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ABSTRACT

Systematic differences between batches of samples present significant challenges when2

analysing biological data. Such batch effects are well-studied and are liable to occur in3

any setting where multiple batches are assayed. Many existing methods for accounting for4

these have focused on high-dimensional data such as RNA-seq and have assumptions that5

reflect this. Here we focus on batch-correction in low-dimensional classification problems.6

We propose a semi-supervised Bayesian generative classifier based on mixture models that7

jointly predicts class labels and models batch effects. Our model allows observations to8

be probabilistically assigned to classes in a way that incorporates uncertainty arising from9

batch effects. We explore two choices for the within-class densities: the multivariate nor-10

mal and the multivariate t. A simulation study demonstrates that our method performs11

well compared to popular off-the-shelf machine learning methods and is also quick; per-12

forming 15,000 iterations on a dataset of 500 samples with 2 measurements each in 7.313

seconds for the MVN mixture model and 11.9 seconds for the MVT mixture model. We14
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apply our model to two datasets generated using the enzyme-linked immunosorbent assay15

(ELISA), a spectrophotometric assay often used to screen for antibodies. The examples16

we consider were collected in 2020 and measure seropositivity for SARS-CoV-2. We use17

our model to estimate seroprevalence in the populations studied. We implement the mod-18

els in C++ using a Metropolis-within-Gibbs algorithm; this is available in the R package at19

https://github.com/stcolema/BatchMixtureModel. Scripts to recreate our analysis20

are at https://github.com/stcolema/BatchClassifierPaper.21

Keywords SARS-CoV-2 · ELISA ·Mixture model · Batch correction · Bayes · Assay data · Classification.22

1 Background23

Many biological assays are performed across sets of samples or batches. When the number of samples24

exceeds the batch size, then it is common to notice batch effects, systematic differences between assay25

readouts from different batches which may affect both their mean and scale. This is a prevalent problem,26

that may be addressed in a variety of ways depending on the planned downstream analysis. In discussing27

available options for batch correction, we will use the term “batch effect” to mean differences between28

samples arising from between-batch technical factors in the experiment, and the term “class effect” to refer29

to biological differences arising due to samples coming from distinct biological classes. We consider settings30

in which the objective is to classify unlabelled samples into predefined classes.31

To analyse class effects we should also account for the batch effects. One common approach is to first correct32

for batch effects as part of a pre-processing or data cleaning step (which might be as simple as zero-centring33

the data; i.e., transforming each batch to have a common mean), and then to apply standard classification34

models to the resulting “cleaned” data (e.g., 2, 25, 32). However, such two-step approaches have been found35

to increase false positive rates because they may induce correlation between the cleaned observations which36

is typically not accounted for in downstream analysis (23). Further, when batch is confounded with class37

effects (due to unbalanced representation of classes across batches) then naive adjustment which ignores38

known biological classes in the data can lead to incorrect conclusions (22), and methods for adjustment39

which preserve differences attributable to known classes can lead to false positive results (29). An alternative40

approach is to incorporate batch information directly into downstream analyses, for example as a covariate in41

regression-based approaches. It has been shown that mixed effects models which share information between42

batches produce better calibrated quantitative data than independent analyses of each batch (35). However,43

only a subset of analytical approaches have been adapted to accommodate batch effects (e.g., 28, 30, 21),44
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and there has been a strong focus on high-dimensional settings (e.g., 17, 6, 1). Thus a need exists for a wider45

range of methods that can account for batch effects directly in low-dimensional data analysis.46

Here we focus on the problem of assigning class labels using low-dimensional assay data generated across47

several batches. This is a common design in many assays that measure a small number of specific biomark-48

ers such as enzyme-linked immunosorbent assay (ELISA) and flow cytometry data. If there are known49

classes in the population, then class-specific controls can be included in the assay, resulting in training ex-50

amples for which the class labels are known. We are motivated in part by the specific problem of estimating51

seroprevalance of SARS-CoV-2 by classifying individuals into seropositive and seronegative classes at dif-52

ferent points in time during the pandemic. Since batches tend to comprise samples collected at the same53

time point, and since seroprevalence is expected to vary through the course of the pandemic, we expect54

class membership to be imbalanced across batches – motivating the development of a joint classification55

and batch-correction model, rather than a 2-step approach. Insofar as we are aware, there is no appropriate56

method for classification using data with all of these characteristics.57

To address this, we propose a semi-supervised Bayesian mixture model that explicitly models batch param-58

eters and predicts class membership. The semi-supervised aspect means that observed labels from positive59

and negative controls are used in the model. The Bayesian framework allows our model to propagate the60

uncertainty arising from the batch effects to the class allocation probabilities for each item in the dataset.61

This provides a more complete quantification of the uncertainty in the final predictions, thereby enabling62

more informed interpretation.63

This manuscript is organised as follows: in section 2 we describe our model; in section 3 we evaluate64

our model using simulated data, and compare to off-the-shelf machine learning methods; and in section 465

we apply the proposed method to two ELISA studies of seroprevalence of SARS-CoV-2 in Stockholm (7)66

(section 4.1) and Seattle (11) (section 4.3). We then conclude our manuscript in section 5 with a discussion67

of the contribution, limitations, and possible extensions to our model.68

2 Model69

2.1 Notation70

We consider a study that collects P measurements for each of N individuals to form a dataset X =71

(X1, . . . , XN ), where Xn = [Xn,1, . . . , Xn,P ]> for all n ∈ {1, . . . , N}. We assume that each individ-72

ual has an associated observed batch label bn ∈ {1, . . . , B} ⊂ N, where B is the total number of batches,73

and we write b = [b1, . . . , bN ]> for the collection of all N batch labels. Note that as each individual belongs74
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to a single batch, we assume that all P measurements for each individual are part of the same batch. We75

wish to predict class labels for each individual, and write c = [c1, . . . , cN ]> for the collection of all class76

labels. We assume that the number of classes, K, is known, so that each cn ∈ {1, . . . ,K}, and introduce a77

binary vector φ = [φ1, . . . , φN ]>, such that φn = 1 if and only if cn is known.78

2.2 Model specification79

We use a K-component mixture model to describe the data X . The mixture model can be be written

p(Xn) =
K∑
k=1

πkf(Xn|θk) independently for each n = 1, . . . , N, (1)

where π = [π1, . . . , πK ]> is the vector of component weights, f(·) is a parametric density function, and θk

are the parameters of the kth component. We assume each component describes a single and distinct class

in the population and use the class labels to rewrite the model

p(Xn|cn = k) = f(Xn|θk). (2)

We then introduce batch-specific parameters, z = (z1, . . . , zB) and expand f(·) to accommodate these.

Then conditioning on the observed batch label we have

p(Xn|cn = k, bn = b) = f(Xn|θk, zb). (3)

We focus on continuous data where each measurement has support across the entire real line. We consider80

the multivariate t density (MVT, density denoted ft(·)) and the multivariate normal (MVN, density denoted81

fN (·)) as choices for f , but depending on the situation other choices could be more relevant and our model82

is not inherently restricted to these. We use zb = (mb, Sb), choosing mb to be a P -vector representing the83

shift in location due to the batch effects and Sb to be a scaling matrix. We assume the observed location of84

Xn is composed of a class-specific effect, µk, and a batch-specific effect, mb, so (Xn|cn = k, bn = b) =85

µk +mb + εn. Similarly we assume that the random noise, εn, is subject to class and batch specific effects86

Σk and Sb respectively.87

More specifically, if we use a mixture of MVN densities, then our class parameters are θk = (µk,Σk), where

µk is the P -dimensional mean vector and Σk is the P × P covariance matrix. We assume

Xn|cn = k, bn = b ∼ N (µk +mb,Σk ⊕ Sb). (4)
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We define the operator ⊕ for a P × P matrix, A, and a diagonal matrix B of equal dimension, as:

A⊕B :=



a1,1b1,1 a1,2 a1,3 · · · a1,P

a2,1 a2,2b2,2 a2,3 · · · a2,P

a3,1 a3,2 a3,3b3,3 · · · a2,P
...

