´ sq2qNpv2, 0; 2, 0; swq

In particular, CpA,B;wq is a linear combination of configuration counts, where each count is weighted by some function of its s value and
w. We also define DpA,B;wq “

řw
s“0 Npv˚, 0;˚, 0; swq. The term BpA,B;wq, which essentially determines the bias of the Jaccard estimator

(see Theorem 1), is defined as follows:

BpA,B;wq fi
CpA,B;wq

4L
w`1

´ CpA,B;wq
´

DpA,B;wq

2L ´ DpA,B;wq
. (3)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

B

A

Fig. S1: Configuration examples with w “ 2: the pair p0, 1q has configuration v0, 0; 0, 0; 1w; pair p4, 4q has v0, 1; 0, 2; 1w; pair p7, 6q has
v0, 0; 0, 0; 2w.
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A.2 Proof of Theorem 1

In all the following, we will assume that L ě 7pw ` 1q.

A.2.1 Approximating the minimizer union and intersection (Lemmas 1 and 3)
In this section, we will prove Lemmas 1 and 3. First, we recapitulate the proof of Fact 1 in our notation:

Fact 1. Let p P r0, L ´ 1s. Position p is a minimizer in A iff there exists a unique i P r´1, L ´ w ´ 1s such that p charges index i. In other
words, MA

p “
řL´w´1

i“´1 XA
i,p.

Proof. Figure 2 gives the intuition for the proof. For the only if direction, suppose that p charges index i. Then, by definition of charging,
ap “ mintai`1, . . . , ai`wu, and so p is a minimizer. For the if direction, suppose that p is a minimizer in A. Consider the leftmost window in
which it is a minimizer, i.e. the smallest i1 P rp´w`1, ps such that ap “ mintai1 , . . . , ai1`w´1u. Since i1 is smallest, then either i1 “ p´w`1

or ai1´1 ă ap. This is the definition of p charging index i1 ´ 1. For uniqueness, consider all the possible windows that p can charge, shown in
Figure 2. They are all pairwise incompatible, i.e. there is at least one position that is simultaneously required to be larger than ap and smaller than
ap.

The expected value of MA
p is called the density of the minimizer scheme, and we compute it exactly in the following Fact. We note that similar

derivations of the density also appeared in [34, 28], but our proof accounts also for the edge cases.

Fact 4. For p P r0, L ´ 1s, we have ErMA
p s ď 2

w`1
. More precisely,

ErMA
p s “

$

’

’

&

’

’

%

2
w`1

for p P rw,L ´ ws;
w`1`p
wpw`1q

for p P r0, w ´ 1s;

L´p`w
wpw`1q

for p P rL ´ w ` 1, L ´ 1s.

Proof. Let ℓ “ maxp´1, p ´ wq and u “ minpL ´ w ´ 1, p ´ 1q. For i P rℓ ` 1, us, we have PrrXA
i,ps “

ş1
0 PrrXA

i,p | ap “ xs dx “
ş1
0 xp1 ´ xqw´1 dx “ 1

wpw`1q
. For i “ ℓ, we have PrrXA

i,ps “
ş1
0p1 ´ xqw´1 dx “ 1{w.

By Fact 1, MA
p “

řL´w´1
i“´1 XA

i,p. When p P r0, w ´ 1s, we have

MA
p “ XA

´1,p `

p´1
ÿ

i“0

XA
i,p “

1

w
`

p

wpw ` 1q
.

When p P rw,L ´ ws, we have

MA
p “ XA

p´w,p `

p´1
ÿ

i“p´w`1

XA
i,p “

1

w
`

w ´ 1

wpw ` 1q
“

2

w ` 1
.

When p P rL ´ w ` 1, L ´ 1s, we have

MA
p “ XA

p´w,p `

L´w´1
ÿ

i“p´w`1

XA
i,p “

1

w
`

L ´ p ´ 1

wpw ` 1q
“

L ´ p ` w

wpw ` 1q
.

We are now ready to prove Lemma 1.

Lemma 1. CpA,B;wq ď ErpIpA,B;wqs ď CpA,B;wq ` 2.

Proof. From the definition of pIpA,B;wq and Fact 1, we have

pIpA,B;wq “

L´w´1
ÿ

i“´1

L´1
ÿ

p“0

L´w´1
ÿ

j“´1

L´1
ÿ

q“0

XA
i,pX

B
j,q 1pAp “ Bqq.

Observe that by definition of charging, XA
i,p “ 0 when p R ri ` 1, i ` ws. Therefore,

pIpA,B;wq “

L´w´1
ÿ

i“´1

i`w
ÿ

p“i`1

L´w´1
ÿ

j“´1

j`w
ÿ

q“j`1

XA
i,pX

B
j,q 1pAp “ Bqq.

We can ignore some of the boundary terms associated with position ´1 being charged without much loss in accuracy. Let

pIcore “

L´w´1
ÿ

i“0

i`w
ÿ

p“i`1

L´w´1
ÿ

j“0

i`w
ÿ

q“j`1

XA
i,pX

B
j,q 1pAp “ Bqq.
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12 Belbasi, Blanca, Harris, Koslicki, and Medvedev

We claim that ErpIcores ď ErpIpA,B;wqs ď ErpIcores ` 2. The lower bound is immediate. For the upper bound, let us first separate out the terms of
pI with i “ ´1 or j “ ´1:

pIpA,B;wq ď pIcore `

L´w´1
ÿ

i“´1

i`w
ÿ

p“i`1

w´1
ÿ

q“0

XA
i,pX

B
´1,q 1pAp “ Bqq `

w´1
ÿ

p“0

L´w´1
ÿ

j“´1

j`w
ÿ

q“j`1

XA
´1,pX

B
j,q 1pAp “ Bqq

For the second term, observe that, by definition of charging, there is at most one value of q for which XB
´1,q “ 1. Then, since there are no

repeated k-mers in A or B, there is at most one value of p for which Ap “ Bq . Finally, by definition of charging, there is at most one value of i for
which XA

i,p “ 1. Hence the second term is at most one; by a symmetrical argument, the third term is at most one as well. This gives us the desired
upper bound.

It now suffices to show that ErpIcores “ CpA,B;wq.

ErpIcores “

L´w´1
ÿ

i“0

L´w´1
ÿ

j“0

i`w
ÿ

p“i`1

j`w
ÿ

q“j`1

ErXA
i,pX

B
j,qs1pAp “ Bqq

“

L´w´1
ÿ

i“0

L´w´1
ÿ

j“0

i`w
ÿ

p“i`1

j`w
ÿ

q“j`1

PrrXA
i,p “ 1, XB

j,q “ 1s1pAp “ Bqq

“

L´w´1
ÿ

i“0

L´w´1
ÿ

j“0

i`w
ÿ

p“i`1

j`w
ÿ

q“j`1

ż 1

0
PrrXA

i,p “ 1, XB
j,q “ 1 | ap “ bq “ xs1pAp “ Bqq dx.

The probability PrrXB
j,q “ 1, XA

i,p “ 1 | ap “ bq “ xs will depend on the configuration of the indices i and j and on whether p “ i ` w or
q “ j ` w. Therefore, we rearrange the sums as follows. For a configuration c, we say that pi, jq Ñ c when the indices i and j are in configuration
c, so that

ErpIcores “
ÿ

c

ÿ

pi,jqÑc

i`w
ÿ

p“i`1

j`w
ÿ

q“j`1

ż 1

0
PrrXA

i,p “ 1, XB
j,q “ 1 | ap “ bq “ xs1pAp “ Bqq dx

“
ÿ

c

ÿ

pi,jqÑc

i`w´1
ÿ

p“i`1

j`w´1
ÿ

q“j`1

ż 1

0
PrrXA

i,p “ 1, XB
j,q “ 1 | ap “ bq “ xs1pAp “ Bqq dx (4)

`
ÿ

c

ÿ

pi,jqÑc

i`w
ÿ

p“i`1

ż 1

0
PrrXA

i,p “ 1, XB
j,j`w “ 1 | ap “ bj`w “ xs1pAp “ Bqq dx (5)

`
ÿ

c

ÿ

pi,jqÑc

j`w´1
ÿ

q“j`1

ż 1

0
PrrXA

i,i`w “ 1, XB
j,q “ 1 | ai`w “ bq “ xs1pAp “ Bqq dx. (6)

Figure 3 gives some examples to develop the intuition for what the inner term can evaluate to. We consider next each summation Equation (4),
Equation (5), and Equation (6) separately. We start with Equation (5). Note that in this case the value of q is fixed to j ` w, and so there is at
most one value of p in the summation that is not 0 (since Ap “ Bq). We partition the space of all configurations into four possible cases: (i)
c “ v˚, 0;˚, 0; sw, (ii) vt0, 2u,˚;˚, 1; sw, (iii) c “ v1,˚;˚, 1; sw, and (iv) c “ v˚,˚;˚, 2; sw.

