1 Chemical defense acquired via pharmacophagy can lead to herd protection in

- 2 a sawfly
- 3
- 4 Pragya Singh^{1,*}, Neil Grone¹, Lisa Johanna Tewes¹ and Caroline Müller¹
- ⁵ ¹Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
- 6
- 7 *Corresponding Author:
- 8 Email: pragya.singh42019@gmail.com
- 9 ORCiD: https://orcid.org/0000-0002-7411-3206

10

11 Author Contributions

- 12 Conceptualization and funding acquisition: CM; methods development/experimental design:
- 13 PS, CM; data collection: experiment 1 and 2: NG, PS, experiment 3: PS, chemical analysis:
- 14 PS, LJT; data validation and analysis: PS; data visualization: PS; experiment illustrations:
- 15 NG; writing original draft: PS, CM.
- 16

17 Acknowledgements

18 This study was funded by the German Research Foundation (DFG) as part of the SFB TRR

19 212 (NC³), project number 396777467 (granted to CM).

20

22 Abstract

23	Predation is an important selection pressure acting on organisms, with organisms evolving
24	diverse anti-predator strategies to combat it. One such widespread strategy is chemical
25	defense in which organisms either synthesize or extrinsically acquire defensive chemicals.
26	Little is known about the intraspecific transfer of such chemicals and if such chemicals
27	acquired from conspecifics can also serve as defense against predation. Here, we used adults
28	of the turnip sawfly, Athalia rosae, which can acquire neo-clerodane diterpenoids
29	('clerodanoids') via pharmacophagy after exposure to the plant, Ajuga reptans. We show that
30	clerodanoid access mediates protection against predation by mantids for the sawflies, both in
31	a no-choice feeding assay and a microcosm setup. Moreover, even indirect access to
32	clerodanoids, via nibbling on conspecifics that had access to the plant, resulted in protection
33	against predation albeit to a much lower degree than direct access. Furthermore, sawflies that
34	had no direct access to clerodanoids were less consumed by mantids when they were grouped
35	with conspecifics that had direct access. Most, but not all, of such initially undefended
36	sawflies could acquire clerodanoids from conspecifics that had direct access to the plant,
37	although in low quantities. Together our results demonstrate that clerodanoids serve as
38	chemical defense that can be intraspecifically transferred. Moreover, the presence of
39	chemically defended individuals in a group can confer protection onto conspecifics that had
40	no direct access to clerodanoids, suggesting a 'herd-protection' effect.

41

42 *Keywords*

43 Sequestration, pharmacophagy, automimicry, plant-insect interaction, phytochemicals,

44 Hierodula patellifera (Mantidae), Hymenoptera

45

46 **1. Introduction**

47	Predation is an important biotic factor that many organisms in the wild encounter. To defend
48	themselves, organisms exhibit a wide diversity of anti-predator strategies (Edmunds, 1974;
49	Eisner et al., 2005; Bergen & Beldade, 2019; Rowland et al., 2020). Chemical defense is one
50	such anti-predator strategy that is widespread amongst organisms, ranging from
51	microorganisms (Matz et al., 2008) to multicellular organisms (Santos et al., 2016; Pančić &
52	Kiørboe, 2018; Sugiura, 2020). Such defensive chemicals can either be synthesized <i>de-novo</i>
53	or acquired extrinsically, for example, from the host plant diet (Opitz & Müller, 2009; Erb &
54	Robert, 2016; de Castro et al., 2021). For example, the oleander aphid, Aphis nerii, sequesters
55	cardenolides from its host plant species, and utilizes these defensive compounds against both
56	vertebrate and invertebrate predators (Züst et al., 2018). Alternatively, organisms can
57	specifically take up defensive chemicals independently of nutritional requirements, e.g. via
58	pharmacophagy (Boppré, 1984; Nishida, 2014; Paul et al., 2021b). For example, adults of
59	some danaine butterfly species actively incorporate defensive chemicals like pyrrolizidine
60	alkaloids from sources such as dried plant parts (Lawson et al., 2021; Tea et al., 2021). While
61	these acquired chemicals confer protection on the individual taking them up, it is less well-
62	elucidated whether and how this protection can extend to conspecifics that may not have
63	access to these chemicals directly from the source.
64	The possibility that chemically defended individuals confer protection from predation on
65	initially undefended conspecifics, what we coin as 'herd-protection', could be realized via
66	different means. For example, individuals could acquire such chemicals not only directly from
67	the (plant) source but also indirectly via intraspecific (Lawson et al., 2021; Paul et al., 2021a)
68	or interspecific (Hashimoto & Hayashi, 2014; Tea et al., 2021) interactions. Such indirectly
69	acquired chemicals could then be used in the context of defense against predation.
70	Alternatively, after attacking a chemically defended individual, a predator may be deterred

71	from attacking even chemically undefended conspecifics if it associates the phenotype with
72	chemical defense by learned aversion or avoidance (Berenbaum & Miliczky, 1984;
73	Hämäläinen et al., 2020; Tuttle et al., 2021). This phenomenon is often seen in combination
74	with automimicry, wherein undefended individuals (mimics) benefit from the unpalatability
75	of defended individuals (models) (Brower et al., 1970; Aubier et al., 2017). Furthermore,
76	unpalatability or unprofitability of organisms is often associated with bright or aposematic
77	coloration that functions as warning signal to predators (Cyriac & Kodandaramaiah, 2019;
78	Kikuchi et al., 2021). There is usually positive density-dependence in aposematism, such that
79	conspicuous warning signals are more effective when they are common (Chouteau et al.,
80	2016; Kikuchi et al., 2021).
81	Understanding how the presence of chemically defended individuals affects the rest of the
82	population is an important question as studies have shown that there can be intraspecific
83	variation in chemical defense, with some individuals lacking chemical defenses entirely (Best
84	et al., 2018; Prudic et al., 2019; Sculfort et al., 2020; Mattila et al., 2021). Such variation
85	could arise if the defensive chemicals have an associated cost, for example, for acquisition
86	and/or maintenance of the chemical defense (Dimarco & Fordyce, 2017). Variation may also
87	be influenced by intrinsic factors such as the age, sex, reproductive phase or immunological
88	status of the individuals (Smilanich et al., 2009; Zvereva & Kozlov, 2015; Arias et al., 2016).
89	In such scenarios with intraspecific variation in chemical defense, the degree of protection
90	from predation for chemically undefended individuals depends on the frequency of defended
91	and non-defended individuals (Gamberale-Stille & Guilford, 2004; Finkbeiner et al., 2018).
92	At higher density of chemically defended individuals, the motivation of predators could be
93	reduced to search for undefended prey (Skelhorn et al., 2011), it may be harder to detect
94	undefended prey (Gamberale-Stille & Guilford, 2004; Skelhorn et al., 2011), or more
95	undefended individuals could indirectly access the chemicals and gain protection.