...
...

. . .
...

aP,1 aP,2 aP,3 · · · aP,P bP,P


. (5)

Similarly for a mixture of MVT densities, we assume

Xn|cn = k, bn = b ∼ tηk(µk +mb,Σk ⊕ Sb). (6)

where ηk is the class-specific degrees of freedom.88

In the likelihood function, only the combinations of the class and batch parameters, µk +mb and Σk ⊕ Sb,89

are identifiable, and the values of the class and batch specific effects are not. However, we assume that we90

have some prior information about the relative orders of magnitude of the class and batch effects and encode91

this in an informative prior, reducing the problem of identifiability with this additional constraint. If the92

magnitude of the between-batch variability is similar to or greater than the true biological effect, then we93

suspect that any analysis of such a dataset is untenable, or at least that the data are not appropriate for our94

model.95

The full hierarchical model can be found in section 1 of the supplementary material. Here we include the

choice of prior distributions for the class and batch effects:

µk,Σk|ξ, κ, ν,Ψ ∼ N
(
µk|ξ,

Σk

κ

)
IW (Σk|ν,Ψ) , (7)

mb,p|δ2 ∼ N
(
0, λδ2

)
, (8)

(Sb)p,p|α, β, Sloc ∼ IG(α, β, Sloc), (9)

ηk ∼ G(ε, ζ) (if the MVT density is being used). (10)

IW denotes the inverse-Wishart distribution, IG denotes the inverse-Gamma distribution with a shape96

α, rate β and location Sloc, N signifies the Gaussian distribution parameterised by a mean vector and a97

covariance matrix and G denotes the Gamma distribution parameterised by a shape and rate. An empirical98

Bayes approach is used to set the hyperparameters for the class mean and covariance (details are included in99

section 2 of the Supplementary material, these follow the suggestions of 13). The δ2 hyperparameter is set100

to the mean of the diagonal entries of the observed covariance in the data. Sloc is set to 1.0 to ensure that the101
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likelihood covariance matrix remains positive semi-definite. For the MVT mixture model, we choose the102

hyperparameters of the degrees of freedom to be ε = 20 ζ = 0.1 in line with suggestions from Juárez and103

Steel (19). This uninformative prior does not restrict ηk to small values, and enables the MVT mixture model104

to approximate the MVN model if the data are truly Gaussian. The remaining hyperparameters (λ, α and β)105

are user-specified, and we explore the impact of different choices on the final inference in sections 4.1 and106

4.3. We investigate the impact of 3 different values for each of these parameters, reflecting an informative107

or constrained prior, a flexible, uninformed prior, and a choice in the middle-ground.108

Sampling the batch and class parameters allows us to derive a batch-corrected dataset, Y , in each iteration.

We define the pth measurement for the nth sample in Y as

(Yn,p|cn = k, bn = b, . . .) =
Xn,p −mb,p − µk,p

(Sb)p,p
+ µk,p, (11)

for all n = {1, . . . , N}, p = {1, . . . , P}. Note that Y will incorporate the uncertainty about the batch109

and class parameters, and the classification. This transformation is similar to the empirical Bayes batch110

correction suggested by Johnson et al. (18); however their method is a pre-processing step that is applied to111

each measurement in turn, whereas our model is jointly inferring class and batch effects and may be applied112

to the full dataset.113

We perform inference using a Metropolis-within-Gibbs sampler as described in section 3 of the supplemen-114

tary material.115

3 Simulations116

3.1 Simulation design117

We wish to evaluate the performance of the MVN and MVT implementations of our model and compare118

these to the popular machine learning methods random forest (RF, 5), probabilistic support vector machine119

(SVM, 4) and logistic regression (without batch-correction, LR). We also include the case where each batch120

is separately mean centred and transformed to have unit variance with logistic regression then applied (LR121

- BC), to show the limitations of a naive batch correction. Our primary interest is in the ability of each122

method to infer the correct class, the uncertainty quantification about the classification point estimate and123

time to run the models. We are also interested in inferring the proportion of the second (smaller) class in the124

dataset; this is the same as seroprevalence in our real data examples.125
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To achieve this, we generate 10 datasets in each of 6 different scenarios. In all bar one the data are generated126

from a mixture of MVN distributions. We intend that the underlying class structure, once free of batch ef-127

fects, is identifiable. Our aim is to show the importance of integrating batch correction into the classification128

method, since the success of Bayesian mixture models for classification (this has previously been demon-129

strated, see, e.g. 10). For each simulation we generate both a “batch-free” and an observed dataset. Each130

contains P = 2 measurements for each of 500 samples. The “batch-free” dataset is the observed dataset less131

the batch effects. It represents solely the influence of the class parameters. The class parameters are chosen132

to give a separation of 4 between the mean parameters in each dimension (e.g., µ1,1 = −2, µ2,1 = 2). We133

set the covariance matrix to σ2I, where σ = 1.25 in each class. In the default setting, our “Base case”,134

we generate data from 5 batches. The entries of each batch shift were restricted to one of two option,135

mb,p ∈ (−0.5, 0.5). Similarly, Sb,p ∈ (1.2, 1.5). The class weights are uneven, with the first class expected136

to contribute 75% of the samples with the remainder drawn from class 2. In this scenario the batches are137

all expected to have equal numbers of samples. We randomly select which class labels are observed, sam-138

pling uniformly across the data indices, {1, . . . , N}. We expect one quarter of the labels to be observed, i.e.139

E
(∑N

n=1 φn

)
= 0.25N = 125. These labelled observations constitute the training set for the off-the-shelf140

methods.141

Our six simulation scenarios are:142

• Base case: The generic, base scenario; all other scenarios are variations of this, using the same143

choices for all bar a subset of parameters, with this subset varied to define the specific scenario.144

• Batch-free: Similar to the Base case but no batch effects are present (i.e., mb = 0P , Sb = I).145

• Varying batch effects: the Base case with more variance among the batch effects, mb,p ∈146

(−1.5,−0.5, 0.0, 0.5, 1.5), Sb,p ∈ (1.0, 1.25, 1.5, 1.75, 2.25).147

• Varying class representation: the classes are imbalanced across batches, i.e, the expected proportion148

of each class varies across batches (note that this is a slightly different generating model, the class149

weights are batch specific). The first two batches contain a larger proportion of samples from class150

1, the third batch is balanced and the final two batches have a greater proportion of samples from151

class 2.152

• Varying batch size: rather than equally sized batches, the batches have varying proportions of the153

total sample. The expected proportions are 1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
16 .154
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• Multivariate t generated: the data are generated from a MVT mixture model rather than a MVN155

mixture model. One class is generated from a MVT with 3 degrees of freedom, the other has 5156

degrees of freedom.157

The parameters that differentiate the scenarios are summarised in table 1, with a more detailed description,158

along with visualisations of an example dataset for each scenario, provided in section 4 of the supplementary159

material.160

Scenario B Class weights mb Sb Batch weights η
Base Case 5 Across batch ±0.5 1.2 Constant NA
Batch-free 1 Across batch 0.0 1.0 Constant NA
Varying class representation 5 Within batch ±0.5 1.2 Constant NA
Varying batch effects 5 Across batch Varied Varied Constant NA
Varying batch size 5 Across batch ±0.5 1.2 Varying NA
MVT generated 5 Across batch ±0.5 1.2 Constant (3, 5)

Table 1: Defining parameters of each simulation scenario.