First note that for any c, we have XB
j,j`w “ 1 if and only if bj`1, . . . , bj`w´1 are each greater than x. In case (i) when c “ v˚, 0;˚, 0; sw,

the only value of p for which the probability in Equation (5) is not zero is p “ i ` w. From the definition of charging, we have XA
i,i`w “ 1 and

XB
j,j`w “ 1 if and only if ai`1, . . . , ai`w´1, bj`1, . . . , bj`w´1 are each greater than x. The number of distinct k-mers in this sequence is

2w ´ 2 ´ Spi ` 1, j ` 1, w ´ 1q “ 2w ´ 2 ´ Spi ` 1, j ` 1, wq ` 1 “ 2w ´ 1 ´ s. Therefore, PrrXA
i,p “ 1, XB

j,j`w “ 1 | ap “ bq “

xs “ p1 ´ xq2w´1´s and

i`w
ÿ

p“i`1

ż 1

0
PrrXA

i,p “ 1, XB
j,j`w “ 1 | ap “ bj`w “ xs1pAp “ Bw`jq dx “

ż 1

0
p1 ´ xq2w´1´s dx “ t0,

recalling that t0 “ 1
2w´s

, t1 “ 1
p2w´sqp2w´s`1q

, and t2 “ 1
p2w´sqp2w´s`1qp2w´s`2q

. For case (ii) with c “ vt0, 2u,˚;˚, 1; sw, because
Cb,right “ 1, the only value of p for which the probability in Equation (5) is not zero belongs to ri ` 1, i ` w ´ 1s. From the definition of charging,
we have XA

i,p “ 1 iff ai ă x and ai`1, . . . , ai`w , with the exception of ap, are all greater than x. As mentioned previously, we have that
XB

j,j`w “ 1 iff bj`1, . . . , bj`w´1 are each greater than x. Because Ca,left ‰ 1, we have Ai R tBj`1, . . . , Bj`w´1u. Therefore, we have one
hash value (i.e. ai) that is less than x, and 2w ´ 2 ´ pSpi ` 1, j ` 1, wq ´ 1q distinct hash values that are more than x. As a result,

i`w
ÿ

p“i`1

ż 1

0
PrrXA

i,p “ 1, XB
j,j`w “ 1 | ap “ bj`w “ xs1pAp “ Bj`wq dx “

ż 1

0
xp1 ´ xq2w´1´s dx “ t1.
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For next two cases (i.e., case (iii) and (iv)) we show that the sum is 0. When c “ v1,˚;˚, 1; sw, the fact that Cb,right “ 1 means that Ca,right ‰ 0

which implies that p ă i ` w and that, if XA
i,p “ 1, then ai ă x. The fact that Ca,left “ 1 implies that Ai P tBj`1, . . . , Bj`wu. Therefore,

one of the values of tbj`1, . . . , bj`wu is less than x, which makes it impossible that XB
j,q “ 1. When c “ v˚,˚;˚, 2; sw, there is no value of

p P ri ` 1, i ` ws which satisfies Ap “ Bj`w , so 1pAp “ Bj`wq “ 0. Putting all the four cases together, we have shown that the inner
summation in Equation (5) is:

ÿ

c

ÿ

pi,jqÑc

i`w
ÿ

p“i`1

ż 1

0
PrrXA

i,p “ 1, XB
j,j`w “ 1 | ap “ bj`w “ xs1pAp “ Bqq dx

“

w
ÿ

s“0

t0Npv˚, 0;˚, 0; swq ` t1Npvt0, 2u,˚;˚, 1; swq. (7)

Deriving a closed form for Equation (6) is symmetric to Equation (5) with the exception that when c “ v˚, 0;˚, 0; sw, there is no value of q in
the range of the sum (i.e. q P rj ` 1, j ` w ´ 1s) such that Ai`w “ Bq . Hence, for the inner summation in Equation (6), we obtain

ÿ

c

ÿ

pi,jqÑc

j`w´1
ÿ

q“j`1

ż 1

0
PrrXA

i,i`w “ 1, XB
j,q “ 1 | ai`w “ bq “ xs1pAp “ Bqq dx

“

w
ÿ

s“0

t1Npv˚, 1; t0, 2u,˚; swq (8)

With a similar but more delicate case-by-case analysis, we also derive a closed form for Equation (4), whose proof we postpone until later.

Fact 5. Let

T “
ÿ

c

ÿ

pi,jqÑc

i`w´1
ÿ

p“i`1

j`w´1
ÿ

q“j`1

ż 1

0
PrrXA

i,p “ 1, XB
j,q “ 1 | ap “ bq “ xs1pAp “ Bqq dx.

Then,

T “
ÿw

s“0
st1Npv0, 2; 0, 2; swq ` 2st2Npv2, 2; 2, 2; swq ` 2ps ´ 2qt2Npv2, 1; 2, 1; swq

` ps ´ 2qt1Npv0, 1; 0, 1; swq ` ps ´ 1qt1pNpv0, 1; 0, 2; swq ` Npv0, 2; 0, 1; swq ` Npv0, 0; 0, 0; swqq

` 2ps ´ 1qt2pNpv2, 1; 2, 2; swq ` Npv2, 2; 2, 1; swq ` Npv2, 0; 2, 0; swqq. (9)

Finally, observe that summing Equation (7), Equation (8) and Equation (9) and then collecting the coefficients for each configuration, we obtain
that G “ CpA,B;wq as desired.

We proceed with the proof of Fact 5.

Proof of Fact 5. For ease of notation, for a configuration c and a pair pi, jq Ñ c, let

Hpc, i, jq “

i`w´1
ÿ

p“i`1

j`w´1
ÿ

q“j`1

ż 1

0
PrrXA

i,p “ 1, XB
j,q “ 1 | ap “ bq “ xs1pAp “ Bqq dx.

Since p ‰ i ` w and q ‰ j ` w, we have that XA
i,p “ 1 and XB

j,q “ 1 iff ai ă x, bj ă x, and ai`1, . . . , ai`w , bj`1, . . . , bj`w , with the
exception of ap and bq , are each greater than x. This corresponds to 2w ´ 1 ´ s hash values needing to be greater than x. What remains is to
compute how many hash values need to be less than x.

We will partition the space of configurations into four possible cases: v0,˚; 0,˚; sw, v2,˚; 2,˚; sw, v˚,˚; 1,˚; sw, and v1,˚;˚,˚; sw. First,
consider the case of c “ v0,˚; 0,˚; sw. In this case, Ai “ Bj . Therefore,

H pv0,˚; 0,˚; sw, i, jq “

i`w´1
ÿ

p“i`1

j`w´1
ÿ

q“j`1

ż 1

0
xp1 ´ xq2w´1´s dx “

i`w´1
ÿ

p“i`1

j`w´1
ÿ

q“j`1

t1 “ t1Spi ` 1, j ` 1, w ´ 1q.