96	An excellent model system for examining the effect of defensive chemicals in deterring
97	predation both directly and indirectly is the turnip sawfly, Athalia rosae (Hymenoptera:
98	Tenthredinidae). The larvae of this species are well-studied for sequestering metabolites, i.e.
99	glucosinolates, of their Brassicaceae host plants, which act as defense against various
100	invertebrate and vertebrate predators (Müller & Brakefield, 2003; Müller & Arand, 2007;
101	Opitz et al., 2010; Matsubara & Sugiura, 2017). The bright orange adults still contain
102	glucosinolates sequestered by the larvae (Müller & Sieling, 2006) but do not seem to be
103	protected by these compounds against predators such as birds and lizards (Vlieger et al.,
104	2004; Boevé & Müller, 2005). However, A. rosae adults can additionally acquire other
105	specialized metabolites, neo-clerodane diterpenoids (potentially together with other
106	compounds, hereafter called clerodanoids), by pharmacophagy from certain plant species,
107	such as Ajuga reptans or Clerodendrum trichotomum (both Lamiaceae) (Kawai et al., 1998).
108	Some of the clerodanoids found in insect bodies are likely slightly modified metabolic
109	products from plant derived clerodanoids (Amano et al., 1999; Paul et al., 2021a). Moreover,
110	these compounds can be acquired indirectly by nibbling on conspecifics that were exposed to
111	plant material (Paul et al., 2021a). While effects of clerodanoids on mating behavior have
112	been shown previously (Amano et al., 1999; Paul & Müller, 2021), empirical evidence for
113	other functions such as in defense against predation is scarce and indirect (Nishida & Fukami,
114	1990). In the laboratory, the cultures are usually maintained without A. reptans leaves,
115	suggesting that clerodanoid access is not essential for the sawflies' survival (Paul et al.,
116	2021b, 2021a; Paul & Müller, 2021). Moreover, there is evidence for associated costs of
117	clerodanoid uptake in A. rosae, such that adults with clerodanoid access exhibit a reduced
118	lifespan (Zanchi et al., 2021). Thus, most likely there is intraspecific variation in clerodanoid
119	status by A. rosae in the wild.

120	We aimed to study whether uptake of clerodanoids can function as defense against predation
121	both for focal individuals that directly acquire these compounds after access to plants, and
122	indirectly for other conspecifics that come into contact with the focal individuals. Therefore,
123	we observed the response of mantid predators in no-choice feeding assays to sawflies that
124	either had access to clerodanoids directly from plants or indirectly from conspecifics or had
125	no access (experiment 1). Next, we investigated survivorship of sawflies with or without
126	clerodanoid access in both presence and absence of a predator (experiment 2). Lastly, we
127	investigated if the presence of sawflies with clerodanoid access conferred protection from
128	predation on conspecifics with no clerodanoid access and if this varied with their relative
129	abundance (experiment 3). We also investigated the clerodanoid acquisition of sawflies from
130	different treatments using chemical analysis (experiment 3). We predicted that both direct and
131	indirect clerodanoid acquisition should lead to protection from predation by the mantids.
132	Furthermore, presence of chemically defended sawflies should confer protection from
133	predation on conspecifics, with protection increasing with proportion of chemically defended
134	individuals in the group. We also expect sawflies without clerodanoid access that were
135	grouped with conspecifics with clerodanoid access to acquire clerodanoids.
136	

136

137 2. Materials and Methods

138 (a) Experimental animals

139 The individuals of *A. rosae* used in this experiment were taken from a laboratory culture

140 established using adults collected in the surroundings of Bielefeld, Germany, and

supplemented annually with field-caught insects. The culture was maintained in mesh cages

142 (60 x 60 x 60 cm) with overhead lighting in a laboratory at room temperature with a 16 h: 8 h

light: dark cycle and ~60% relative humidity. Multiple females and males were put in a cage

144	and provided with Sinapis alba (Brassicaceae) plants for the females to oviposit. Emerging
145	larvae were raised on Brassica rapa var. pekinensis (Brassicaceae) plants. Males and females
146	were collected and separated within two days of pupal eclosion. Adults were kept in a climate
147	chamber at 20 °C (16 h: 8 h light: dark cycle, 70 % relative humidity) before being used in
148	experiment 1 and 2, and were kept in the laboratory under culture conditions for experiment
149	3. All adults were fed a maintenance diet of a honey-water mixture (1:50 dilution). Adults
150	were allocated randomly to the different treatments of no clerodanoid access (C-), direct
151	clerodanoid access (C+) or indirect clerodanoid access (AC+). For the C+ treatment, adults
152	got access to a leaf section (0.8 cm ²) of A. reptans for 48 hours, while for C- no A. reptans
153	leaf was provided. For the AC+ treatment, adults got access to a C+ conspecific of the same
154	sex (prepared as above) for 48 hours. S. alba plants were grown from seeds in a climate
155	chamber (20 °C, 16 h: 8 h light: dark, 70% r.h.), while <i>B. rapa</i> and <i>A. reptans</i> plants were
156	grown from seeds in a greenhouse (≥ 20 °C, 16 h: 8 h light: dark, 70% r.h.).
157	Twenty-three sixth instar individuals of Hierodula patellifera (Mantidae) were purchased
158	(www.interaquaristik.de) and reared in individual cages (20 cm x 20 cm x 20 cm) on a diet of
159	crickets in a climatized room (~20 °C) on a diet of crickets. The mantids used in the
160	experiment were not exposed to the sawflies before experiment 1, and were starved 48 hours
161	before experiment 1. Each mantid was offered a cricket before experiment 2 and 3 to avoid
162	starvation effects over the experimental days, and those individuals that did not consume the
163	cricket were excluded as mantids usually stop eating when nearing a molt.
164	(b) Experiment 1: No-choice feeding assay to examine effect of clerodanoid access on
165	predator deterrence
166	

166 Mantids were placed individually in transparent containers (9.5 cm diameter, 20 cm height),

- 167 one C-, C+ or AC+ female sawfly was introduced in the container (figure 1a), and the mantid
- 168 response was noted. Each assay was conducted for 15 minutes unless the sawfly was

169 consumed before this, at which point the assay was terminated. The predator response 170 variables examined during the assay were number of attacks on sawfly, whether sawfly was 171 discarded after mouth contact (SI 1a,b), and whether sawfly was consumed (SI 1c). 172 Discarding after mouth contact was a distinct behavior by the mantid, and could clearly be 173 distinguished from the sawfly slipping or escaping from the mantid's grab. For individuals 174 that were attacked multiple times, we noted discarding as yes if the individual was discarded 175 after mouth contact even once. 176 Sawflies of all treatments were offered to all mantids but in different orders; six mantids 177 received A. rosae in the order C+, AC+, C-, seven in the order C-, C+, AC+, and seven in the

order AC+, C-, C+ (total number of replicates N = 20). Upon noticing the sawfly, the mantids

179 would orient for an attack. However, we did not compare the latency until attack, because the

180 position of the mantids and how readily they noticed the sawflies differed between replicates.

181 Two mantids did not attack sawflies of any of the treatments during the assay and were thus

182 excluded from analysis as these mantids afterwards molted. We did not examine the long-

term survivorship of sawflies that were discarded after attack by mantids, but damage to the

184 sawfly spanned the spectrum from none to lethal (SI 1a-c).

185 We expected mantids to attack C- sawflies but not AC+ or C+ sawflies, e.g., if there were any

repellent olfactory cues associated with uptake of clerodanoids by the sawflies. If AC+ or C+

187 individuals were attacked, we expected the mantids to discard the sawflies after tasting

188 deterrent compounds and thus not consume them.