We use implementations of the machine learning methods available in R (31). For the RF this is the161

randomForest package (24), for the SVM we use the kernlab package (20), and for LR we use the162

base implementation of LR contained in the glm function. We use the default parameters in each method,163

bar the SVM where we set prob.model = TRUE to build a model for calculating class probabilities. The164

default for a classification SVM in this package uses a Gaussian Radial Basis kernel function.165

We use the data with observed labels as the training set for each of these methods and those with unobserved166

labels as a test set. We record the time taken to train the model and to predict the outcome for the test set.167

3.2 Results168

We assessed within-chain convergence by calculating the Geweke statistic (15), and removed chains which169

failed the diagnostic test. We then considered the trace plots for the complete log-likelihood in the remaining170

chains as a visual check to identify chains that had not converged. An example of the sequential reductions171

in chains by this process is shown in figures 8 and 9 of section 5 of the supplementary material.172

We compared the models using the F1 score, considering the difference between the predicted labels to173

the true classes, and the squared Euclidean distance between the allocation probability matrix (a N × K174

matrix) to the one-hot-encoding of the true classes (figure 1 A and B). We found that our mixture model175

performed better or at least as well as the ML methods across all scenarios. When the data were generated176

from Gaussian distributions, the performance of the two versions of the mixture model performed very177

similarly. The MVT mixture model learned a large degree of freedom for each component, indicating that178
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this behaves as an approximation of the Gaussian mixture model when appropriate (figure 2). In contrast, in179

the Multivariate t generated scenario, the performance of the MVN mixture model had greater variation in180

performance than in any other scenario. Figure 2 also shows that parameter estimates were consistent across181

chains.182

We also wanted a sense of how well our models would estimate the “seroprevalence” in our simulations. In183

this case we defined seroprevalence as the proportion of the smaller class in the dataset, and compared the184

models’ estimate to the truth (figure 1 C). We found that the mixture models have a more narrow range in185

their estimates than the other models in the Base case, No batch effects, Varying batch effects and Varying186

batch size scenarios, with a similar range for the MVT mixture model in the other two scenarios indicating187

a more consistent behaviour than the other methods. The MVN mixture model exhibited good behaviour,188

except when misspecified as in the MVT generated data. We note that the MVT mixture model’s estimate189

tended to be either centred on the true value (MVT generated, No batch effects, Varying class representation190

in figure 1 C) or else to be slightly lower (Base case, Varying batch effects, Varying batch size in figure 1191

C). We also observed that when the batch effects were more varied and greater in magnitude, the SVM and192

RF had very long tails in their performance (Varying batch effects in figure 1 C). We saw similar behaviour193

for LR - BC in the F1 score and distance; the imbalance of classes across batches caused the naive batch-194

correction to be misleading and hence the method performed poorly. LR (without batch correction) was195

probably the strongest contender to the MVT mixture model in most of our scenarios. This method provided196

an estimate close to the true value in many simulations, but it has a wider range in its performance across197

simulations than the MVT.198

Logistic regression applied after a batch correction matched the mixture model in performance in three199

settings: the Base case, the Varying batch effects and the Varying batch size scenarios. However, when200

the classes were imbalanced across batches, as in the varying class representation scenario, this naive batch201

correction method performed the worst of all methods. This behaviour for a pre-processing batch correction202

step and its disadvantages compared to incorporating the batch correction into the modelling is in keeping203

with results from Leek et al. (22), Li et al. (23).204

The Varying class representation scenario was also the setting in which the off-the-shelf methods performed205

most similarly to our model under the F1 score, but under the squared Euclidean distance our mixture model206

still performed better, suggesting that the items misclassified by the mixture models had a high uncertainty207

associated with their classification.208
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Figure 1: A) F1 score for the predicted classification to the true allocation in test datasets across simulations.
B) Squared Euclidean distance between the allocation probability matrix and a one-hot-encoding of the true
labels. C) The difference between the point estimate of seroprevalence and the truth across simulations.
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Figure 2: Sampled values for A) the class means, B) the batch mean-effect, C) the batch scaling effect and
D) the class degrees of freedom for the well-behaved chains for the first simulated dataset in the Base case
scenario. True values are shown by the dashed red vertical lines (as the data are generated from a MVN
density there is no true degree of freedom, but larger values better approximate the MVN).

MCMC was slower than the machine learning approaches (table 2), but still reasonable, taking only 7209

seconds for 15,000 MCMC iterations (more than enough for chains to converge) for the MVN mixture210

model and less than 12 seconds for the MVT.211

Model Average time (seconds)
LR 0.003
RF 0.027
SVM 0.049
MVN 7.28
MVT 11.9

Table 2: Average time for each model to converge or, for the Bayesian models, to perform 15,000 iterations
across all model runs.

4 ELISA data examples212

ELISA is an immunological assay used to measure antibodies, antigens, proteins and glycoproteins, and213

normally involves a reaction that converts the substrate into a coloured product, the optical density (OD)214
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which can be measured and is then used to determine the antigen concentration. One application is to assess215

seroprevalence of a disease within a population by measuring seropositivity of antibodies. It has a history of216

application to a wide range of diseases (e.g., 34, 3, 16, 27) and was used extensively to study seropositivity217

of antibodies to SARS-CoV-2 antigens used to estimate prevalence of cumulative infection and immunity218

(11, 26, 33). In such cases it is often possible to include known positive and negative controls as samples219

(these might be PCR-positive patients and historical samples collected before the pandemic began) and thus220

a subset of labels are observed.221

We investigated the performance of our model on two recent examples of ELISA data, both from studies222

estimating seroprevalence of SARS-CoV-2. Based on the results from the simulations, we use the MVT as223

our choice of density, as it always matched or outperformed the MVN mixture in simulations (figure 1).224

In the ELISA datasets we do not know the true seropositive status for the non-control data and cannot225

evaluate the model accuracy. Rather, we present these to demonstrate application of our model and highlight226

how diagnostic plots and results may be interpreted. In each case we run multiple chains and then use the227

sampled log-likelihood to assess within and across chain convergence.228

Traditional analysis of ELISA data in seroprevalence studies makes dichotomous calls according to thresh-229

olds based on the sum of the sample mean and some number of standard deviations of the negative controls230

in each measurement. However, various choices of the number of standard deviations to use to define the231

decision boundary are present in the literature (e.g., compare 11, 26, 33).232

4.1 Carlos Dopico et al., 2021233

We used the dataset available from Castro Dopico et al. (7), with the group variable representing the batch234

divisions. This dataset comprises the log-transformed normalised OD for IgG responses against stabilized235

trimers of the SARS-CoV-2 spike glycoprotein (SPIKE) and the smaller receptor-binding domain (RBD)236

in 2,100 sera samples from blood donors, 2,000 samples from pregnant volunteers, 595 historical negative237

controls, repeatedly sampled, and 149 PCR-positive patients (positive controls from 8). The data were238

generated across seven batches, with the positive controls contained in two of these. This, combined with our239

expectation that seropositivity should increase with time as more of the population were exposed to SARS-240

CoV-2, suggests that the batch and seropositivity frequency are dependent. Based on our simulation study,241

we would expect that a pre-processing batch normalisation would therefore produce misleading results.242

We ran five chains of the MVT mixture model for 50,000 iterations for each of nine combinations of different243

choices for the hyperparameters of the batch effects in the model (choices in table 3, distributions in figure244
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3 A and B). The first 20,000 samples were removed as burn-in, and we thinned to every 100th sample to245

reduce auto-correlation.246

Value
α 1 5 10 1 5 10 1 5 10
β 3 11 21 3 11 21 3 11 21
λ 0.01 0.01 0.01 0.10 0.10 0.10 1.00 1.00 1.00

Table 3: Hyperparameter combinations used in analysing the data from Castro Dopico et al. (7). The prior
expected value of the batch scaling effect is the same for all choices of α and β. The choice of λ represents
the scale we a priori expect for the batch shift effect.