Next, consider the case of v2,˚; 2,˚; sw. This case is exactly the same as c “ v0,˚; 0,˚; sw, except that Ai ‰ Bj and so

H pv2,˚; 2,˚; sw, i, jq “

i`w´1
ÿ

p“i`1

j`w´1
ÿ

q“j`1

ż 1

0
x2p1 ´ xq2w´1´s dx “ 2t2Spi ` 1, j ` 1, w ´ 1q
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Next, observe that

Spi ` 1, j ` 1, w ´ 1q “ s ´

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0 if Ca,right “ 2 and Cb,right “ 2

1 if Ca,right “ 0 and Cb,right “ 0

1 if Ca,right “ 1 and Cb,right “ 2

1 if Ca,right “ 2 and Cb,right “ 1

2 if Ca,right “ 1 and Cb,right “ 1 ,

(10)

where recall that s “ Spi ` 1, j ` 1, wq. Therefore,

Hpv0, 2; 0, 2; sw, i, jq “ st1,

Hpv0, 1; 0, 2; sw, i, jq “ Hpv0, 2; 0, 1; sw, i, jq “ Hpv0, 0; 0, 0; sw, i, jq “ ps ´ 1qt1,

Hpv0, 1; 0, 1; sw, i, jq “ ps ´ 2qt1,

Hpv2, 2; 2, 2; sw, i, jq “ 2st2,

Hpv2, 1; 2, 2; sw, i, jq “ Hpv2, 2; 2, 1; sw, i, jq “ Hpv2, 0; 2, 0; sw, i, jq “ 2ps ´ 1qt2,

Hpv2, 1; 2, 1; sw, i, jq “ 2ps ´ 2qt2.

Now, when c “ v1,˚;˚,˚; sw, Ai P tBj`1, . . . , Bj`wu. However, we already argued that ai ă x and that bj`1, . . . , bj`w are all at least x.
Hence, we cannot have both XA

i,p “ 1 and XB
j,q “ 1, and this type of configuration does not contribute to the sum. The case of c “ v˚,˚; 1,˚; sw

is symmetric. Finally, observing that T “
ř

c

ř

pi,jqÑc Hpc, i, jq, we combine all the cases to get the desired equality of the fact statement.

We now restate Lemma 3, whose proof is a direct consequence of Lemma 1.

Lemma 3.
4L

w ` 1
´ CpA,B;wq ´ 10 ď Er pUpA,B;wqs ď

4L

w ` 1
´ CpA,B;wq.

Proof. Recall that MA
p denotes the indicator random variable for Ap being a minimizer in A. Then

Er pUpA,B;wqs “

L´1
ÿ

p“0

ErMA
p s `

L´1
ÿ

q“0

ErMB
q s ´ ErIpA,B;wqs “ 2

L´1
ÿ

p“0

ErMA
p s ´ ErpIpA,B;wqs.

From Lemma 1, we know that ErpIpA,B;wqs ě CpA,B;wq, and from Fact 4 we get that
řL´1

p“0 ErMA
p s ď 2L

w`1
. Combining these two facts, we

deduce
Er pUpA,B;wqs ď

4L

w ` 1
´ CpA,B;wq,

as desired. For the lower bound, from Fact 4 we can deduce that

L´1
ÿ

p“0

ErMA
p s ě

L´w
ÿ

p“w

ErMA
p s “

2pL ´ 2w ` 1q

w ` 1
ě

2L

w ` 1
´

4w ´ 2

w ` 1
ě

2L

w ` 1
´ 4.

The lower bound then follows from Lemma 1.

A.2.2 Approximating the ratio of the minimizer union and intersection (Lemmas 4 and 5)
We begin this section with the proof of Lemma 4, where we obtain bounds for the variances of pIpA,B;wq and pUpA,B;wq.

Lemma 4.

(i) V arppIpA,B;wqq ď 8w2 IpA,Bq;
(ii) V arp pUpA,B;wqq ď 32w2 L.

Proof. For ease of notation, we let I “ IpA,Bq and U “ UpA,Bq. If p is a position in A, then define wp “

tAmaxt0,p´w`1u, . . . , Amintp`w´1,L´1uu and, if x “ Ap, we say that the k-mers in wp are nearby x in A.
We begin with part piq. For ease of notation set pI “ pIpA,B;wq and recall that

pI “

L´1
ÿ

p“0

L´1
ÿ

q“0

MA
p MB

q 1pAp “ Bqq.

Then,

ErpI
2

s “ E

»

–

¨

˝

L´1
ÿ

p“0

L´1
ÿ

q“0

MA
p MB

q 1pAp “ Bqq

˛

‚

¨

˝

L´1
ÿ

p1“0

L´1
ÿ

q1“0

MA
p1M

B
q1 1pAp1 “ Bq1 q

˛

‚

fi

fl
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“

L´1
ÿ

p“0

L´1
ÿ

q“0

L´1
ÿ

p1“0

L´1
ÿ

q1“0

ErMA
p MB

q MA
p1M

B
q1 s1pAp “ Bqq1pAp1 “ Bq1 q.

Observe that MA
p MB

q and MA
p1M

B
q1 are independent if |p ´ p1| ą 2pw ´ 1q, |q ´ q1| ą 2pw ´ 1q, wp X wq1 “ H, and wp1 X wq “ H, since

these four conditions guarantee that the two windows of size 2w ´ 1 centered at p and q (which determine MA
p MB

q ) do not share k-mers with the
two windows centered of size 2w ´ 1 at p1 and q1 (which determine MA

p1M
B
q1 ).

Let D bet the set of tuples pp, q, p1, q1q such that p, q, p1, q1 P r0, Lq, Ap “ Bq , Ap1 “ Bq1 and at least one of the following conditions hold:
(i) |p ´ p1| ď 2pw ´ 1q, (ii) |q ´ q1| ď 2pw ´ 1q, (iii) wp X wq1 ‰ H, or (iv) wp1 X wq ‰ H. That is, D contains all tuples pp, q, p1, q1q for
which MA

p MB
q and MA

p1M
B
q1 could be dependent, so that

ErpI
2

s ď |D| `

¨

˝

L´1
ÿ

p“0

L´1
ÿ

q“0

ErMA
p MB

q s1pAp “ Bqq

˛

‚

¨

˝

L´1
ÿ

p1“0

L´1
ÿ

q1“0

ErMA
p1M

B
q1 s1pAp1 “ Bq1 q

˛

‚“ |D| ` ErpIs2.

Then, V arppIq “ ErpI
2

s ´ ErpIs2 ď |D| and it thus suffices to derive an upper bound for |D|. To do so, we will count the number of tuples that
satisfy each of the conditions on the definition of D and add them together together to get an upper bound on |D|. For condition piq, there are I

values of pp, qq such that Ap “ Bq , and for each one, there are 4w ´ 3 possible values of p1 such that |p ´ p1| ď 2pw ´ 1q. Then, for a given
value of p1, there is at most one value of q1 that would satisfy Ap1 “ Bq1 . Therefore there are at most p4w ´ 3qI values of pp, q, p1, q1q that satisfy
condition (i), i.e. Ap “ Bq , Ap1 “ Bq1 and |p ´ p1| ď 2pw ´ 1q. By the same logic, there are at most p4w ´ 3qI values of pp, q, p1, q1q that
satisfy condition (ii), i.e. Ap “ Bq , Ap1 “ Bq1 and |q ´ q1| ď 2pw ´ 1q.

For condition (iii), again there are I values of pp, qq such that Ap “ Bq . Then, each k-mer x P wp can occur at most once in B, hence there
are at most 2w ´ 1 values of q1 such that x P wq1 . Since |wp| “ 2w ´ 1, there are at most p2w ´ 1q2 values of q1 such that wp X wq1 ‰ H.
For each value of q1, there is at most one value of p1 such that Bq1 “ Ap1 . Therefore, there are at most Ip2w ´ 1q2 values of pp, q, p1, q1q that
satisfy condition (iii), i.e. Ap “ Bq , Ap1 “ Bq1 and wp X wq1 ‰ H. By symmetric logic, the number of tuples that satisfy condition (iv) is also
Ip2w ´ 1q2.

Putting this all together, we get V arppIq ď |D| ď 2p4w ´ 3 ` p2w ´ 1q2qI ď 8w2I , which completes the proof of part piq.
We prove part piiq next. For a k-mer x P U , let Ux be the indicator random variable for the event that x P pUpA,B;wq. Let D be the set of all

px, yq pairs such that x P U , y P U , and Ux and Uy are dependent. Then,

Er pU
2

s “ E

»

–

ÿ

xPU

Ux

ÿ

yPU

Uy

fi

fl “
ÿ

xPU

ÿ

yPU

ErUxUys ď |D| `
ÿ

xPU

ÿ

yPU

ErUxsErUys “ |D| ` Er pUs2,

and V arp pUq “ Er pU
2

s ´ Er pUs2 ď |D|. It thus suffices to derive an upper bound for |D|. Let x and y belong to U . If Ux and Uy are dependent,
then at least one of the following holds:

(i) One of the sequences (i.e. either A or B) contains both x and y at a distance of at most 2pw ´ 1q.
(ii) A contains x, B contains y, and the nearby k-mers of x in A intersect with the nearby k-mers of y in B.