189 (c) Experiment 2: Microcosm experiment to investigate clerodanoid access effect on

190 survivorship in predator presence or absence

191 We used a fully factorial design (clerodanoid access x mantid presence) to evaluate the effect

192 of clerodanoid acquisition on sawfly survival in the presence of a mantid predator in a

193	microcosm (figure 2a). The four treatments were C- sawfly without mantid (C-M-), C- sawfly
194	with mantid (C-M+), C+ sawfly without mantid (C+M-) and C+ sawfly with mantid (C+M+)
195	with a sample size of eleven, ten, ten, and eight, respectively. All trials were performed in
196	microcosm cages (25 cm diameter, 26 cm height) with a honey-water supply. The cages were
197	kept in a climate room at 20 °C (16 h: 8 h light: dark cycle, 70% relative humidity) for the
198	duration of the experiment. For each trial, we used five sawflies (three females and two
199	males) and one or no mantid. We counted the number of sawflies alive every half-day for
200	three days. For the mantid present trials, we also counted the number of sawflies 'dead but not
201	consumed' at the end of three days, as sawflies may be attacked but not necessarily always
202	completely consumed, e.g. if they are unpalatable. For these replicates, we calculated the
203	number of consumed individuals as the difference between initial number of sawflies and the
204	number of sawflies alive or 'dead but not consumed'. This experiment was conducted two
205	weeks after experiment 1 and the mantids were fed a cricket diet in the meantime. We
206	expected C- with mantids to have reduced survival than sawflies in the other treatments.
207	Moreover, we expected more C+ sawflies to be consumed by the mantids with time, which
208	could be either due to a decreasing concentration of the clerodanoids or to prolonged
209	starvation of the mantids.

(d) Experiment 3: Predation on C- conspecifics in mixed groups of C+ and C- sawflies in microcosm

212 We aimed to test whether presence of C+ sawflies led to defense against predation also for C-

sawflies. Therefore, we set up four group-composition treatments, consisting of varying

relative abundance of C+ and C- sawflies, keeping the total abundance of sawflies fixed at

six. We chose six as the total abundance as we knew from experiment 2 that mantids can

- consume up to 5 C- A. rosae adults over a period of 1-3 half-days. The first group-
- composition treatment consisted of six C- sawflies (6C-), and the other three mixed group-

218	compositions treatments were: two C+ and four C- sawflies (2C+4C-), three C+ and three C-
219	sawflies (3C+3C-), and four C+ and two C- sawflies (4C+2C-). For each replicate, we joined
220	the sawflies together in one petri dish according to the assigned group treatment two hours
221	prior to adding them to the microcosm, to allow the sawflies to interact (e.g., mate or nibble).
222	We used eighteen mantids for the experiment, and a microcosm cage set-up identical to
223	experiment 2. Each mantid was exposed to all group treatments in random order over multiple
224	trials (four trials per mantid), with each trial lasting two days. Each mantid was fed a small
225	cricket prior to each trial. For the mixed group-compositions treatments containing both C+
226	and C- individuals, we used only females as C- and males as C+. Using the different sexes
227	allowed us to distinguish between C- and C+ individuals in each replicate. From experiment
228	2, we know that both male and female sawflies are consumed by mantids (see Results). In
229	A. rosae adults, males are usually smaller than females (Sawa et al., 1989; Travers-Martin &
230	Müller, 2008), making it potentially easier for C- females to nibble and gain access to
231	clerodanoids from C+ males. At the end of each trial, we counted the number of alive or 'dead
232	but not consumed' C+ and C- sawflies for each replicate. We calculated the number of
233	consumed C- sawflies as the difference between initial number of C- sawflies and number of
234	C- sawflies alive or 'dead but not consumed'. Similarly, we calculated the number of
235	consumed C+ sawflies. We hypothesized that the presence and increasing abundance of C+
236	sawflies should lead to protection from predation for C- sawflies.

237 (e) Chemical analysis of sawflies from experiment 3

238 To test whether C- sawflies in mixed group-composition treatments acquired clerodanoids

compared to 6C- replicates, we collected C- sawflies from different group-composition

- treatments and analysed them chemically. We also collected C+ sawflies to confirm their
- 241 clerodanoid acquisition. Lastly, we examined if C+ sawflies differed from C- sawflies of
- 242 mixed group-composition treatment in the amount of clerodanoid acquired, i.e. if there is a

243	difference between amount acquired directly from plant leaves or indirectly from
244	conspecifics. We only collected individuals from replicates that had intact sawflies left at the
245	end of the trial and stored them at -80 °C until further analysis. The final sample size for C-
246	sawflies chemically analysed was six, five, seven, and five samples each of 6C-, 2C+4C-,
247	3C+3C- and 4C+2C- group-composition treatments, respectively. The final sample size for
248	C+ sawflies was one, four and five from 2C+4C-, 3C+3C- and 4C+2C- group treatments,
249	respectively. To extract putative clerodanoids from the sawflies, the individuals were freeze-
250	dried and then homogenized using glass beads in a ball mill. Each individual was extracted
251	twice by shaking for seven minutes at room temperature in ethyl acetate (LC-MS grade,
252	VWR, Leuven, Belgium), and the supernatants were pooled to a final volume of 400 μ l. The
253	extracts were dried in a vacuum centrifuge at 35 °C. Dried extracts were suspended in 125 μl
254	100% methanol (LC-MS grade, Fisher Scientific, Loughborough, UK) in an ultrasonic bath
255	for 15 minutes, after which they were filtered using syringe filters (polytetrafluoroethylene
256	membrane, 0.2 μ m pore size, Phenomenex, Torrance, CA, USA). The samples were analyzed
257	using ultra high performance liquid chromatography (UHPLC; Dionex UltiMate 3000,
258	Thermo Fisher Scientific, San José, CA, USA) with a Kinetex XB-C18 column (1.7 μ m, 150
259	\times 2.1 mm, with guard column, Phenomenex), and coupled to a quadrupole time of flight mass
260	spectrometer (QTOF-MS; compact, Bruker Daltonics, Bremen, Germany), see SI 2 for
261	details. The resulting chromatograms were processed with the software Compass Data
262	Analysis 4.4 (Bruker Daltonics). The putative clerodanoids $482.22 \text{ m/z} (C_{24}H_{34}O_{10})$ and
263	484.23 m/z ($C_{24}H_{36}O_{10}$) occur in the chromatograms as [M+HCOOH-H] ⁻ adducts resulting in
264	features with 527.21 m/z and 529.23 m/z, respectively (Paul et al., 2021a). We manually
265	integrated the peak areas of these two features from the extracted ion chromatograms,
266	extracted with 0.02 m/z accuracy.

267 We expected C- sawflies from mixed group-composition treatments to acquire clerodanoids,

but to have lower amounts of clerodanoid compounds compared to C+ sawflies.

269 (f) Statistical analyses

In experiment 1, we examined whether treatment had an effect on number of attacks, sawfly being discarded after mouth contact, and sawfly being consumed using a binomial generalized linear mixed-effects model (GLMM), with mantid identity as random effect. As there was quasi-complete separation in our data for two variables (sawfly being discarded after mouth

contact and sawfly being consumed), i.e. the predictor variable could perfectly predict the

response variable for a subset of our data, we fitted a Bayesian binomial GLMM using 'blme'

package (version 1.0-5, Chung *et al.*, 2013) for all variables. We evaluated if the order in

which the mantid was presented the treatments influenced the mantid response variables by

incorporating the trial round of a treatment as a fixed effect (due to only three levels) in each

279 model, and this gave qualitatively similar results (not shown).

In experiment 2, we examined the effect of treatment, time and their two-way interaction on

number of alive sawflies using a Poisson GLMM ('lme4' package version 1.1-27.1, Bates et

al., 2015) with replicate ID as random effect. We also examined if there was a significant

283 difference in number of consumed and 'dead but not consumed' sawflies between C- and C+

treatments with mantids (C-M+ and C+M+) using a Kruskal-Wallis test.