We chose a representative chain for each hyperparameter combination to estimate the seroprevalence for247

each week of the year 2020 for which samples are available and compared these to the estimates from248

Castro Dopico et al. (7) (figure 3 C). Our point estimate was the mean posterior probability of allocation for249

the non-control data. This was highly consistent across hyperparameter choices and was contained within250

the confidence interval of the estimate provided by Castro Dopico et al. (7). However, our seroprevalence251

point estimates, particularly in later dates, were higher than the those from Castro Dopico et al. (7). Table 1252

of the Supplementary material shows the point estimate from the ML methods used in the Simulation study,253

our MVT mixture model and that from the original paper. This shows that while our method provides higher254

point estimates than those from Castro Dopico et al. (7), the other ML methods (barring the SVM) provide255

estimates much closer to or even exceeding that from the MVT.256

The seroprevalence estimates and their credible intervals were almost identical across hyperparameter257

choices, suggesting that the classification results are robust to different choices for these hyperparameters.258

We took a single chain with hyperparameter choice α = 5, β = 11 and λ = 0.1 as a representative example.259

This value of λ represents our expectation that mb should be approximately an order of magnitude smaller260

than µk. We used this to infer a point classification and a batch-corrected dataset (figure 4 B). Note that the261

data were on a similar scale to the observed data (figure 4 A), the lack of identifiablity for parameters in262

the likelihood function did not emerge as a problem here. The batch-corrected dataset was better visually263

separated into seronegative and seropositive classes than the observed data due to our batch-correction.264

To confirm the batch-correction was working as intended we use repeated control samples from a particular265

patient, “Patient 4”. A sample from Patient 4 was included in many plates as a positive control but discarded266

before our analysis because it was chosen for extremely high antibody levels and so is unrepresentative,267

even for the seropositive class. We hypothesised that appropriate batch-correction should bring the different268

measurements of this sample closer together, which is indeed what we observed after applying the correction269

learnt from the samples excluding Patient 4 (figure 5). Before correction, the batches had no overlap; there270

was a distance of 0.197 between the batch means. After correction the two batches overlapped with a271
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Figure 3: Effect of hyperparameter choices on seroprevalence estimates. One million draws from the prior
distributions for the different hyperparameter choices for A) the batch scaling effect and B) the batch shift
effect. In A) draws exceeding a value of 4 are hidden. This means that approximately 0.5% of the draws
from the prior distribution with a shape of 3 and a scale of 1 are not shown. C) A comparison of the estimated
seroprevlaence with population 95% confidence intervals for the MVT mixture model with nine different
choices of hyperparameters for the batch-effect prior distributions and the estimates from Castro Dopico
et al. (7) for the SVM-LDA ensemble model and the Bayesian learner from Christian and Murrell (9). The
Bayesian learner is designed to estimate seroprevalence during an epidemic and provides a smooth, non-
decreasing estimate across time. Its assumptions ensure a more consistent increase across time, whereas
the SVM-LDA and MVT mixture models are not incorporating any explicit temporal information. The
estimates from the mixture model have been moved 3 days to the right on the x-axis to reduce overlap.
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Figure 4: A) The observed data from Castro Dopico et al. (7) and B) the point estimate of the batch-corrected
dataset from the MVT mixture model with α = 11, β = 5, λ = 0.1. Points on both plots are coloured by the
class. In the observed dataset non-control points are labelled “Unknown” and in the batch-corrected dataset
these points are labelled with their inferred class.
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Figure 5: The samples from Patient 4 A) as observed and B) after batch correction, circled by batch.

distance of 0.040 between the means as the points moved closer together and towards the class mean (figure272

5 would correspond to the upper right hand of figure 4 A and B). The correction also saw the variation273

among samples in each batch reduce and become more similar.274

4.2 Pseudo-ELISA data275

We wished to investigate the possibility that other known positive samples could be more extreme than the276

non-hospitalised donors. To examine this, we generated datasets from the model fitted in section 4.1. This277

also tests if the model has learnt representative parameters for the dataset, as our generated data should be278

very similar to the original data. We used the MCMC sample mean for each parameter except the class279

weights. For the class weights we used the inferred proportion of each class in each batch to preserve the280

problem of the imbalance of classes across batches. In the original data, the positive controls were more281

extreme members of the positive class, having sufficiently severe symptoms to have undergone PCR testing282

when such resources were severely constrained early in the pandemic. To reflect this in our data genera-283

tion procedure, we increased the probability that samples with observed positive labels (i.e., the positive284
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controls) are from the tail of the distribution of the seropositive measurements which is furthest from the285

seronegative class, whereas the negative controls are sampled uniformly from the seronegative population.286

An example dataset is shown in figure 6 C, note how closely it resembles the true ELISA data in figure 4287

A, suggesting that the model has learnt accurate values. See section 7 of the supplementary material for a288

deeper explanation of the generation process.289

We performed a similar analysis to our original simulation study on these datasets, comparing our models to290

a range of off-the-shelf machine learning methods. Across all of the simulations, we found that our mixture291

models outperformed other methods under both the F1 score and the squared distance (figures 6 A, 6 B).292

4.3 Dingens et al., 2020293

As a final real data example, we analysed the ELISA data collected by Dingens et al. (11). This consisted294

of 1,891 measurements of antibodies to the SARS-CoV-2 RBD protein. 1,783 of these were from residual295

serum from Seattle Children’s Hospital, with 52 pre-2020 samples used as negative controls and 52 samples296

from individuals with RT-PCR-confirmed infections as positive controls (figure 7 A). These data are different297

to the data from Castro Dopico et al. (7) in several ways. There is only a single antigen, there is a smaller298

ratio of controls to non-controls, particularly for the seronegative samples, and the controls do not appear299

to be representative of either class. The mean log OD of the negative controls is -1.91, whilst the dataset300

mean is -2.28 without controls. We analyse the log-transform of the OD using our MVT model for the301

same variety range of hyperparameter choices as in table 3. An example of a batch-corrected dataset is302

shown in figure 7 B. We show the comparison of the inferred seroprevalence in each batch for an example303

chain of each of these models as well as that estimated by Dingens et al. (11) (figure 7 C). The 9 different304

hyperparameter choices have almost identical seroprevalence estimates and are estimating higher levels of305

seroprevalence than the estimate provided by Dingens et al. (11).306

5 Discussion307

The results of our simulation study show that our mixture model consistently matches or outperforms several308

alternatives when applied to data with batch effects, across a range of data generating models. In the more309

specific scenario where data were generated from a converged chain that had been applied to the ELISA data310

from Castro Dopico et al. (7), we obtained the same findings, with our model again performing better than311

the off-the-shelf machine learning methods. We also see from our simulation study that we should use the312

MVT density over the MVN density, as the MVT can approximate the MVN quite well by learning a large313
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Figure 6: Model comparison for the ELISA-like simulations under the A) F1 score and B) Squared Eu-
clidean distance between the probability allocation matrix and the true classification. B) An example of
the simulated data and C) the corresponding inferred dataset for a representative chain of the MVT mixture
model.
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Figure 7: A) The observed data from Dingens et al. (11) and B) the point estimate of the batch-corrected
dataset from the MVT mixture model with α = 11, β = 5, λ = 0.1. Points on both plots are coloured by the
class. In the observed dataset non-control points are labelled “Unknown” and in the batch-corrected dataset
these points are labelled with their inferred class. C) A comparison of the seroprevalence estimate from
the MVT mixture model with nine different choices of batch-effect hyperparameters and that from Dingens
et al. (11). The error bars indicate the 95% credible interval for the seroprevalence estimates of the MVT
mixture model in each batch; this is not available for the estimate from Dingens et al. (11).
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degree of freedom, but also has additional flexibility as shown by the Multivariate t generated simulation314

scenario where the MVN mixture model behaved very inconsistently. The only cost of the MVT mixture315

model is the approximate 50% increase in runtime, but as our implementation is quite fast we believe that316

this is not a significant detractor. Based on these results we recommend the use of our MVT mixture model317

when the analyst suspects the classes in the data may be non-Gaussian.318

In terms of estimating seroprevalence, our mixture model performed very well in our simulation study.319