(iii) B contains x, A contains y, and the nearby k-mers of x in B intersect with the nearby k-mers of y in A.

We will count the possible number of px, yq pairs that satisfy each of the conditions and use their sum as an upper bound on |D|. For (i), there are 2
choices for which sequence contains x and y, at most L choices for the position of x, and at most 4w ´ 3 choices for the position of y. Hence, there
are at most 2Lp4w ´ 3q choices for x and y that satisfy (i). For (ii), there are at most L choices for the position of x. If y satisfies the condition,
then there must exist a k-mer z which is nearby to x in A and also nearby to y in B. There are at most 4w ´ 3 choices for z, and, for each of those
choices, there are at most 4w ´ 3 locations for y. Hence, there are at most Lp4w ´ 3q2 choices for x and y that satisfy (ii). Case (iii) is symmetrical
to case (ii). In total then, |D| ď 2Lp4w ´ 3q ` 2Lp4w ´ 3q2 ď 32w2L.

With these bounds for the variances of pIpA,B;wq and pUpA,B;wq we can now prove Lemma 5.

Lemma 5.
ˇ

ˇ

ˇ
E

”

pI
pU

ı

´
Er pIs

Er pUs

ˇ

ˇ

ˇ
ď 11w2

3?
L

.

Proof. We start by introducing some convenient notation. Let c “
6
?
L, σi “

b

V arppIq and σu “

b

V arp pUq. We say that pI and pU are good if

their values lie in the range ErpIs ˘ cσi and Er pUs ˘ c σu, respectively; otherwise we say they are bad. Let pR “ pI{ pU. Note that ErR̂s “ T1 ` T2,
where

T1 “ E
”

pR | pI and pU are good
ı

PrrpI and pU are goods,

T2 “ E
”

pR | pI or pU are bad
ı

PrrpI or pU are bads.

We will bound T1 and T2 separately. Observe that by Chebyshev’s inequality [22], the probability that pI is bad is at most c´2 and the same holds
for pU . Hence, a union bound implies that PrrpI or pU are bads ď 2c´2. Since pI ď pU , pR ď 1, and we obtain the following bounds for T2:

0 ď T2 ď Pr
”

pI or pU are bad
ı

ď 2c´2.
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For T1, observe that

E
”

pR | pI and pU are good
ı

ď E

«

ErpIs ` cσi

Er pUs ´ c σu

ff

ď
ErpIs ` cσi

Er pUs ´ c σu
,

E
”

pR | pI and pU are good
ı

ě E

«

ErpIs ´ cσi

Er pUs ` c σu

ff

ě
ErpIs ´ cσi

Er pUs ` c σu
.

Also, since PrrpI or pU are bads ď 2c´2, we have PrrpI and pU are goods ě 1 ´ 2c´2, and so

ErpIs ´ c σi

Er pUs ` c σu
p1 ´ 2c´2q ď T1 ď

ErpIs ` c σi

Er pUs ´ c σu
.

Now, observe that a
b

ě a´x
b´x

, for 0 ă a ď b and 0 ď x ă b and ErpIs ´ c σi ď Er pUs ` c σu, since ErpIs ď Er pUs and c ě 0.

Er pRs ´
ErpIs

Er pUs
“ T1 ` T2 ´

ErpIs

Er pUs
ě T1 ´

ErpIs

Er pUs
ě

ErpIs ´ c σi

Er pUs ` c σu

`

1 ´ 2c´2
˘

´
ErpIs

Er pUs
ě

ErpIs ´ cpσi `σuq

Er pUs
p1 ´ 2c´2q ´

ErpIs

Er pUs
. (11)

Observe that for all x ą 0 and y ą 0,
?
x `

?
y ď

?
x ` y `

?
x ` y “

a

2px ` yq. Then, using Lemma 4, we get:

σi `σu ď

b

2pV arppIq ` V arp pUqq ď
?
80w2L.

Furthermore, since every w consecutive k-mers have at least one minimizer, pU ě L{w, and so

cpσi `σuq

Er pUs
ď

L1{6
?
80w2L

L{w
ď

?
80w2

3
?
L

. (12)

Plugging this bound into Equation (11) we get

Er pRs ´
ErpIs

Er pUs
ě

˜

ErpIs

Er pUs
´

?
80w2

3
?
L

¸

ˆ

1 ´
2
3
?
L

˙

´
ErpIs

Er pUs
“ ´

?
80w2

3
?
L

ˆ

1 ´
2
3
?
L

˙

´
ErpIs

Er pUs

2
3
?
L

ě ´

?
80w2

3
?
L

´
2
3
?
L

ě ´
11w2

3
?
L

.

(13)

To derive the upper bound for Er pRs ´ ErpIs{Er pUs, we first consider the case when Er pUs ´ ErpIs ă c pσi `σuq. Under this assumption,

Er pRs ´
ErpIs

Er pUs
ď 1 ´

ErpIs

Er pUs
“

Er pUs ´ ErpIs

Er pUs
ă

c pσi `σuq

Er pUs
ď

?
80w2

3
?
L

,

where the last inequality follows from Equation (12)
Now consider the case when Er pUs ´ ErpIs ě c pσi `σuq. Using the fact that a

b
ď a`x

b`x
, for 0 ă a ď b and x ě 0, we obtain

T1 ď
ErpIs ` cσi

Er pUs ´ c σu
ď

ErpIs ` cpσi `σuq

Er pUs
ď

ErpIs

Er pUs
`

?
80w2

3
?
L

,

where the last inequality follows from Equation (12).
Putting the upper bounds on T1 and T2 together we get

Er pRs ´
ErpIs

Er pUs
“ T1 ` T2 ´

ErpIs

Er pUs
ď

?
80w2

3
?
L

` 2c´2 ď

?
80w2 ` 2

3
?
L

ď
11w2

3
?
L

.

Combined with Equation (13) this implies the result.

A.2.3 Proof of Theorem 1
To prove Theorem 1, we need to relate the bound on pJpA,B;wq given by Lemma 2 to the values of JpA,Bq. We first express JpA,Bq in terms
of configuration numbers. Let DpA,B;wq “

řw
s“0 Npv˚, 0;˚, 0; swq. Note that, except near the start of the sequences, Ai “ Bj if and only if

pi ´ w, j ´ wq are in a configuration v˚, 0;˚, 0; sw. Therefore, DpA,B;wq is approximately IpA,Bq. Formally, we can prove:

Lemma 6. If A and B are padded, then DpA,B;wq “ IpA,Bq and JpA,Bq “
DpA,B;wq

2L´DpA,B;wq
. More generally,

(i) DpA,B;wq ď IpA,Bq ď DpA,B;wq ` 2w;
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(ii) DpA,B;wq

2L´DpA,B;wq
ď JpA,Bq ď

DpA,B;wq

2L´DpA,B;wq
` 4w

L
.

Proof. Observe that for i P rw,L ´ 1s and j P rw,L ´ 1s, we have Ai “ Bj if and only if pi ´ w, j ´ wq are in a configuration with
Ca,right “ Cb,right “ 0. In the case that A and B are padded, then I “ D and J “ I

2L´I
“ D

2L´D . In general, the number of pi, jq pairs for which

Ai “ Bj and either i P r0, w ´ 1s or j P r0, w ´ 1s is at most 2w. Hence, D ď I ď D ` 2w. For the J lower bound, J “ I
2L´I

ě D
2L´D .

For the J upper bound, J ď D`2w
2L´D´2w

. When D ` 2w ď L, then

JpA,Bq ď
D ` 2w ` 2w

2L ´ D ´ 2w ` 2w
“

D
2L ´ D

`
4w

2L ´ D
ď

D
2L ´ D

`
4w

L
.

When D ` 2w ą L, then

D
2L ´ D

`
4w

L
ě

L ´ 2w

L ` 2w
`

4w

L
ě

L ´ 4w

L
`

4w

L
“ 1 ě J.

We note that it is possible to derive exact expressions for IpA,B;wq and JpA,B;wq for the non-padded case as well; however, doing so is not
necessary for our purposes and would just introduce (even more) burdensome notation. Next, we need to prove two facts:

Fact 2. CpA,B;wq ď 2L
w`1

.