In experiment 3, we calculated the proportion of consumed, alive and 'dead but not

consumed' C- with respect to the initial abundance of C- sawflies in that replicate. We

examined whether the proportion of consumed, alive, and 'dead but not consumed' C-

288 individuals differed significantly among the group-composition treatments using a binomial

289 GLMM ('lme4' package), with mantid identity and trial number as random effects. We

290 considered the number of C- individuals consumed/alive/'dead but not consumed' as

291	successes and initial number of C- present as the number of trials. Similarly, we calculated the
292	proportion of consumed, alive, and 'dead but not consumed' C+ with respect to the initial
293	abundance of C+ sawflies in that replicate. Finally, we examined if there was a significant
294	difference in the amount (quantified based on peak area) of the two putative clerodanoid
295	compounds between C- and C+ sawflies of mixed group-composition treatments using a
296	Kruskal-Wallis test.

- All data was analyzed using R 4.0.5 (2021-03-31) (R Core Team, 2021). We checked and
- tested model assumptions statistically and visually. Posthoc-tests were conducted using

299 'multcomp' package (version 1.4-17, Hothorn *et al.*, 2008).

300 3. Results

301 (a) Experiment 1. Clerodanoid access protects against consumption by predator

302 All sawflies irrespective of treatment were attacked at least once with no significant effect of

treatment on number of attacks ($\chi^2 = 5.92$, d.f. = 2, p = 0.052; figure 1*b*). In contrast, the

treatments differed significantly in whether a sawfly was discarded after mouth contact by a

mantid ($\chi^2 = 21.15$, d.f. = 2, p < 0.001; figure 1*c*, SI 3a), with C+ individuals dropped

significantly more often compared to C- (posthoc test: p < 0.001) and AC+ (posthoc test: p < 0.001)

307 0.001). Likewise, treatment had a significant effect on whether an individual was consumed

308 $(\chi^2 = 21.28, d.f. = 2, p < 0.001; figure 1d, SI 3b)$, with C+ individuals (0% consumed) being

significantly less likely to be consumed compared to C- (100% consumed) (posthoc test: p < p

310 0.001) and AC+ (70% consumed) (posthoc test: p = 0.001).

311 (b) Experiment 2. C+ individuals are not consumed by predator even after prolonged 312 exposure

There was a significant interactive effect of treatment and time on number of sawflies alive $(\chi^2 = 36.76, d.f. = 3, p < 0.001)$. In the treatment with no mantids, all C- and all but one C+

individual survived across all replicates (figure 2b). In C- treatments with mantids, no 315 individual was alive after three-half days. In contrast, for C+ treatments with mantids, all 316 317 individuals were alive in two replicates. In the other six C+M+ replicates the number of alive individuals decreased with time, although in no replicate all individuals were killed. There 318 was a significant difference in number of consumed sawflies ($\gamma^2 = 15.63$, d.f. = 1, p < 0.001, 319 320 figure 2c) with all sawflies consumed in the C-M+ treatment, while only few sawflies were consumed across three replicates in the C+M+ treatment. Similarly, the number of 'dead but 321 not consumed' individuals significantly differed between C-M+ and C+M+ treatments (χ^2 = 322 5.95, d.f. = 1, p = 0.014, figure 2d). In four C+ replicates but zero C- replicates, we collected 323 324 'dead but not consumed' individuals, suggesting that while the mantids attacked C+ 325 individuals, they were not always consumed.

326 (c) Experiment 3. Less C- individuals consumed by predator, if C+ individuals are 327 present

328 Group-composition treatment had a significant effect on the proportion of consumed C-

sawflies ($\chi^2 = 41.87$, d.f. = 3, p < 0.001; figure 3*a*), with significantly more C- consumed in

the 6C- treatment compared to the 2C+4C- (posthoc test: p < 0.001), 3C+3C- (posthoc test: p

< 0.001), and 4C+2C- (posthoc test: p < 0.001) treatments. There was no significant

difference between the other treatments (SI 4a). The proportion of alive C- sawflies differed

between the treatments ($\chi^2 = 27.23$, d.f. = 3, p < 0.001; figure 3b), with significantly less C-

alive in the 6C- compared to the 2C+4C- (posthoc test: p = 0.005) and 3C+3C- (posthoc test:

335 p < 0.001) treatment, while other treatments were not significantly different (SI 4b).

336 Similarly, the proportion of 'dead but not consumed' C- sawflies differed between the

treatments ($\chi^2 = 8.77$, d.f. = 3, p = 0.032; figure 3*c*), with significantly more C- sawflies being

- 'dead but not consumed' in the 4C+2C- compared to the 6C- treatment (posthoc test: p =
- 339 0.029), and no other significant differences between treatments (SI 4c). Similarly, to

experiment 2, C+ sawflies were consumed rarely, although in many replicates there were

- 341 'dead but not consumed' C+ individuals (SI 5a-c).
- 342 The chemical analysis revealed that the putative clerodanoids 482.22 m/z and 484.23 m/z343 could be detected in sixteen ($\sim 94\%$) and fourteen ($\sim 82\%$), respectively, of the seventeen 344 sampled C- sawflies from mixed group-composition treatments (figure 4a, b). All ten (100%) C+ sawflies had acquired both putative clerodanoids (figure 4). There was intraspecific 345 346 variation in the amount of clerodanoids acquired for both C+ and C- sawflies of mixed 347 groups. Two out of six replicates of the 6C- group-treatment also had small amounts of 348 clerodanoids (figure 4), possibly resulting from contamination as these replicates were placed 349 in the microcosms where previously mixed group-composition treatments were housed. This 350 contamination could also potentially explain why these C- sawflies were not consumed by the mantids. C+ sawflies had significantly higher amounts of both clerodanoids, 482.22 m/z ($\chi^2 =$ 351 10.98, d.f. = 1, p < 0.001, figure 4a) and 484.23 m/z ($\chi^2 = 15.75$, d.f. = 1, p < 0.001, figure 352
- 4b), than C- sawflies for mixed group-composition treatments.

354 4. Discussion

355 Chemical defense as an anti-predator strategy is widespread and well-documented in animals

356 (Speed et al., 2012). However, it is less clear if such chemical defense can be intraspecifically

transmitted and whether presence of chemically defended individuals can confer protection

onto undefended conspecifics. In some species, such defensive chemicals can be taken up

independently of the nutrient-delivering food source, as in the case of our study organism,

360 *A. rosae*, that takes up clerodanoids (and potentially also other chemicals)

361 pharmacophagously from *A. reptans* plants and likely metabolized them (Paul *et al.*, 2021b).

- 362 Here, we showed that direct access to *A. reptans* leaves serves as defense against predation by
- 363 making the sawflies unpalatable to the predator. We also demonstrated that clerodanoid

access provides protection not only to focal individuals but also to conspecifics in mixed
groups of C+ and C- individuals.