Using the results shown in figure 1 C, we can try to gauge how well our method is performing in the ELISA320

data. We would argue that the most pertinent scenarios are the MVT generated (the ELISA data are non-321

Gaussian), the Varying batch effects and the Varying class representation scenarios. Our method estimates322

seroprevalence close to the truth, or slightly smaller, in these simulations. Based on this, we suspect that the323

high estimates of seroprevalence provided by our model (relative to those from the original papers) in the324

ELISA analyses are plausible.325

In the Swedish dataset, we are reassured that the batch-correction is reasonable by our analysis of the patient326

4 samples - these samples were used across several batches as positive controls; after applying the correction327

learnt on the dataset excluding these extreme samples they are no longer separable by batch and have moved328

towards the class mean. The data generated from our converged model also appears very similar to the329

observed data, suggesting that the model assumptions are reasonable, and that meaningful estimates of the330

parameters were obtained.331

In the analysis using the data from Dingens et al. (11), the unrepresentative negative controls presented a332

problem. We believe that the preceding analyses show the potential advantages of our model over existing333

methods, but this dataset is a good example to show that our method is not a panacea that may overcome all334

problems - it remains vital to have useful and relevant data in order to perform meaningful inference (12).335

Any analysis that uses training data that appear to be drawn from a different population than the test data336

is unlikely to produce meaningful results. Furthermore, the data are not well-described by a pair of MVT337

distributions (even allowing for our additional flexibility with the batch parameters). This combination of338

model misspecification and misleading training data makes us skeptical of the inferred parameters.339

We note, however, that in the simulation of pseudo-ELISA data, our method still performed strongly despite340

the positive controls not being representative of the general seropositive sample. In this case our model was341

correctly specified (the data are generated from a MVT mixture model). In general, we suspect that our342

method is useful if either the assumption that the labelled data represent their class well or that the model343

density choice is correct are slightly relaxed, but if both do not hold or if either is profoundly wrong then344

the model will perform poorly.345
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Since only the combined class and batch parameters, µk + mb and Σk ⊕ Sb, are identifiable, one might346

expect this to present challenges when fitting our model. While it is possible that the individual batch and347

class parameters never stabilise (note that their combinations should converge), running multiple chains348

helps to avoid this pitfall as one can use the trace plots for the complete likelihood to assess if the chains349

have reached a common mode in the likelihood surface even if the individual batch and class parameters350

do not converge. This is standard practice when using stochastic methods, so this aspect of the model351

should not introduce additional work to the recommended Bayesian workflow (14). Furthermore, from the352

similarity of the inferred parameters across multiple chains in the Base case simulation (figure 2), we have353

empirical evidence that this behaviour is not common . We also saw that the seroprevalence estimates and354

their credible intervals across different hyperparameter choices in the ELISA analyses were well-behaved355

and, as a result, so was the inferred allocation. This similarity across hyperparameter choice suggests that356

choosing between specific values is not too important, but we suspect that, if the sample size is smaller,357

having λ close to one could exacerbate the identifiability problem for the batch shift effect and the class358

mean. Therefore, we suggest setting λ ≤ 0.1 to encourage these parameters to converge in the small sample359

setting (although note that their sum, µk +mb, should converge regardless).360

We have developed a Bayesian method to predict class membership and perform batch-correction simulta-361

neously, developing on the pre-processing, univariate method of Johnson et al. (18). Our method is intended362

for low-dimensional data, but the main limitation for higher dimensional data is computational (inverting363

the covariance matrix becomes very costly) rather than theoretical. Our model is not strictly limited to the364

semi-supervised setting either; it could be used for unsupervised learning. In this case we expect that the365

model will rely much more heavily on the distributional assumptions. Our work could be extended to include366

alternative densities, such as the skew multivariate t. We could extend the model to include batch-specific367

class weights, such as we used to generate the data in our Varying class representation simulation scenario,368

or a deeper hierarchy for the batch parameters, such as nested batches (e.g., this could represent scenarios369

where multiple plates are run at each of multiple time points or locations).370
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[19] Miguel A. Juárez and Mark F. J. Steel. Model-Based Clustering of Non-Gaussian Panel Data Based on454

Skew- t Distributions. Journal of Business & Economic Statistics, 28(1):52–66, January 2010. ISSN455

0735-0015, 1537-2707. doi: 10.1198/jbes.2009.07145.456

[20] Alexandros Karatzoglou, Alex Smola, Kurt Hornik, and Achim Zeileis. kernlab – an S4 package457

for kernel methods in R. Journal of Statistical Software, 11(9):1–20, 2004. URL http://www.458

jstatsoft.org/v11/i09/.459

[21] Sharon X. Lee, Geoffrey J. McLachlan, and Saumyadipta Pyne. Modeling of inter-sample variation460

in flow cytometric data with the joint clustering and matching procedure: Modeling of Inter-Sample461

Variation. Cytometry Part A, 89(1):30–43, January 2016. ISSN 15524922. doi: 10.1002/cyto.a.22789.462
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Abstract

Description of the model, our choice of priors, and the sampling algorithm. Example of likelihood
trace plots for model convergence. Description of how the simulated data is generated for both the
main simulation study and the pseudo-ELISA simulation.

1 Model

Our data X = (X1, . . . , XN ) is generated across B batches where the origin batch of each point is known
and represented by the vector b = (b1, . . . , bN ). We are interested in classifying X into K disjoint classes.
We model X using a K component mixture model:

p(X|bn = b, θ, ψ) =
K∑
k=1

πkf(Xn|θk, zb). (1)

Here f(·) is the density function, π = (π1, . . . , πK) are the component or class weights, θ = (θ1, . . . , θK)
are the parameters describing the classes and z = (z1, . . . , zB) are the parameters associated with the
batches. We introduce an allocation variable, c = (c1, . . . , cN ), to represent the class membership and
assume that each class is represented by a single component of the mixture. Conditioning on c, our
model is then

p(Xn|bn = b, cn = k, θ, ψ) = f(Xn|θk, zb). (2)
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For us, c contains some observed values (alternatively, c contains missing values), this enables supervised
or semi-supervised methods to infer the missing values. We introduce a binary vector, φ = (φ1, . . . , φN ),
indicating if the label of the nth individual is observed or not. If we separate our dataset into subsets

Xtrain = {Xn ∈ X : φn = 1}, (3)

Xtest = {Xn ∈ X : φn = 0}. (4)

and use Xtrain to train some classifier which predicts the labels of Xtest, we would be in traditional
prediction territory. However, the Bayesian framework enables us to integrate these steps, seamlessly
incorporating information from the allocations from Xtest into the class parameters while maintaining
the information from Xtrain.

1.1 Multivariate Normal

Let f be the density function for the multivariate normal distribution, parametrised by a mean vector µ
and a covariance matrix Σ.

We assume

Xn|cn, bn, . . . ∼ N (µcn +mbn ,Σcn ⊕ Sbn),

=⇒ p(Xn|·) =
[
(2π)P |Σcn ⊕ Sbn |

]−1/2

× exp

{
−1

2
[Xn − (µcn +mbn)]

T
(Σcn ⊕ Sbn)−1 [Xn − (µcn +mbn)]

}
.

We also assume that the batch effects have no correlation across dimensions. We restrict the
covariance matrix, Sb, to being diagonal and assume independence between the entries of mb.