Proof. By Lemma 1, the definition of pI , and Fact 4, we have CpA,B;wq ď ErpIpA,B;wqs “
řL´1

p“0 ErMA
p s ď 2L

w`1
.

Fact 3. For all y ą 20 and 0 ă x ď y{2, x`2
y´x´10

´ x
y´x

ď 12
y´y

.

Proof. Note that under the given assumptions, y ´ x ě y{2 ą 0 and y ´ x ´ 10 ě y{2 ´ 10 ą 0. Therefore,

x ` 2

y ´ x ´ 10
´

x

y ´ x
“

2y ` 8x

py ´ xqpy ´ x ´ 10q
ď

2y `
8y
2

y
2

p
y
2

´ 10q
“

12

y ´ 5
.

Now, we are ready to prove Theorem 1

Theorem 1. Let w ě 2, k ě 2, and L ě 7pw ` 1q be integers. Let A and B be two duplicate-free sequences, each consisting of L k-mers. Then

there exists ε P r0, 15w2

3?
L

s such that

BpA,B,wq ´ ε ď Er pJpA,B;wqs ´ JpA,Bq ď BpA,B,wq ` ε.

Proof. We prove the upper bound first. From Lemmas 2 and 6, we know that

Er pJpA,B;wqs ´ JpA,Bq ď
CpA,B;wq

4L
w`1

´ CpA,B;wq
`

15w2

3
?
L

´
DpA,B;wq

2L ´ DpA,B;wq
“ BpA,B;wq `

15w2

3
?
L

.

For the lower bound, we have

Er pJpA,B;wqs ´ JpA,Bq “
CpA,B;wq

4L
w`1

´ CpA,B;wq
´

11w2

3
?
L

´ JpA,Bq (Lemma 2)

ě
CpA,B;wq

4L
w`1

´ CpA,B;wq
´

11w2

3
?
L

´
D

2L ´ D
´

4w

L
(Lemma 6)

“ BpA,B;wq ´
11w2

3
?
L

´
4w

L

ě BpA,B;wq ´
11w2 ` 4w

3
?
L

ě BpA,B;wq ´
11w2 ` 2w2

3
?
L

ě BpA,B;wq ´
13w2

3
?
L

,

as claimed.
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A.3 Proof of Theorem 2

Theorem 2. Let w ě 2, k ě 2, and L ě 7pw ` 1q be integers. Let A and B be two duplicate-free padded sequences, each consisting of L
k-mers. Then BpA,B;wq ă 0 unless JpA,Bq “ 0; when JpA,Bq “ 0, we have BpA,B;wq “ 0.

Proof. We omit the parametersA,B andw from the following for conciseness. Let d “ 2
w`1

. Observe that the following statements are equivalent:

B ď 0 ô
C

2dL ´ C
ď

D
2L ´ D

ô Cp2L ´ Dq ď Dp2dL ´ Cq

ô 2LC ´ DC ď 2dLD ´ DC

ô 2LC ď 2dLD

ô C ď dD

Note that for the second equivalence, we rely on the factBpA,B;wq is well defined and its denominators are not zero. In other words, 1) 2L´D ą 0

because D ď L (by definition) and 2) 2dL ´ C ą 0 because C ď dL (by Fact 2).
We now need to show that C ď dD. We have

C ď ErpIs (by Lemma 1)

“

L´1
ÿ

p“0

L´1
ÿ

q“0

1pAp “ BqqPrrMA
p “ 1,MB

q “ 1s

“

L´1
ÿ

p“0

L´1
ÿ

q“0

1pAp “ BqqPrrMA
p “ 1 | MB

q “ 1sPrrMB
q “ 1s

“

L´1
ÿ

p“0

L´1
ÿ

q“0

1pAp “ BqqPrrMA
p “ 1 | MB

q “ 1sd (14)

ď Id

“ dD (by Lemma 6)

Note that Equation (14) follows because of the fact that A and B are padded and Fact 4. Next, observe that since all the terms in Equation (14) are
positive, the only way to have equality with Id is if each term PrrMA

p “ 1 | MB
q “ 1s is 1. We claim this can only happen if there are no shared

k-mers between A and B, i.e. when JpA,Bq “ 0. Otherwise, take the leftmost shared k-mer in A. The window to its left in A will be assigned
hash values that are independent of the hash values in B; therefore, PrrMA

p “ 1 | MB
q “ 1s cannot be 1. Thus, if A and B share at least one

k-mer, we get the stronger statement that ErpIpA,B;wqs ă Id. This in turn implies that C ă dD, which propagates to imply that B ă 0.

A.4 Proof of Theorem 3

Theorem 3. Let w ě 2, k ě 2, and L ě 7pw ` 1q be integers. Let A and B be two duplicate-free, padded, sparsely-matched sequences, each

consisting of L k-mers. Then BpA,B;wq ď ´JpA,Bq 3w2´3w
8w2´2

.

Proof. This proof simply counts the configuration numbers and then applies definitions and Theorem 1. We will first count the configuration
numbers. Let us call v2, 2; 2, 2; 0w the empty configuration. Note that the terms involving the number of empty configurations cancel out in the
equation for C and hence we do not need to count them. Observe, by the condition of the theorem, that a configuration pi, jq that is non-empty
must contain exactly one pair p P ri, i ` ws and q P rj, j ` ws such that Ap “ Bq . Therefore, to count the number of non-empty configurations,
it suffices to count, for every p P r0, L ´ 1s and q P r0, L ´ 1s such that Ap “ Bq , the types of configurations pi, jq for i P rp ´ w, ps and
j P rq´w, qs. Following a case analysis, we get one configuration of v2, 0; 2, 0; 1w, w´1 configurations of v2, 1; 2, 2; 1w, w´1 configurations of
v2, 2; 2, 1; 1w, pw´1q2 configurations of v2, 2; 2, 2; 1w, one configuration of v0, 2; 0, 2; 0w, w configurations of v1, 2; 2, 2; 0w, andw configurations
of v2, 2; 1, 2; 0w. Recall that I “ IpA,Bq is the number of shared k-mers between A and B. Summing over all I values of p, we then get the
non-zero configuration number of non-empty configurations are

Npv2, 0; 2, 0; 1wq “ I

Npv2, 1; 2, 2; 1wq “ Ipw ´ 1q

Npv2, 2; 2, 1; 1wq “ Ipw ´ 1q

Npv2, 2; 2, 2; 1wq “ Ipw ´ 1q2

Npv1, 2; 2, 2; 0wq “ Iw

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2022. ; https://doi.org/10.1101/2022.01.14.476226doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.14.476226
http://creativecommons.org/licenses/by/4.0/
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Npv2, 2; 1, 2; 0wq “ Iw

Npv0, 2; 0, 2; 0wq “ I.

We then plug these into the definition ofC to get thatCpA,B;wq “ βI , whereβ “ 5w´2
4w2´1

. By Lemma 6, DpA,B;wq “ I . Let d fi 2{pw`1q.

Note that β ´ d “ 3w2´3w
´pw`1qp4w2´1q

ď 0. Using these facts, we can now derive

BpA,B;wq fi
pw ` 1qCpA,B;wq

4L ´ pw ` 1qCpA,B;wq
´

DpA,B;wq

2L ´ DpA,B;wq
“

CpA,B;wq

2dL ´ CpA,B;wq
´

I

2L ´ I
“

βI

2dL ´ βI
´

I

2L ´ I

“
p2L ´ IqβI ´ 2dLI ` βI2

p2dL ´ βIqp2L ´ Iq
“

2LβI ´ 2dLI

p2dL ´ βIqp2L ´ Iq
“ JpA,Bq

2Lβ ´ 2dL

2dL ´ βI
“ JpA,Bq

2Lpβ ´ dq

2dL ´ βI
.

Note that because β ´ d ď 0, BpA,B;wq ď 0. Then, using the fact that β ą 0 and I ą 0, we get

BpA,B;wq ď JpA,Bq
2Lpβ ´ dq

2dL
“ JpA,Bq

3w2 ´ 3w

´2p4w2 ´ 1q
.