366	While most sawflies without access to clerodanoids were lethally attacked and consumed by
367	the mantids, only very few sawflies that had taken up clerodanoids from leaves were
368	consumed, as we had predicted. Nevertheless, many sawflies with clerodanoid access were
369	also attacked but then readily rejected by the mantids, as shown by the 'discarding after
370	mouth contact' behavior in experiment 1 and by the higher number of 'dead but not
371	consumed' sawflies in experiment 2. This rejection is likely induced by the bitter taste of the
372	clerodanoids that may be deposited on the cuticle and in body tissue of the adult sawfly
373	(Nishida & Fukami, 1990). When tested directly, two clerodanoids (clerodendrin B and D)
374	had a deterrent effect on Japanese tree sparrows, who consumed fewer rice grains that had
375	been treated with the clerodanoids compared to untreated grains (Nishida & Fukami, 1990). A
376	taste-rejection behavior, in which predators taste but do not ingest a prey item, as found by
377	the mantids in the present experiment, has been shown to be elicited by distasteful prey and
378	can lead to an increased survivorship of the prey (Halpin & Rowe, 2017). Although we did
379	not quantify the long term survivorship of sawflies after mantid attack in experiment 1, visual
380	inspection showed that the damage spectrum ranged from nearly unharmed to dead sawflies
381	(SI 1a,b), indicating that clerodanoid uptake could lead to survivorship advantages.
382	Adult A. rosae can acquire clerodanoids not only from plants but also from conspecifics via
383	nibbling on their body surface. However, acquiring clerodanoids indirectly from conspecifics
384	resulted in less protection than direct acquisition from the plants in A. rosae in our
385	experiments. Not all sawflies successfully acquire sufficient clerodanoid amounts from C+
386	conspecifics (Paul et al., 2021a) and the concentrations could be much lower than after direct
387	uptake from the A. reptans leaves (figure 4). Such quantitative and potentially also qualitative
388	differences in clerodanoid acquisition may explain, why many AC+ sawflies (experiment 1)

389	and C- sawflies in mixed C+ C- group treatments (experiment 3) were consumed by mantids.
390	The effectiveness of defense chemicals sequestered from host plants against predators has
391	been shown to be concentration-dependent in a glucosinolate-sequestering leaf beetle species,
392	with individuals having lower levels of sequestered glucosinolates being more susceptible to
393	predation (Sporer et al., 2020). In A. rosae, transfer of clerodanoids can occur both within and
394	between sexes (Paul et al., 2021a), which seems rather exceptional. In other insect species,
395	usually chemicals are transferred from the male to the female during mating. For example, in
396	some arctiid moth species, pyrrolizidine alkaloids are sexually transmitted from males to
397	females, and these chemicals render protection against predation to the recipient female
398	(Gonzalez et al., 1999; Conner et al., 2000). Moreover, such defensive chemicals acquired by
399	the female from the male can also be incorporated into the offspring (Eisner et al., 2002;
400	Camarano et al., 2009; Sternberg et al., 2015) providing it with benefits. Evidence for such
401	benefits of parental clerodanoid access to offspring in A. rosae is currently lacking (Paul et
402	<i>al.</i> , 2021b).
403	Our data from the predation microcosm experiment (experiment 2) demonstrated that the
404	mantids attacked C+ sawflies, with number of alive sawflies decreasing over time, but this
405	decline was less rapid than that of C- sawflies in presence of mantids. This suggests that the
406	mantids may learn to avoid C+ sawflies after first encounters, leading to a longer survival
407	period of the sawflies. Learned aversion has been found in the mantid Tenodera aridifolia,
408	where the mantids reduced attacks on certain prey items when these prey items were made
409	bitter (Carle et al., 2018). Similarly, repeated exposure to unpalatable milkweed bugs that had

410 sequestered cardenolides from their host plants led to avoidance by *T. aridifolia* of both

- 411 palatable and unpalatable milkweed bugs altogether (Berenbaum & Miliczky, 1984).
- 412 Interestingly, the mantid *H. patellifera* attacked sawflies in both experiment 2 and 3 despite
- 413 having been exposed to the C+ sawflies previously, suggesting that such avoidance learning

414 may not last long, as also seen in T. aridifolia (Prudic et al., 2007). Moreover, such avoidance 415 learning can be more effective if the distasteful prey is conspicuously colored (Roper & 416 Redston, 1987; Raška et al., 2017). Indeed, organisms that use chemical defenses are usually, 417 but not always, brightly colored and conspicuous, i.e. aposematic, to advertise their 418 distastefulness to predators (Poulton, 1890; Kikuchi et al., 2021). The sawfly A. rosae, used 419 in our study, is aposematically colored, with a bright orange body (SI 1), which might 420 facilitate temporary avoidance learning by mantids. 421 In line with our prediction, the presence of C+ sawflies was beneficial for C- sawflies with a 422 smaller proportion of C- sawflies consumed in group-composition treatments that had C+ 423 individuals present compared to groups of C- sawflies only. This suggests that presence of 424 chemically defended sawflies can lead to 'herd protection' of conspecifics. Such protection may result from the C- individuals acquiring clerodanoids, or temporary learned avoidance of 425 426 C- by mantids after encountering C+ sawflies. Our chemical analysis showed that most, but 427 not all, sawflies had acquired detectable amounts of clerodanoids, suggesting that both of 428 these mechanisms could play a role in the 'herd-protection' of C- conspecifics. In our 429 experiment, there was no significant change in the expected direction in number of consumed 430 C- sawflies across the gradient of the C+ and C- mixed group-composition treatments. This may have been due to the small number of sawflies used (six), and hence only small 431 differences between the mixed treatments. A study using the domestic chick, Gallus gallus 432 433 *domesticus*, as predator showed that the birds rejected the mimics (palatable prey items) less 434 frequently when the relative abundance of these mimics compared to the models (unpalatable 435 prey items) increased, but birds only discriminated between the models and mimics when the 436 frequency of mimics was above 25% (Skelhorn & Rowe, 2007). Moreover, density-437 dependence of predation can also be influenced by other factors such as predator behavior, e.g. learning, forgetting and memory (Speed & Turner, 1999), and the energetic and 438

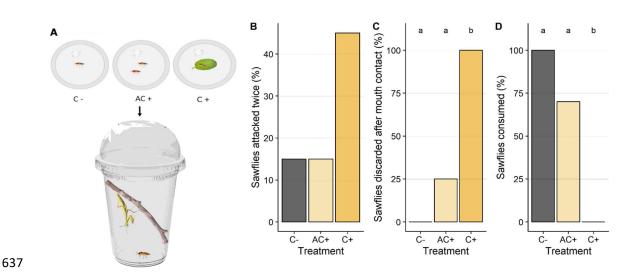
439 informational state of the predator, leading to state-dependent decision-making (Aubier &440 Sherratt, 2020).

441	In natural populations of A. rosae, intraspecific variation in clerodanoid uptake could be
442	expected if the distribution of pharmacophagy-suitable plants is patchy, if there in
443	intraspecific variation in the clerodanoid concentrations available from the plants, or if there
444	are associated costs of clerodanoid uptake. Indeed, A. rosae individuals that were exposed to
445	clerodanoids had a shorter lifespan than control individuals (Zanchi et al., 2021). This
446	suggests that there might be costs to clerodanoid uptake, although clerodanoid access did not
447	immediately cause high mortality during our observed period in experiment 2 (figure $2b$).
448	Similar costs of chemical defense have been revealed in swallowtail butterflies of the tribe
449	Troidini which showed reduced larval survivorship (Dimarco & Fordyce, 2017) or a reduction
450	in adult fat content (Fordyce & Nice, 2008) when sequestering toxic alkaloids. Our study
451	demonstrates that even if individuals do not take up clerodanoids, they could still benefit
452	indirectly from conspecifics that do. This could lead to emergence of cheaters that do not pay
453	the cost of chemical defense but enjoy the benefits (Lindstedt et al., 2018). Future studies
454	should examine variation in clerodanoid contents in natural populations of A. rosae. In
455	conclusion, our study showed that clerodanoids serve as chemical defense for A. rosae that
456	can be intraspecifically transferred. Furthermore, chemically defended sawflies can confer
457	protection onto conspecifics that had no direct access to clerodanoids in a group, indicating a
458	'herd-protection' effect.