Our hierarchical model is

µk,Σk|ξ, κ, ν,Ψ ∼ N
(
µk|ξ,

Σk
κ

)
IW (Σk|ν,Ψ) , (5)

mb,p|λ, δ2 ∼ N
(
0, λδ2

)
, (6)

(Sb)p,p|α, β, Sloc ∼ IG(α, β, Sloc), (7)

π|γ ∼ Dir(γ/K, . . . , γ/K), (8)

cn|π ∼ Cat(π), (9)

Xn|cn = k, bn = b, µk,Σk,mb, Sb ∼ N (µk +mb,Σk ⊕ Sb). (10)

IW denotes the inverse-Wishart distribution, IG denotes the inverse-Gamma distribution with a shape
α, rate β and location Sloc. N is the Gaussian distribution, Dir is the Dirichlet distribution and Cat is
the categorical distribution. As we assume independence of batch effects across dimensions, we model
each entry of the bth batch mean vector, mb,p, and the bth batch covariance matrix, (Sb)p,p, using one
dimensional distributions.

The total joint probability is

p(X,µ,Σ,m, S, π, c|b) = p(π|γ)p(X, c|µk,Σk,mb, Sb, b)

×
K∏
k=1

p(µk|ξ,Σk, κ)p(Σk|ν,Ψ)

×
B∏
b=1

P∏
p=1

p(mb,p|λ, δ2)p((Sb)p,p|α, β, Sloc)

= fDir(γ)

N∏
n=1

K∑
k=1

πkfN (Xn|µk +mb,Σk ⊕ Sb)

×
K∏
k=1

fN (µk|ξ,Σk, κ)fIW(Σk|ν,Ψ)

×
B∏
b=1

P∏
p=1

fN (mb,p|0, λδ2)fIG((Sb)p,p|α, β, Sloc).
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Figure 1: Directed acyclic graph for mixture of multivariate normal distributions with random effects.

1.2 Multivariate t

If we let f be the density function for the multivariate t (MVT) distribution, parametrised by a mean
vector µ, a covariance matrix Σ and degrees of freedom, η, then the model remains as described in section
1.1 and equations 5, except the model likelihood changes and we introduce a prior distribution over η:

ηk ∼ G(ε, ζ), (11)

Xn|cn = k, bn = b, µk,Σk, ηk,mb, Sb ∼ tηk(µk +mb,Σk ⊕ Sb). (12)

here G denotes the Gamma distribution parametrised by a shape and rate.
The total joint probability for the mixture of MVT distributions is

p(X,µ,Σ, η,m, S, π, c|b) = p(π|γ)p(X, c|µk,Σk,mb, Sb, b, ηk)

×
K∏
k=1

p(µk|ξ,Σk, κ)p(Σk|ν,Ψ)p(ηk|ε, ζ)

×
B∏
b=1

P∏
p=1

p(mb,p|λδ2)p((Sb)p,p|α, β, Sloc)

= fDir(γ)
N∏
n=1

K∑
k=1

πkft(Xn|µk +mb,Σk ⊕ Sb, ηk)

×
K∏
k=1

fN (µk|ξ,Σk, κ)fIW(Σk|ν,Ψ)fG(ηk|ε, ζ)

×
B∏
b=1

P∏
p=1

fN (mb,p|0, δ2)fIG((Sb)p,p|α, β, Sloc).

1.3 Parameter interpretation

Note that the “batch” parameters should not be inferred as direct estimates of the effect the batches
have on the true measures. As we are essentially performing a classification on the inferred batch-free
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dataset,

(Yn,p|cn = k, bn = b, . . .) =
Xn,p −mb,p − µk,p

(Sb)p,p
+ µk,p, (13)

p(Yn|µ,Σ, πk) =
K∑
k=1

πkp(Yn|µk,Σk), (14)

and the likelihood parameters of µk+mb and Σk⊕Sb are not constrained in the likelihood, we recommend
that users focus on the relative change in the measurements for batches, the inferred dataset and the
inferred classification rather than the direct meaning of individual parameters.

2 Empirical Bayes

We use the suggestions of Fraley and Raftery (2007) for our choices of prior hyperparameters on the
class parameters.

ξ =
1

N

N∑
n=1

Xn, (15)

κ = 0.01, (16)

ν = P + 2. (17)

The choice of ξ is self-explanatory. κ can be viewed as the number of observations contributing to the
prior. Fraley and Raftery (2007) choose a value based on experiments to acquire a BIC curve that is a
smooth extension of the counterpart without a prior. The marginal prior distribution of µk is a Student’s
t distirbution centred at ξ with ν − P + 1 degrees of freedom. ν is the smallest integer value for the
degrees of freedom that gives a finite variance.

We set Ψ as a diagonal matrix. Let

Σ0 =
1

N − 1

N∑
n=1

(Xn − ξ)(Xn − ξ)T , (18)

σ̄2
0 =

1

P

P∑
p=1

(Σ0)p,p, (19)

then

Ψp,p =
σ̄2

0

K2/P
. (20)

The logic is that the mixture components are expected, a priori, to each fill a common fraction of the
total volume of space the data occupies.

For the concentration on the class weights, we use a flat prior with γ = 1. In our motivating exmple
of ELISA data, we cannot use more information (such as the ratio of class members in the known data),
as the negative controls are historical samples the number of which is chosen before the experiment and
is not related to the expected seroprevalence in the dataset.

For the degrees of freedom for the MVT, ηk, we use an uniformative prior that offers a range of
plausible values, ε = 2.0, ζ = 0.1 (Juárez and Steel, 2010).

3 Sampling algorithm

We use a Metropolis-within-Gibbs algorithm to sample our parameters. All parameters where the form
of their posterior distribution is known are sampled via Gibbs sampling (Geman and Geman, 1984),
the remaining parameters are sampled in a Metropolis-Hastings step (Metropolis et al., 1953; Hastings,
1970).

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2022. ; https://doi.org/10.1101/2022.01.14.476352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.14.476352
http://creativecommons.org/licenses/by/4.0/


Algorithm 1: sampler(X, I, c0, fixed, b,K)

Input:
Data X,
The number of iterations, I,
Initial classification, c0,
Fixed labels, fixed,
Batch membership, b,
The number of classes to model, K,
The prior distributions for each parameter,
The likelihood function, p(X|·),
The proposal distributions for each class and batch parameter, q(θ).
Output: A Markov chain of accepted values for each of the sampled parameters.
begin

/* initialise parameters by drawing from the prior */

sampleFromPriors();
for i = 1 to I do

/* Update the class weights in a Gibbs step */

π ← updateWeights(c, γ);
/* Update the class and batch parameters in a Metropolis-Hastings step */

for k = 1 to K do

Σik ← metropolisHastings(Σi−1
k , νΣ, qΣ(·));

µik ← metropolisHastings(µi−1
k , σ2

µI, qµ(·));
for b = 1 to B do

for p = 1 to P do

(Sib)p,p ← metropolisHastings(((Si−1
b )p,p, βS , qS(·));

mi
b ← metropolisHastings(mi−1

b , σ2
mI, qm(·));

/* Update the class allocations */

c← updateAllocations(X, b, π, fixed);
/* Update the batch corrected data based on the current parameters. */

Y ← batchCorrected(X, c, b, µ,m, S);

Algorithm 2: sampleFromPriors()

Output: Initial values for class and batch parameters.
begin

for k = 1 to K do
Σk ∼ IW(ν,Ψ);
µk ∼ N (ξ,Σk/κ);

for b = 1 to B do
for p = 1 to P do

(Sb)p,p ∼ IG(α, β, Sloc);
mb,p ∼ N (0, δ2);
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Algorithm 3: updateAllocation(X, b, π, fixed)

Input:
X, the observed data,
b, the batch variable,
π, the class weights,
fixed, the binary vector indicating if the label is known.
Output: c, a new allocation vector.
begin

for n = 1 to N do
/* If the item’s class is unknown, update. */

if fixedn == 0 then
ll← logLikelihood(Xn, bn);
ll← ll + log π;
/* Handle overflow and normalise. */

ll← exp(ll −max(ll));
ll← ll/sum(ll);
/* update class. */

u ∼ U(0, 1);
cn ← sum(u > cumsum(ll));

Algorithm 4: updateWeights(c, γ)