A.5 Proof of Theorem 4

Theorem 4. Let 2 ď w ă k, g ą w ` 2k, and L “ ℓg ` k for some integer ℓ ě 1. Let A and B be two duplicate-free sequences with L k-mers
such that A and B are identical except that the nucleotides at positions k ´ 1 ` ig, for i “ 0, . . . , ℓ, are mutated. Then,

BpA,B;wq “
2ℓpℓg ` kqhpwq

pℓpg ` kq ` 2k ´ ℓhpwqqpℓpg ` kq ` 2kq
,

where hpwq “
pw`1qp1´2pH2w´Hwqq

2
and Hn “

řn
j“1

1
j

denotes the n-th Harmonic number.

Proof. Let

W psq “ t0pNpv1, 0; 1, 0; swq ` Npv1, 0; 2, 0; swq ` Npv2, 0; 1, 0; swqq

` t1pNpv2, t1, 2u; 1, 1; swq ` Npv1, 1; 2, t1, 2u; swq ` 2wNpv0, 0; 0, 0; swqq

` t1spNpv0, 1; 0, 1; swq ` Npv0, 1; 0, 2; swq ` Npv0, 2; 0, 1; swq ` Npv0, 2; 0, 2; swqq

` t2p2sNpv2, 2; 2, 2; swq ` 4wNpv2, 1; 2, 1; swq ` p6w ´ s ` p2w ´ sq2qNpv2, 0; 2, 0; swqq

` t2ps ` 2wqpNpv2, 1; 2, 2; swq ` Npv2, 2; 2, 1; swqq

so that CpA,B;wq “
řw

s“0 W psq. In our setting, the configuration counts are such that the following holds:

Fact 6.

W psq “

$

’

’

&

’

’

%

0 if s “ 0;
2ℓpg´w´kq

w`1
`

ℓpw`5q

pw`1qpw`2q
if s “ w;

ℓst1 ` ℓt2p6w ` 8w2 ´ sps ` 6w ` 1qq if 1 ď s ď w ´ 1.

From this fact, which we prove later, we get that CpA,B;wq “ dℓpg ´ kq ` ℓfpwq, where d “ 2{pw ` 1q and

fpwq “ ´
2w

w ` 1
`

w ` 5

pw ` 1qpw ` 2q
`

ÿw´1

s“1
st1 ` t2p6w ` 8w2 ´ sps ` 6w ` 1qq.

Note that since there are no matches in the first or the last k-mers and k ě w, we have by Lemma 6 that I “ |AXB| “ DpA,B;wq “ ℓpg´kq

and so
CpA,B;wq “ dI ` ℓfpwq,

From the definition of BpA,B;wq, we then have

BpA,B;wq “
C

2dL ´ C
´

I

2L ´ I
“

I `
ℓfpwq

d

2L ´ I ´
ℓfpwq

d

´
I

2L ´ I
“

2L ℓfpwq

d

p2L ´ I ´
ℓfpwq

d
qp2L ´ Iq

.

We also have the following closed form for fpwq (which we prove later).

Fact 7. For n ě 1, let Hn “
řn

k“1
1
k

. Then, fpwq “ 1 ´ 2pH2w ´ Hwq.
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configuration count reason for 0 configuration count reason for 0

v0, 2; 0, 2;ă ww ℓ N/A v0, 2; 0, 2;ww 0 TOO-FULL
v2, 2; 2, 2;ą 0w 0 see text v2, 1; 2, 1; sw 0 CROSS
v0, 0; 0, 0;ă ww 0 see text v0, 0; 0, 0;ww ℓpg ´ w ´ kq N/A
v1, 0; 1, 0; sw 0 VERT v2, 0; 1, 0; sw 0 VERT
v1, 0; 2, 0; sw 0 VERT v2, 0; 2, 0; 0w 0 TOO-EMPTY
v2, 0; 2, 0;ą 0w ℓ N/A v0, 1; 0, 1; sw 0 VERT
v0, 2; 0, 1; sw 0 VERT v2, 1; 1, 1; sw 0 CROSS
v2, 2; 1, 1; sw 0 CROSS v2, 1; 2, 1; sw 0 CROSS
v2, 2; 2, 1; 0w 0 TOO-EMPTY v2, 2; 2, 1; 1 ¨ ¨ ¨w ´ 1w ℓpw ´ sq N/A
v2, 2; 2, 1;ww 0 TOO-FULL v0, 1; 0, 2; sw 0 VERT
v1, 1; 2, 1; sw 0 CROSS v1, 1; 2, 2; sw 0 CROSS
v2, 1; 2, 2; 0w 0 TOO-EMPTY v2, 1; 2, 2; 1 ¨ ¨ ¨w ´ 1w ℓpw ´ sq N/A
v2, 1; 2, 2;ww 0 TOO-FULL

Table S1. Non-empty configurations appearing in the definition of C, along with their counts in the context of Theorem 4 as well as why the counts are zero,
if applicable. The reasons are explained in the proof of Fact 8.

From this, combined with the facts that L “ ℓg ` k and I “ ℓpg ´ kq, and letting hpwq “
pw`1qp1´2pH2w´Hwqq

2
, we get

BpA,B;wq “
2ℓpℓg ` kqhpwq

pℓpg ` kq ` 2k ´ ℓhpwqqpℓpg ` kq ` 2kq
,

as claimed.

It remains for use to provide the proofs of Facts 6 and 7. Fact 6 is a direct consequence of the following configuration counts.

Fact 8. In the setting of Theorem 4, we have

(i)Npv0, 0; 0, 0;wwq “ lpg ´ w ´ kq;
(ii)Npv0, 2; 0, 2; t0, ¨ ¨ ¨ , w ´ 1uwq “ l;

(iii)Npv2, 0; 2, 0; t1, ¨ ¨ ¨ , wuwq “ l;
(iv)Npv2, 1; 2, 2; t1, ¨ ¨ ¨ , w ´ 1uwq “ lpw ´ sq;
(v)Npv2, 2; 2, 1; t1, ¨ ¨ ¨ , w ´ 1uwq “ lpw ´ sq.

For any other configuration c that could contribute to CpA,B;wq, we have Npcq “ 0 or c “ v2, 2; 2, 2; 0w.

Proof. We will refer to v2, 2; 2, 2; 0w as the empty configuration. Table S1 lists all non-empty configurations that appear in the definition of C.
Sometimes, a configuration type is further sub-divided according to different values of s. We will show that the counts in the table are correct, which
will prove the Theorem.

The rows that whose reason is VERT have configurations that match v˚,˚; 1, 0; sw, v˚,˚; 0, 1; sw, v1, 0;˚,˚; sw, or v0, 1;˚,˚; sw. These
configurations never occur because in our setting, all the matches are parallel to each other (i.e. if Ai “ Bj and Ai1 “ Bj1 , then j ´ i “ j1 ´ i1),
while these configurations contain a 0 in one place (indicating that the matches are vertical, i.e. Ai “ Bj implies i “ j) and a 1 in another (indicated
that the matching edges are angled, i.e. Ai “ Bj implies i ‰ j). The rows whose reason is CROSS have a configuration that matches v1,˚; 1,˚; sw,
v˚, 1;˚, 1; sw, v1, 1;˚,˚; sw, or v˚,˚; 1, 1; sw. These configurations never occur because the 1s indicate conflicting angles for the matches — they
should either slant left (e.g. i ą j) or right (e.g. i ă j), but cannot do both. Note that for rows that could be categorized as both VERT and CROSS,
the reason in the Table is arbitrarily chosen from those two. The rows whose reason is TOO-FULL have a configuration that matches v˚, 2;˚,˚;ww

or v˚,˚;˚, 2;ww. These configurations can never occur because the presence of the 2 indicates that either Ai`w or Bj`w is not involved in a match,
making it impossible that Spi ` 1, j ` 1, wq “ w. The rows whose reason is TOO-EMPTY have a configuration that matches v˚,˚;˚, t0, 1u; 0w

or v˚, t0, 1u;˚,˚; 0w. These configurations can never occur because the presence of the 0 or 1 indicates that either Ai`w or Bj`w is involved in a
match, making it impossible that Spi ` 1, j ` 1, wq “ 0.