459

460 **References**

Amano, T., Nishida, R., Kuwahara, Y. & Fukami, H. (1999) Pharmacophagous acquisition of
clerodendrins by the turnip sawfly (*Athalia rosae ruficornis*) and their role in the mating
behavior. *Chemoecology*, 9, 145–150.


464 465	Arias, M., Meichanetzoglou, A., Elias, M., Rosser, N., Silva, D.L. de-, Nay, B., <i>et al.</i> (2016) Variation in cyanogenic compounds concentration within a <i>Heliconius</i> butterfly community: does mimicry
466	explain everything? BMC Evolutionary Biology, 16 , 272.
467	Aubier, T.G., Joron, M. & Sherratt, T.N. (2017) Mimicry among unequally defended prey should be
468	mutualistic when predators sample optimally. <i>The American Naturalist</i> , 189 , 267–282.
469	Aubier, T.G. & Sherratt, T.N. (2020) State-dependent decision-making by predators and its
470	consequences for mimicry. <i>The American Naturalist</i> , 196 , E127–E144.
471	Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015) Fitting linear mixed-effects models using lme4.
472	Journal of Statistical Software, 67 , 1–48.
473	Berenbaum, M.R. & Miliczky, E. (1984) Mantids and milkweed bugs: efficacy of aposematic coloration
474	against invertebrate predators. American Midland Naturalist, 111, 64.
475	Bergen, E. & Beldade, P. (2019) Seasonal plasticity in anti-predatory strategies: Matching of color and
476	color preference for effective crypsis. <i>Evolution Letters</i> , 3 , 313–320.
477	Best, R., Ruxton, G.D. & Gardner, A. (2018) Intragroup and intragenomic conflict over chemical
478	defense against predators. Ecology and Evolution, 8, 3322–3329.
479	Boevé, JL. & Müller, C. (2005) Defence effectiveness of easy bleeding sawfly larvae towards
480	invertebrate and avian predators. <i>Chemoecology</i> , 15 , 51–58.
481	Boppré, M. (1984) Redefining "pharmacophagy." Journal of Chemical Ecology, 10, 1151–1154.
482	Brower, L.P., Pough, F.H. & Meck, H. (1970) Theoretical investigations of automimicry, I. Single trial
483	learning. Proceedings of the National Academy of Sciences, 66, 1059–1066.
484	Camarano, S., González, A. & Rossini, C. (2009) Biparental endowment of endogenous defensive
485	alkaloids in Epilachna paenulata. Journal of Chemical Ecology, 35 , 1–7.
486	Carle, T., Horiwaki, R., Hurlbert, A. & Yamawaki, Y. (2018) Aversive learning in the praying mantis
487	(<i>Tenodera aridifolia</i>), a sit and wait predator. <i>Journal of Insect Behavior</i> , 31 , 158–175.
488	Castro, É.C.P. de, Musgrove, J., Bak, S., McMillan, W.O. & Jiggins, C.D. (2021) Phenotypic plasticity in
489	chemical defence of butterflies allows usage of diverse host plants. <i>Biology Letters</i> , 17 ,
490	rsbl.2020.0863, 20200863.
491	Chouteau, M., Arias, M. & Joron, M. (2016) Warning signals are under positive frequency-dependent
492 493	selection in nature. <i>Proceedings of the National Academy of Sciences</i> , 113 , 2164–2169. Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A. & Liu, J. (2013) A nondegenerate penalized
493 494	likelihood estimator for variance parameters in multilevel models. <i>Psychometrika</i> , 78 , 685–
495	709.
496	Conner, W.E., Boada, R., Schroeder, F.C., Gonzalez, A., Meinwald, J. & Eisner, T. (2000) Chemical
497	defense: Bestowal of a nuptial alkaloidal garment by a male moth on its mate. <i>Proceedings of</i>
498	the National Academy of Sciences, 97 , 14406–14411.
499	Cyriac, V.P. & Kodandaramaiah, U. (2019) Don't waste your time: predators avoid prey with
500	conspicuous colors that signal long handling time. <i>Evolutionary Ecology</i> , 33 , 625–636.
501	Dimarco, R.D. & Fordyce, J.A. (2017) Not all toxic butterflies are toxic: high intra- and interspecific
502	variation in sequestration in subtropical swallowtails. <i>Ecosphere</i> , 8.
503	Edmunds, M. (1974) Defence in animals: a survey of anti-predator defences. Longman Publishing
504	Group.
505	Eisner, T., Eisner, M., Siegler, M., et al. (2005) Secret weapons: defenses of insects, spiders, scorpions,
506	and other many-legged creatures. Harvard University Press.
507	Eisner, T., Rossini, C., González, A., Iyengar, V.K., Siegler, M.V. & Smedley, S.R. (2002) Paternal
508	investment in egg defence. In Chemoecology of insect eggs and egg deposition. Blackwell
509	Publishing Oxford, pp. 91–116.
510	Erb, M. & Robert, C.A. (2016) Sequestration of plant secondary metabolites by insect herbivores:
511	molecular mechanisms and ecological consequences. Current Opinion in Insect Science, 14,
512	
513	Finkbeiner, S.D., Salazar, P.A., Nogales, S., Rush, C.E., Briscoe, A.D., Hill, R.I., <i>et al.</i> (2018) Frequency
514	dependence shapes the adaptive landscape of imperfect Batesian mimicry. <i>Proceedings of</i>
515	the Royal Society B: Biological Sciences, 285 , 20172786.