Input:
c, the current allocation,
γ, the prior concentration vector for the class weights.
Output: π, a new class weight vector.
begin

for k = 1 to K do
membersk ← which(c == k);
Nk ← count(membersk);
/* the concentration for pik is the sum of the count of class members and

the prior concentration. */

γ ← γk +Nk;
πk ∼ G(γ, 1.0);

/* convert the weights from a Gamma random variable to a Dirichlet (or, if

K = 2, a Beta) random variable. */

π ← π/sum(π);
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Algorithm 5: batchCorrected(X, c, b, µ,m, S)

Input:
X, the observed dataset,
c, the allocation vector,
b, the batch label vector,
µ, the class means,
m, the batch effect on the class means,
S, the batch effect on the class standard deviations.
Output: Y , the batch-corrected dataset.
begin

/* Iteratve over points performing batch correction. */

for n = 1 to N do
/* Extract the current point’s class and batch. */

k ← cn;
b← bn;
/* Remove the inferred batch effect. */

for n = 1 to N do
Yn,p ← (Xn,p − µk,p −mb,p)/(Sb)p,p + µk,p;

Algorithm 6: metropolisHastings(θ, σ2
win, q(·))

Input:
Current parameter value θ,
Proposal window, σ2

win,
The proposal distribution, q(θ, σ2

win),
The prior distribution for θ, p(θ),
The likelihood of θ, p(X|θ).
Output: A value θ∗.
begin

/* sample a proposal for θ */

θ′ ∼ q(θ, σ2
win);

/* calculate the accpetance probability (note that if q(·) is a symmetric

distribution it cancels out) */

α← min
(

1, p(X|θ
′)p(θ′)q(θ|θ′)

p(X|θ)p(θ)q(θ′|θ)

)
;

u ∼ Unif(0, 1);
if u < α then

θ∗ ← θ′;
else

θ∗ ← θ;
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3.1 Proposal distributions

For our batch and class parameters, we choose proposal densities that have an expectation of the current
value and have the correct support. The class and batch means have a support (∞,∞); this allows use
of a Gaussian proposal distribution with a mean of the current value.

m∗b ∼ N (mb, σ
2
mI), (21)

µ∗k ∼ N (µk, σ
2
µI). (22)

This density is symmetric and the relationship between the acceptance rate and the choice of the proposal
window (σ2

m and σ2
µ) is relatively intuitive, the acceptance rate will decrease as the window increases.

The batch standard deviations have a support of (Sloc,∞). To ensure that proposed values remain
in this range we use a Gamma proposal distribution with a shape of the current value divided by the
rate, the rate set to some constant and a location of Sloc.

(S∗b )p,p ∼ G((Sb)p,p/βS , βS , Sloc). (23)

This proposal has an expected value of (Sb)p,p. However, it is asymmetric and the acceptance rate
increases as βS increases. We propose all P members of Sb in each sampling step.

The class covariance matrices are the most difficult to sample. There are P 2 values to propose and
must be positive semi-definite. We use a Wishart proposal to satisfy this

Σ∗k ∼ W(νΣ,Σk). (24)

All of the proposal windows, (σ2
µ, σ

2
m, βS , νΣ), are tuned aimming to achieve acceptance rates in the

range [0.1, 0.5] (Roberts and Rosenthal, 2001); if this is not possible we prioritise keeping acceptance
rates above 0.1. This can involve multiple tuning runs of the sampler on each dataset.

4 Simulation study

We use a simulation study to test the model behaviour in examples where the generating model and the
true labelling are known. We aim to explore

• the batch effects inferred by the model when none are present.

• the sampled distributions of the degree of freedom parameters in the mixture of multivariate t
distributions.

• how the model behaves when there is some sort of inequality in the batches, e.g.,

– different batch sizes,

– different class representation in each batch, and

– large difference in the magnitude of batch effects.

4.1 Design

Our study uses six different scenarios to test and benchmark behaviour. We use a Base case as the
default scenario that each other scenario is a variation of. For example, the No batch effects scenario is
the Base case with the batch means set to 0 and the batch standard deviations set to 1.0. We define
each scenario by a set of parameters

N : the number of rows in the dataset,

P : the number of features in the dataset,

K : the number of classes in the dataset,

B : the number of batches in the dataset,

∆µk,p : the cluster means before the batch effects,

σk,p : the cluster standard deviations before batch effects,

πk : the expected class representations,

mb : the batch effect on the means,

Sb : the batch effect on the standard deviations,

wb : the expected proportion of the dataset in each batch.
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We use the distance between cluster means in a single dimension, as this is the quantity of interest rather
than specific values of µk.

To generate the datasets, we first sample batch and class labels based on wb and πk respectively. The
measurements for each point are then generated from a Gaussian distribution defined by these labels
(except in the multivariate t generated scenario where the generating distribution is the eponymous
distribution). We use a diagonal covariance matrix for simplicity. Each column generated randomly
permutes the parameters associated with each class and batch; this means that the different columns
can contain different information.

bn ∼ Cat(w), (25)

cn ∼ Cat(π), (26)

Yn ∼ N (µcn ,Σcn), (27)

Xn ∼ N (Yn +mbn , Sbn). (28)

4.1.1 Base case

The parameters defining each simulation in the scenario are

N = 500,

P = 2,

K = 2,

B = 5,

∆µk,p = 2,

σk,p = 2,

πT = (0.75, 0.25),

mb = (−1)b0.5,

Sb = 1.2,

wb =
1

5
.

All the scenarios used these same parameters unless explicitly stated otherwise.

4.1.2 No batch effects

This scenario is aimed at measuring the bias of the inferred batch effects. We remove the batch effects
from the generating model by using values

mb = 0.0,

Sb = 1.0.

Note the inferred values of S are restricted to the open interval (1,∞) in our sampler. Because of this
we hope that the sampled batch scaling effect has a similar distribution across all batches rather than
sampling a distribution centred on 1.0.

4.1.3 Varying batch size

This scenario investigates the behaviour of the model when the batch sizes are very different.

wT =

(
1

2
,

1

4
,

1

8
,

1

16
,

1

16

)
. (29)

4.1.4 Varying batch effects

This scenario tests how successfully the model infers to differing batch effects in each batch, different
magnitudes of batch effects (with some in the tails of the prior distribution) and the direction of the
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Figure 2: Example of a generated dataset from the Base case scenario.

Figure 3: Example of a generated dataset from the No batch effects scenario. Note that the dataset is
identical before and after batch-correction.
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Figure 4: Example of a generated dataset from the Varying batch size scenario.

batch mean shift.

mb,p ∈ [−1,−0.5, 0.0, 0.5, 1.0], (30)

(Sb)p, p ∈ [1.1, 1.25, 1.4, 1.6, 2.0]. (31)

4.1.5 Varying class representation across batches

In this scenario we investigate how the model responds to different expected representation of classes in
each batch. This scenario might apply if the batches are collected across time and the proportion of each
class in the population is expected to fluctuate. In this case the expected class proporitons vary across
batches are therefore a K ×B matrix,

π =

(
0.7 0.8 0.5 0.2 0.1
0.3 0.2 0.5 0.8 0.9

)
. (32)

In each batch one column of this matrix is used to sample the class membership. This introduces a
dependency for cn on bn, i.e.,

cn|bn = b, π ∼ Cat(πb). (33)

4.1.6 Multivariate t generated

This scenario generates the data from a multivariate t (MVT) distribution. This type of data is believed
to be common in biology and we wish to investigate how well the model learns the degrees of freedom
parameter and to compare the performance of the mixture of Gaussians model to the mixture of MVTs
model.

Yn|cn = k ∼ tηk(µk,Σk), (34)

ν = (3, 5). (35)
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Figure 5: Example of a generated dataset from the Varying batch effects scenario.

Figure 6: Example of a generated dataset from the Varying class representation across batches scenario.
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Figure 7: Example of a generated dataset from the MVT scenario.