By the definition of A and B from Theorem 4, we have alternating runs of k mismatches followed by g ´ k matches, with k mismatches at
the end. Therefore, we have ℓ ` 1 blocks of k mismatches, at i P tig, ..., ig ` k ´ 1|0 ď i ď ℓu, and we have ℓ blocks of g ´ k matches, at
i P tig ` k, ..., pi ` 1qg ´ 1|0 ď i ă ℓu. We will refer to the latter as match-blocks.

Recall that configuration windows are of length w ` 1. Because k ą w, no window can contain matches from more than one match-block.
Moreover, any configurations involving an i or j in the first match-block will occur again in each other match-block, at the same coordinates
modulo g. Thus it is enough to consider only the first match-block, and multiply the resulting counts by ℓ. We therefore restrict ourselves to the first
match-block in the following discussion, and note that the leftmost match is at position k and the rightmost match is at g ´ 1.

Let us consider the configurations that are v2, 2; 2, 2;ą 0w. In this case, Ai ‰ Bj and Ai`w ‰ Bj`w , and there is some i1 P ri`1, i`w´1s

and j1 P rj ` 1, j ` w ´ 1s such that Ai1 “ Bj1 . This match must be part of match block, and in our setting, a match block has width g ´ k. This
is more than w, making it impossible that Ai ‰ Bj and Ai`w ‰ Bj`w . Hence Npv2, 2; 2, 2;ą 0wq “ 0.

Let us consider the configurations that are v0, 0; 0, 0; sw. In these configuration, i “ j, Ai “ Bj , and Ai`w “ Bj`w . A configuration window
of width w ` 1 cannot span more than one match block, since g ą w. Therefore, Ai`δ “ Bj`δ for all 0 ď δ ď w. Hence, the number of
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configurations with s ă w is 0. For s “ w, Figure S2A shows all the configurations that are v0, 0; 0, 0;ww. We have that i P rk, g ´ w ´ 1s,
resulting in g ´ w ´ k possible windows with this configuration, in one match block

Let us consider the configurations that are v0, 2; 0, 2; sw for 0 ď s ď w ´ 1. In this situation, Ai “ Bj and hence i “ j. The match
block containing this match ends before Ai`w , since Ai`w ‰ Bj`w in this configuration. Then the rightmost match, Ag´1 “ Bg´1, must be
somewhere in the window, other than at i ` w. To get s matches, g ´ 1 “ i ` s and thus i “ g ´ s ´ 1. Therefore, Npv0, 2; 0, 2; swq “ 1 for
each s P r0, w ´ 1s. Figure S2B shows how this configuration looks like. The top and bottom drawings show the two end cases, while the middle
drawing demonstrates the general case.

Let us consider the configurations that are v2, 0; 2, 0; sw for 1 ď s ď w. The case is mostly symmetric to the previous one. In this situation,
Ai`w “ Bj`w and hence i “ j. The match block containing this match begins after Ai, since Ai ‰ Bj in this configuration. The leftmost match
in the match-block, Ak , must be somewhere in the window other than at Ai. To get s matches, k “ pi`wq ´ ps´ 1q and thus i “ k ´w ` s´ 1.
Therefore Npv2, 0; 2, 0; swq “ 1 for each s P r1, ws. Figure S2C shows how this configurations looks like. The top and bottom drawings show the
two end cases, while the middle drawing demonstrates the general case.

Let us consider the configurations that are v2, 1; 2, 2; sw for 1 ď s ď w ´ 1. Figure S2D shows all the configurations. There are several
possibilities for each s. For s “ 3, the top and bottom drawings show the two end cases, while the middle drawing demonstrates the general case.
BecauseCa,right “ 1, Ai`w P tBj`1, . . . , Bj`w´1u and j ą i. SinceCa,left “ Cb,left “ 2, Ai ‰ Bj , and the leftmost match in the match-block,
Ak , must be somewhere in the window, other than at i. To get s matches, k “ pi ` wq ´ ps ´ 1q and thus i “ k ´ w ` s ´ 1. The window for B
can be positioned so that the leftmost match occurs in tj ` 1, . . . , j `w ´ su. Since this corresponds to Ak , we have k P tj ` 1, . . . , j `w ´ su,
which can be restated as pi ` wq ´ ps ´ 1q P tj ` 1, . . . , j ` w ´ su. We can in turn restate this as i P tj ´ w ` s, . . . , j ´ 1qu and thus
j P ti ` 1, . . . , i ` w ´ squ. Therefore, Npv2, 1; 2, 2; swq “ w ´ s for each s P r1, w ´ 1s.

Finally, we consider the configurations that are v2, 2; 1, 2; sw for 1 ď s ď w ´ 1. This case is symmetrical to the above case, by swapping the
roles of A and B in the definition of the configurations. Therefore, Npv2, 2; 1, 2; swq “ w ´ s for each 1 ď s ď w ´ 1.

We are now ready to prove Fact 6.

Fact 6.

W psq “

$

’

’

&

’

’

%

0 if s “ 0;
2ℓpg´w´kq

w`1
`

ℓpw`5q

pw`1qpw`2q
if s “ w;

ℓst1 ` ℓt2p6w ` 8w2 ´ sps ` 6w ` 1qq if 1 ď s ď w ´ 1.

Proof. Let us consider first the s “ 0 case. By Fact 8, the only two configurations with s “ 0 and with non zero counts are v2, 2; 2, 2; 0w and
v0, 2; 0, 2; 0w. However, both of those terms are multiplied by s in W p0q, hence we have W p0q “ 0.

Let us consider next the s “ w case. For this value of s, by Fact 8, we have Npv0, 0; 0, 0;wwq “ lpg ´ w ´ kq and Npv2, 0; 2, 0;wwq “ l; all
other configurations that may contribute to CpA,B;wq have zero counts.

At s “ w, v0, 0; 0, 0;ww has coefficient 2
w`1

and v2, 0; 2, 0;ww has coefficient w`5
pw`1qpw`2q

. Hence

W pwq “
2lpg ´ w ´ kq

w ` 1
`

lpw ` 5q

pw ` 1qpw ` 2q
.

Finally, when 1 ď s ď w ´ 1, again by Fact 8, we have

Npv0, 2; 0, 2; swq “ Npv2, 0; 2, 0; swq “ l,

Npv2, 1; 2, 2; swq “ Npv2, 2; 2, 1; swq “ lpw ´ sq,

and all other configurations do not contribute to W . Now, the coefficient of Npv0, 2; 0, 2; swq in W is st1, the coefficient of Npv2, 0; 2, 0; swq in
W is t2p6w ´ s ` p2w ´ sq2q, and the coefficient of Npv2, 1; 2, 2; swq and Npv2, 2; 2, 1; swq in W is t2ps ` 2wq. Combining this, we obtain

W psq “ ℓst1 ` ℓt2p6w ´ s ` p2w ´ sq2q ` 2ℓpw ´ sqps ` 2wqt2 “ ℓst1 ` ℓt2p6w ` 8w2 ´ sps ` 6w ` 1qq

as claimed.

We conclude this section with the proof of Fact 7.

Fact 7. For n ě 1, let Hn “
řn

k“1
1
k

. Then, fpwq “ 1 ´ 2pH2w ´ Hwq.

Proof. Recall that fpwq fi ´ 2w
w`1

`
pw`5q

pw`1qpw`2q
`

řw´1
s“1 st1 ` t2p6w ` 8w2 ´ sps ` 6w ` 1qq. Let us rewrite fpwq as

fpwq “
´2wpw ` 2q ` w ` 5

pw ` 1qpw ` 2q
`

ÿw´1

s“1
sp2w ´ s ` 2qt2 ` t2p6w ` 8w2 ´ sps ` 6w ` 1qq

“
´2w2 ´ 3w ` 5

pw ` 1qpw ` 2q
`

ÿw´1

s“1
t2p´s2 ` sp2w ` 2q ` 6w ` 8w2 ´ sps ` 6w ` 1qq
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“
´2w2 ´ 3w ` 5

pw ` 1qpw ` 2q
`

ÿw´1

s“1
t2p´2s2 ` sp´4w ` 1q ` 6w ` 8w2q

“
´2w2 ´ 3w ` 5

pw ` 1qpw ` 2q
´ 2S4 ` p´4w ` 1qS2 ` p6w ` 8w2qS1,

where S4 “
řw´1

s“1 t2s2, S2 “
řw´1

s“1 t2s, and S1 “
řw´1

s“1 t2. Let

T “ ´2S4 ` p´4w ` 1qS2 ` p6w ` 8w2qS1.