516 Fordyce, J.A. & Nice, C.C. (2008) Antagonistic, stage-specific selection on defensive chemical 517 sequestration in a toxic butterfly. Evolution, 62, 1610–1617. 518 Gamberale-Stille, G. & Guilford, T. (2004) Automimicry destabilizes aposematism: predator sample-519 and-reject behaviour may provide a solution. Proceedings of the Royal Society of London. 520 Series B: Biological Sciences, 271, 2621–2625. 521 González, A., Rossini, C., Eisner, M. & Eisner, T. (1999) Sexually transmitted chemical defense in a 522 moth (Utetheisa ornatrix). Proceedings of the National Academy of Sciences, 96, 5570–5574. 523 Halpin, C.G. & Rowe, C. (2016) The effect of distastefulness and conspicuous coloration on the post-524 attack rejection behaviour of predators and survival of prey. Biological Journal of the Linnean 525 Society. 526 Hämäläinen, L., Mappes, J., Rowland, H.M., Teichmann, M. & Thorogood, R. (2020) Social learning 527 within and across predator species reduces attacks on novel aposematic prey. Journal of 528 Animal Ecology, 89, 1153-1164. 529 Hashimoto, K. & Hayashi, F. (2014) Cantharidin world in nature: a concealed arthropod assemblage 530 with interactions via the terpenoid cantharidin: Arthropods interacted via cantharidin. 531 Entomological Science, 17, 388–395. 532 Hothorn, T., Bretz, F. & Westfall, P. (2008) Simultaneous inference in general parametric models. 533 Biometrical Journal. 50, 346–363. 534 Kawai, K., Amano, T., Nishida, R., Kuwahara, Y. & Fukami, H. (1998) Clerodendrins from Clerodendron 535 trichotomum and their feeding stimulant activity for the turnip sawfly. Phytochemistry, 49, 536 1975-1980. 537 Kikuchi, D.W., Herberstein, M.E., Barfield, M., Holt, R.D. & Mappes, J. (2021) Why aren't warning 538 signals everywhere? On the prevalence of aposematism and mimicry in communities. 539 *Biological Reviews*, **96**, 2446–2460. 540 Lawson, N., Vane-Wright, R.I. & Boppré, M. (2021) The puzzle of monarch butterflies (Danaus 541 plexippus) and their association with plants containing pyrrolizidine alkaloids. Ecological 542 Entomology, 46, 999–1005. 543 Lindstedt, C., Miettinen, A., Freitak, D., Ketola, T., López-Sepulcre, A., Mäntylä, E., et al. (2018) 544 Ecological conditions alter cooperative behaviour and its costs in a chemically defended 545 sawfly. Proceedings of the Royal Society B: Biological Sciences, 285, 20180466. 546 Matsubara, S. & Sugiura, S. (2017) Chemical defence of turnip sawfly larvae against Japanese tree 547 frogs. Journal of Asia-Pacific Entomology, 20, 225–227. 548 Mattila, A.L.K., Jiggins, C.D., Opedal, Ø.H., Montejo-Kovacevich, G., Pinheiro de castro, É.C., McMillan, 549 W.O., et al. (2021) Evolutionary and ecological processes influencing chemical defense 550 variation in an aposematic and mimetic *Heliconius* butterfly. *PeerJ*, **9**, e11523. 551 Matz, C., Webb, J.S., Schupp, P.J., Phang, S.Y., Penesyan, A., Egan, S., et al. (2008) Marine biofilm 552 bacteria evade eukaryotic predation by targeted chemical defense. PLoS ONE, 3, e2744. 553 Müller, C. & Arand, K. (2007) Trade-offs in oviposition choice? Food-dependent performance and 554 defence against predators of a herbivorous sawfly. Entomologia Experimentalis et Applicata, 555 **124**, 153–159. 556 Müller, C. & Brakefield, P.M. (2003) Analysis of a chemical defense in sawfly larvae: Easy bleeding 557 targets predatory wasps in late summer. Journal of Chemical Ecology, 29, 2683–2694. 558 Müller, C. & Sieling, N. (2006) Effects of glucosinolate and myrosinase levels in Brassica juncea on a 559 glucosinolate-sequestering herbivore – and vice versa. Chemoecology, 16, 191–201. 560 Nishida, R. (2014) Chemical ecology of insect-plant interactions: ecological significance of plant 561 secondary metabolites. *Bioscience, Biotechnology, and Biochemistry*, **78**, 1–13. 562 Nishida, R. & Fukami, H. (1990) Sequestration of distasteful compounds by some pharmacophagous 563 insects. Journal of Chemical Ecology, 16, 151–164. 564 Opitz, S.E.W., Jensen, S.R. & Müller, C. (2010) Sequestration of glucosinolates and iridoid glucosides 565 in sawfly species of the genus Athalia and their role in defense against ants. Journal of 566 Chemical Ecology, 36, 148–157.

567 568	Opitz, S.E.W. & Müller, C. (2009) Plant chemistry and insect sequestration. <i>Chemoecology</i> , 19 , 117–154.
569	Pančić, M. & Kiørboe, T. (2018) Phytoplankton defence mechanisms: traits and trade-offs. <i>Biological</i>
570	Reviews, 93 , 1269–1303.
571	Paul, S.C., Dennis, A.B., Tewes, L.J., Friedrichs, J. & Müller, C. (2021a) Consequences of
572	pharmacophagous uptake from plants and conspecifics in a sawfly elucidated using chemical
573	and molecular techniques (preprint). BioRxiv (doi: 10.1101/2021.02.09.430406).
574	Paul, S.C. & Müller, C. (2021) Fighting over defence chemicals disrupts mating behaviour. In press.
575	Behavioral Ecology.
576	Paul, S.C., Singh, P., Dennis, A.B. & Müller, C. (2021b) Intergenerational Effects of Early Life Starvation
577	on Life-History, Consumption, and Transcriptome of a Holometabolous Insect. In press. The
578	American Naturalist.
579	Poulton, E.B. (1890) The colours of animals: their meaning and use, especially considered in the case
580	of insects. D. Appleton.
581	Prudic, K.L., Skemp, A.K. & Papaj, D.R. (2007) Aposematic coloration, luminance contrast, and the
582	benefits of conspicuousness. <i>Behavioral Ecology</i> , 18 , 41–46.
583	Prudic, K.L., Timmermann, B.N., Papaj, D.R., Ritland, D.B. & Oliver, J.C. (2019) Mimicry in viceroy
584	butterflies is dependent on abundance of the model queen butterfly. Communications
585	Biology, 2 , 68.
586	R Core Team. (2021) R: A Language and Environment for Statistical Computing. R Foundation for
587	Statistical Computing, Vienna, Austria.
588	Raška, J., Štys, P. & Exnerová, A. (2017) How variation in prey aposematic signals affects avoidance
589	learning, generalization and memory of a salticid spider. Animal Behaviour, 130 , 107–117.
590	Roper, T.J. & Redston, S. (1987) Conspicuousness of distasteful prey affects the strength and
591	durability of one-trial avoidance learning. Animal Behaviour, 35 , 739–747.
592	Rowland, H.M., Burriss, R.P. & Skelhorn, J. (2020) The antipredator benefits of postural camouflage in
593	peppered moth caterpillars. Scientific Reports, 10 , 21654.
594	Santos, J.C., Tarvin, R.D. & O'Connell, L.A. (2016) A review of chemical defense in poison Frogs
595	(Dendrobatidae): Ecology, pharmacokinetics, and autoresistance. In Chemical Signals in
596	Vertebrates 13 (ed. by Schulte, B.A., Goodwin, T.E. & Ferkin, M.H.). Springer International
597	Publishing, Cham, pp. 305–337.
598	Sawa, M., Fukunaga, A., Naito, T., Oishi, K., & others. (1989) Studies on the sawfly, Athalia rosae
599	(Insecta, Hymenoptera, Tenthredinidae). I. General biology. Zoological Science, 6, 541–547.
600	Sculfort, O., Castro, E.C.P., Kozak, K.M., Bak, S., Elias, M., Nay, B., et al. (2020) Variation of chemical
601	compounds in wild Heliconiini reveals ecological factors involved in the evolution of chemical
602	defenses in mimetic butterflies. <i>Ecology and Evolution</i> , 10 , 2677–2694.
603	Skelhorn, J. & Rowe, C. (2007) Automimic frequency influences the foraging decisions of avian
604	predators on aposematic prey. Animal Behaviour, 74, 1563–1572.
605	Skelhorn, J., Rowland, H.M., Delf, J., Speed, M.P. & Ruxton, G.D. (2011) Density-dependent predation
606	influences the evolution and behavior of masquerading prey. Proceedings of the National
607	Academy of Sciences, 108 , 6532–6536.
608	Smilanich, A.M., Dyer, L.A., Chambers, J.Q. & Bowers, M.D. (2009) Immunological cost of chemical
609	defence and the evolution of herbivore diet breadth. Ecology Letters, 12, 612–621.
610	Speed, M.P., Ruxton, G.D., Mappes, J. & Sherratt, T.N. (2012) Why are defensive toxins so variable?
611	An evolutionary perspective. Biological Reviews, 87, 874–884.
612	Speed, M.P. & Turner, J.R.G. (1999) Learning and memory in mimicry: II. Do we understand the
613	mimicry spectrum? Biological Journal of the Linnean Society, 67, 281–312.
614	Sporer, T., Körnig, J. & Beran, F. (2020) Ontogenetic differences in the chemical defence of flea
615	beetles influence their predation risk. Functional Ecology, 34, 1370–1379.
616	Sternberg, E.D., Roode, J.C. de & Hunter, M.D. (2015) Trans-generational parasite protection
617	associated with paternal diet. Journal of Animal Ecology, 84, 310–321.
618	Sugiura, S. (2020) Predators as drivers of insect defenses. <i>Entomological Science</i> , 23 , 316–337.