5 Model convergence

For the simulated data we use the Geweke diagnostic for the complete log-likelihood after burn-in to
assess within-chain convergence. We obtain a p-value by transforming the absolute value of the Z-scores
with the Gaussian cumulative distribution function. We then discard all chains which have p-values
below a threshold of 0.05. We then plot the complete log-likeihood and manually remove any chains that
settled in a local mode. An example of this sequential reduction in chains is shown in figure 8 for the
pseudo-ELISA simulation.

For the real data we visually inspect the complete log-likelihood trace plots and manually select which
chains have converged to the same mode in the posterior distribution (possibly the global mode). As
there are less chains performing the entire process manually is feasible for the real datasets. An example
of this process is shown in figure 9.

6 Dopico et al.

Table 1 shows the seroprevalence estimate for the different methods in the data from Castro Dopico et al.
(2021).

7 Pseudo-ELISA data

We use the mean posterior values from a converged chain from the MVT mixture model as the parameters
to generate the ELISA-like data. For the class parameters, these are:

Σ1 =

(
0.042 0.035
0.035 0.038

)
, Σ2 =

(
0.086 0.123
0.123 0.195

)
(36)

µ2 =

(
−2.43
−2.43

)
, µ1 =

(
−0.63
−0.75

)
, (37)

η1 = 7.02, η2 = 13.35. (38)
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Figure 8: The complete log-likelihood for the MVN model in seventh simulation of the MVT generated
data. A) All chains, B) the chains retained after using the Geweke diagnostic to asses within-chain
convergence and C) the chains after manual curation.

and for the batch parameters,

S1 =

(
1.28 0.0
0.0 1.21

)
, m1 =

(
0.03
−0.09

)
, (39)

S2 =

(
1.86 0.0
0.0 1.70

)
, m2 =

(
0.09
−0.02

)
, (40)

S3 =

(
1.36 0.0
0.0 1.28

)
, m3 =

(
0.01
−0.13

)
, (41)

S4 =

(
1.21 0.0
0.0 1.32

)
, m4 =

(
0.05
−0.15

)
, (42)

S5 =

(
1.58 0.0
0.0 1.40

)
, m5 =

(
0.11
−0.09

)
, (43)

S6 =

(
1.20 0.0
0.0 1.23

)
, m6 =

(
0.55
0.36

)
, (44)

S7 =

(
1.25 0.0
0.0 1.26

)
, m7 =

(
0.10
−0.10

)
. (45)

We use the predicted proportion of each batch as our batch-specific class weights,

π =

(
0.95 0.87 0.91 0.88 0.96 0.10 0.95
0.05 0.13 0.90 0.12 0.04 0.90 0.05

)
. (46)

Each column corresponds to a batch and each row is the class weight. We denote the class weights within
a batch (i.e., one of these columns) by πb. The probability of being drawn from a given batch is simply
the observed proportion of items in each batch.

w =
(
0.18 0.18 0.06 0.28 0.15 0.02 0.13

)
. (47)
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Figure 9: The complete log-likelihood for the MVT model in Stockholm ELISA data for A) all chains
and B) the converged chains.
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Date SVM-LDA∗ Bayesian learner∗ MVT RF SVM LR LR - BC
2020/04/05 NA 2.35 1.60 1.00 1.00 1.00 2.00
2020/04/26 4.26 4.73 4.92 4.50 5.00 5.00 5.00
2020/05/03 4.33 5.34 5.74 4.50 4.50 5.00 5.50
2020/05/10 7.87 5.86 8.87 8.50 8.50 8.50 10.50
2020/05/17 7.36 6.28 8.05 7.50 4.50 8.00 8.50
2020/05/24 7.49 6.64 8.34 8.00 6.50 7.50 9.50
2020/05/31 3.54 6.97 4.15 4.00 3.50 4.00 5.00
2020/06/07 8.41 7.31 9.83 9.50 8.00 10.00 10.50
2020/06/14 6.90 7.75 7.55 7.00 7.00 7.00 8.50
2020/06/21 6.44 8.30 7.80 7.00 6.50 7.50 8.00
2020/07/26 13.20 11.34 16.72 15.00 11.50 16.50 16.00
2020/08/02 9.16 11.79 10.48 9.00 8.50 10.00 10.00
2020/08/09 11.30 12.15 13.43 12.00 8.00 13.00 13.50
2020/08/16 10.84 12.43 12.15 12.00 10.50 11.50 11.00
2020/08/23 12.97 12.65 15.55 15.50 11.00 15.00 15.00
2020/11/08 11.79 14.28 13.72 12.00 11.50 12.50 14.00
2020/11/15 14.20 14.47 18.85 15.50 14.50 17.00 18.50
2020/11/22 13.37 14.72 16.44 15.50 15.50 15.50 16.00
2020/11/29 13.20 14.98 17.36 15.00 15.00 16.00 16.50
2020/12/06 11.52 15.29 14.47 12.50 11.00 13.00 13.50
2020/12/13 15.73 15.64 19.65 18.00 16.00 18.00 19.00

Table 1: Seroprevalence estimates across time for each method in the data from Castro Dopico et al.
(2021). The highest estimates at each data are coloured orange, the lowest are coloured blue. ∗ from
Castro Dopico et al. (2021).

We then generate a batch and class label for each item and then observed measurements conditioning
on these labels, specifically for a given item index n:

bn ∼ Cat(w), (48)

cn|bn = b ∼ Cat(πb), (49)

Xn|cn = k, bn = b ∼ tηk(µk +mb,Σk ⊕ Sb). (50)

For the seronegative class (we use the label of cn = 1 for this class), the φn parameter indicating if the
nth item has an observed label is a Bernoulli random variable. For the seropositive class we introduce a
bias to match the reality that it is more extreme observations that tend to have an observed label. To
do this we find the most extreme value in each measurement, denoted Xmax, (note that Xmax is unlikely
to be an observed value) and calculate the Euclidean distance between this and our observed values. We
then sample φ according to:

p(φn = 1|cn = 1) = p(1− p), (51)

p(φn = 1|cn = 2) = p(1− p) exp{−d(Xn, Xmax)}, (52)

where p = 1
3 . This values is chosen as the proportion of observed labels to the predicted labels is 0.332

for the seronegative class and 0.241 for the seropositive class. Our sampling process finds provides less
observed seropositive labels than we have in the real data (the ratio of observed labels to true labels for
the seropositive class had a mean of 0.16 across 500 simulated datasets), but we think representing the
bias in the positive controls is more important than acquiring the exact proportion of training data.
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Miguel A. Juárez and Mark F. J. Steel. Model-Based Clustering of Non-Gaussian Panel
Data Based on Skew- t Distributions. Journal of Business & Economic Statistics, 28(1):
52–66, January 2010. ISSN 0735-0015, 1537-2707. doi: 10.1198/jbes.2009.07145. URL
http://www.tandfonline.com/doi/abs/10.1198/jbes.2009.07145.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and
Edward Teller. Equation of State Calculations by Fast Computing Machines. The Journal
of Chemical Physics, 21(6):1087–1092, June 1953. ISSN 0021-9606. doi: 10.1063/1.1699114.
URL https://aip.scitation.org/doi/abs/10.1063/1.1699114. Publisher: American Institute of
Physics.

Gareth O. Roberts and Jeffrey S. Rosenthal. Optimal scaling for various
Metropolis-Hastings algorithms. Statistical Science, 16(4):351–367, November
2001. ISSN 0883-4237, 2168-8745. doi: 10.1214/ss/1015346320. URL
https://projecteuclid.org/journals/statistical-science/volume-16/issue-4/Optimal-scaling-for-various-Metropolis-Hastings-algorithms/10.1214/ss/1015346320.full.
Publisher: Institute of Mathematical Statistics.

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2022. ; https://doi.org/10.1101/2022.01.14.476352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.14.476352
http://creativecommons.org/licenses/by/4.0/