We will now reduce each of the sums.

S1 “

w´1
ÿ

s“1

t2 “

w´1
ÿ

s“1

1

p2w ´ sqp2w ´ s ` 1qp2w ´ s ` 2q
“

2w´1
ÿ

i“w`1

1

ipi ` 1qpi ` 2q
“

2w´1
ÿ

i“1

1

ipi ` 1qpi ` 2q
´

w
ÿ

i“1

1

ipi ` 1qpi ` 2q
.

We now use the fact that
řn

k“1
1

kpk`1qpk`2q
“

npn`3q

4pn`1qpn`2q
, which can be derived via partial fraction decomposition or induction. Then,

S1 “
p2w ´ 1qp2w ` 2q

4p2wqp2w ` 1q
´

wpw ` 3q

4pw ` 1qpw ` 2q
“

p2w ´ 1qpw ` 1q

4wp2w ` 1q
´

wpw ` 3q

4pw ` 1qpw ` 2q
.

Proceeding similarly for the next component, we have:

S2 “

w´1
ÿ

s“1

s

p2w ´ sqp2w ´ s ` 1qp2w ´ s ` 2q
“

2w´1
ÿ

i“w`1

2w ´ i

ipi ` 1qpi ` 2q
“ 2wS1 ´

2w´1
ÿ

i“w`1

1

pi ` 1qpi ` 2q
.

Recalling that
řn

k“1
1

pk`1qpk`2q
“ n

2pn`2q
, we get

S3 “

2w´1
ÿ

i“w`1

1

pi ` 1qpi ` 2q
“

2w´1
ÿ

i“1

1

pi ` 1qpi ` 2q
´

w
ÿ

i“1

1

pi ` 1qpi ` 2q
“

2w ´ 1

2p2w ` 1q
´

w

2pw ` 2q
.

Hence
S2 “ 2wS1 ´ S3 “ 2wS1 ´

2w ´ 1

2p2w ` 1q
`

w

2pw ` 2q
.

Finally,

S4 “

w´1
ÿ

s“1

s2

p2w ´ sqp2w ´ s ` 1qp2w ´ s ` 2q
“

2w´1
ÿ

i“w`1

p2w ´ iq2

ipi ` 1qpi ` 2q

“ 4w2
2w´1

ÿ

i“w`1

1

ipi ` 1qpi ` 2q
´ 4w

2w´1
ÿ

i“w`1

1

pi ` 1qpi ` 2q
`

2w´1
ÿ

i“w`1

i

pi ` 1qpi ` 2q

“ 4w2S1 ´ 4wS3 `

2w´1
ÿ

i“w`1

i

pi ` 1qpi ` 2q
.

Using that
řn

k“1
k

pk`1qpk`2q
“ Hn`1 ` 2

n`2
´ 2 again via partial fraction decomposition or induction, we get

S5 “

2w´1
ÿ

i“w`1

i

pi ` 1qpi ` 2q
“

2w´1
ÿ

i“1

i

pi ` 1qpi ` 2q
´

w
ÿ

i“1

i

pi ` 1qpi ` 2q
“ H2w ´ Hw`1 `

2

2w ` 1
´

2

w ` 2

“ H2w ´ Hw ´
1

w ` 1
`

2

2w ` 1
´

2

w ` 2
“ H2w ´ Hw ´

3w ` 4

pw ` 1qpw ` 2q
`

2

2w ` 1
.

Thus,

S4 “ 4w2S1 ´ 4wS3 ` S5.

Combining all of this, we get

T “ ´2S4 ` p´4w ` 1qS2 ` p6w ` 8w2qS1

“ ´2p4w2S1 ´ 4wS3 ` S5q ` p´4w ` 1qp2wS1 ´ S3q ` p6w ` 8w2qS1
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“ S1p´8w2 ` 8wq ` S3p12w ´ 1q ´ 2S5.

By using partial fraction decomposition, we can algebraically simplify each of the terms as follows:

S1p´8w2 ` 8wq “ ´8wpw ´ 1q

ˆ

p2w ´ 1qpw ` 1q

4wp2w ` 1q
´

wpw ` 3q

4pw ` 1qpw ` 2q

˙

“
24

w ` 2
´

3

2w ` 1
´

8

w ` 1
´ 3,

S3p12w ´ 1q “ p12w ´ 1q

ˆ

2w ´ 1

2p2w ` 1q
´

w

2pw ` 2q

˙

“
7

2w ` 1
´

25

w ` 2
` 6,´2S5

“ ´2

ˆ

H2w ´ Hw ´
3w ` 4

pw ` 1qpw ` 2q
`

2

2w ` 1

˙

“
4

w ` 2
´

4

2w ` 1
`

2

w ` 1
´ 2 pH2w ´ Hwq .

By plugging these expressions back into T , we get

T “
3

w ` 2
´

6

w ` 1
` 3 ´ 2 pH2w ´ Hwq “

3pw2 ` 2w ´ 1q

pw ` 1qpw ` 2q
´ 2 pH2w ´ Hwq .

Now, we plug the value of T into fpwq and it finishes the proof,

fpwq “
´2w2 ´ 3w ` 5

pw ` 1qpw ` 2q
` T “

´2w2 ´ 3w ` 5

pw ` 1qpw ` 2q
`

3pw2 ` 2w ´ 1q

pw ` 1qpw ` 2q
´ 2 pH2w ´ Hwq “ 1 ´ 2 pH2w ´ Hwq .
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Fig. S2: Some of the configurations with non-zero counts in Fact 8.
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A.6 Experimental details

In this section, we provide some experimental details to aid reproducibility. The scripts to reproduce our experiments are available on GitHub [26].

Generative models: When we generate an unrelated pair, we greedily extend each string from left to right. At each position, we choose, uniformly at
random, one of the nucleotides that would not result in a k-mer we have already seen. If we get to a point where all the possible nucleotide extensions
to a string are already present, we discard the string and start from the beginning. Though this sampling scheme is not guaranteed to terminate,
we found that it always did in our experiments. We also verified that the Jaccard of the generated pair was close to the j that was used as a target.
Under the assumptions that A and B are uniformly chosen, j should be the expected value under the generative process. Though it is not clear that
the uniformity assumption holds in our generative process, we found that the true Jaccard was indeed very close to j in practice. In the related pair
model, we also faced a possibility that after choosing to mutate a position, all the possible nucleotide substitutions would create a duplicate k-mer.
In such a case, the position was left unchanged.

Mashmap divergence experiment: We sampled 100 substrings from the E.coli reference [8], each of length L “ 10, 000 and, for each substring and
for each r1 P t0.90, 0.95, 0.99u, generated a “read” which was the substring with r1L positions randomly picked and mutated. We then mapped
it with mashmap, and discarded any read for which mashmap did not correctly identify a unique and correct mapping location. Mashmap was run
with default parameters of k “ 16 and w “ 200.

Correction formula to remove Poisson-approximation from Mash distance Let j be the observed Jaccard. Let A and B be two sequences generated
using a simple mutation process, i.e. a substitution is created at every nucleotide with a given probability r1 [2]. The method of moments [38] estimator
for the sequence identity ispimom “ p1´n{Lq1{k , wheren is the observed number of mutated k-mers [2]. In the simple mutation model, the observed

Jaccard j is related to n via j “ L´n
L`n

, or, equivalently, n “
Lp1´jq

1`j
[2]. Putting this together, we get that pimom “ p1 ´

1´j
1`j

q1{k “
2j
1`j

1{k
.

On the other hand, the Mash distance estimator is ´ 1
k
logp

2j
1`j

q (Formula 1 in [12]), which equivalently translates to the identity estimator
pimash “ 1 ` 1

k
logp

2j
1`j

q. Combining the two, we get that pimash “ 1 ` 1
k
logpppimomqkq. Solving for pimom, we get the final correction formula:

pimom “ e
pimash´1.

Sliding read experiment: When choosing A, we avoided segments with any Ns or any duplicate k-mers. Any k-mers in B containing an N were
hashed to the maximum hash value so as to avoid them being a minimizer. Also note that minimizers were computed separately for each B; thus, it
is possible that the same k-mer might be a minimizer in one B but not a minimizer in a nearby B.
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