- 619 Tea, Y., Soong, J.W., Beaver, E.P. & Lohman, D.J. (2021) Kleptopharmacophagy: Milkweed butterflies 620 scratch and imbibe from Apocynaceae-feeding caterpillars. Ecology. 621 Travers-Martin, N. & Müller, C. (2008) Matching plant defence syndromes with performance and 622 preference of a specialist herbivore. *Functional Ecology*, **22**, 1033–1043. Tuttle, L.J., Lamb, R.W. & Stringer, A.L. (2021) Differential learning by native versus invasive 623 624 predators to avoid distasteful cleaning mutualists. Functional Ecology, **35**, 1481–1490. 625 Vlieger, L., Brakefield, P.M. & Müller, C. (2004) Effectiveness of the defence mechanism of the turnip 626 sawfly, Athalia rosae (Hymenoptera: Tenthredinidae), against predation by lizards. Bulletin of 627 Entomological Research, 94, 283–289. 628 Zanchi, C., Lo, L.K., R, R., Moritz, I., Kurtz, J. & Müller, C. (2021) Survival of the sawfly Athalia rosae 629 upon infection by an entomopathogenic fungus and in relation to clerodanoid uptake. 630 Frontiers in Physiology, 12, 637617. 631 Züst, T., Mou, S. & Agrawal, A.A. (2018) What doesn't kill you makes you stronger: The burdens and 632 benefits of toxin sequestration in a milkweed aphid. Functional Ecology, 32, 1972–1981. 633 Zvereva, E.L. & Kozlov, M.V. (2015) The costs and effectiveness of chemical defenses in herbivorous 634 insects: a meta-analysis. Ecological Monographs, 15-0911.1.
- 635

636 Figures

638 Figure 1. (A) Experimental design illustration of no-choice feeding assay, where each mantid 639 was exposed to one Athalia rosae sawfly of different clerodanoid treatments (C- no access, 640 AC+ indirect access via conspecific that had contact with leaf of Ajuga reptans, C+ direct 641 access to A. reptans) over multiple trials performed in different orders. Effects of clerodanoid 642 treatment on percentage of sawflies that were (B) attacked twice (all other sawflies were attacked once), (C) discarded after mouth contact, and (D) consumed, by mantid (n = 20)643 644 replicates per treatment). Different letters denote significantly different treatment effects 645 inferred from Tukey HSD post hoc tests.

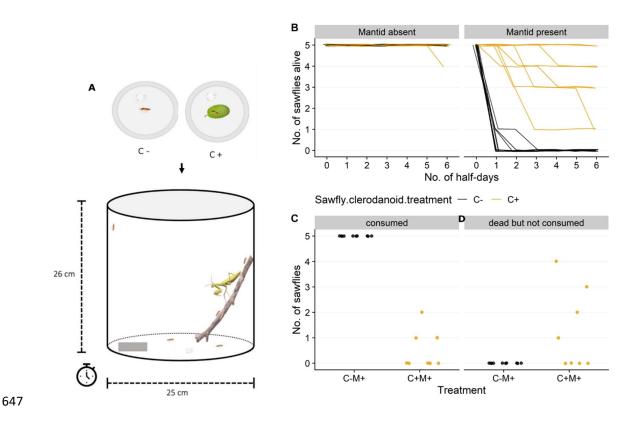
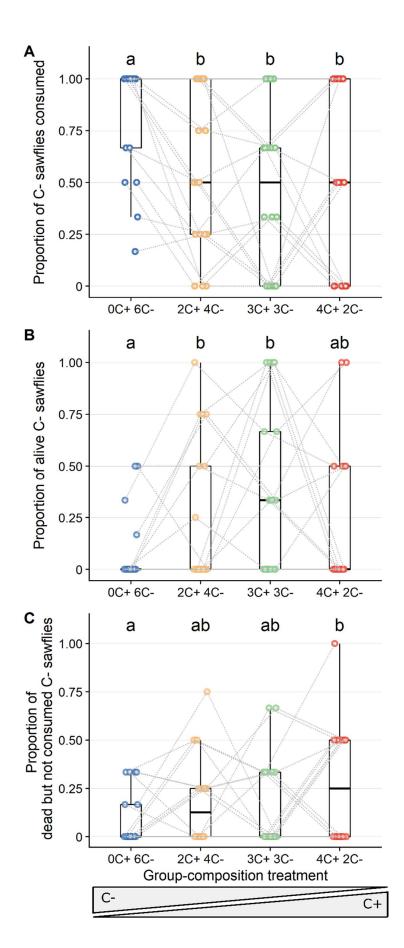



Figure 2. (A) Experimental design illustration of clerodanoid treatment (C- no access, C+
access to leaf of *Ajuga reptans*) and predation microcosm experiment, where in each
microcosm five *Athalia rosae* sawflies were added that were either C- or C+ and with-orwithout a mantid. B) Number of alive sawflies of different clerodanoid treatments over time.
Lines are jittered to decrease overlapping. Number of C- and C+ individuals that were (C)
consumed or (D) 'dead but not consumed' in replicates of mantid present (M+) treatment.

- Figure 3. Effects of different group-composition, i.e. varying relative abundance of *Athalia*
- 657 *rosae* sawflies with (C+) and without (C-) access to a leaf of *Ajuga reptans* and thus
- clerodanoids, on proportions of (A) consumed, (B) alive, and (C) 'dead but not consumed' C-
- sawflies in presence of a mantid. Data are presented as boxplots, medians and interquartile
- with individual data points also plotted. Grey dotted lines connect data from each mantid (n =
- 18) across trials. Note that abundance of C- sawflies decreases and C+ increases from left to
- 662 right.

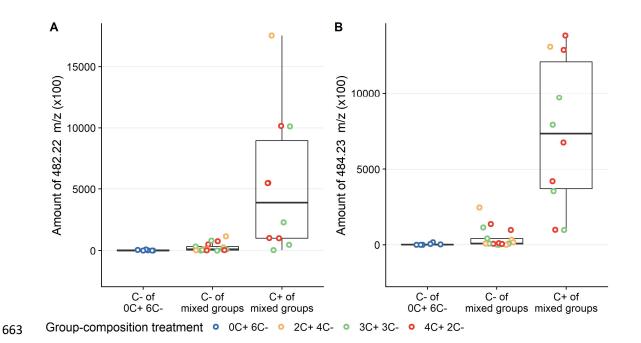


Figure 4. Amount (peak area) of candidate chemical features representing putative

665 clerodanoids, (A) 482.22 m/z ($C_{24}H_{34}O_{10}$) and (B) 484.23 m/z ($C_{24}H_{36}O_{10}$), respectively, from

- 666 the extracted ion chromatograms for C- (without access to a leaf of Ajuga reptans) and C+
- 667 (with access to a leaf of *A. reptans*) sawflies of different group-composition treatments.
- 668 Mixed groups represent groups that had both C+ and C- sawflies present in the microcosm,
- 669 while 0C+6C- had only C- sawflies present.