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ABSTRACT 
In recent decades, chimeric antigen receptors (CARs) have been suc-
cessfully used to generate engineered T cells capable of recognizing 
and eliminating cancer cells. The structure of CARs frequently in-
cludes costimulatory domains, which enhance the T cell response 
upon antigen encounter. However, it is not fully known how the CAR 
co-stimulatory domains influence T cell activation in the presence of 
biological variability. In this work, we used mathematical modeling to 
elucidate how the inclusion of one such co-stimulatory molecule, 
CD28, impacts the response of a population of engineered T cells un-
der different sources of variability. Particularly, our simulations 
demonstrate that CD28-bearing CARs mediate a faster and more 
consistent population response under both target antigen variability 
and kinetic rate variability. We identify kinetic parameters that have 
the most impact on mediating cell activation. Finally, based on our 
findings, we propose that enhancing the catalytic activity of lympho-
cyte-specific protein tyrosine kinase (LCK) can result in drastically re-
duced and more consistent response times among heterogeneous 
CAR T cell populations.  

1 INTRODUCTION  

T cells engineered to express a chimeric antigen receptor 
(CAR) have emerged as a novel tool for combatting cancer by 
generating an immune response against cancer cells. The key 
step in this immunotherapeutic approach is to produce T cells 
expressing an artificially designed CAR, which activates the T 
cell upon encountering a target cancer cell (Met et al., 2019). 
To achieve this goal, CARs feature an antigen recognition do-
main derived from a single-chain variable fragment (scFv) of 
a monoclonal antibody specific to the antigen of interest, while 
their cytoplasmic portion includes different combinations of in-
tracellular signaling domains (Akhoundi et al., 2021). The first 
generation of CARs has a single cytoplasmic CD3ζ signaling 
domain attached to the recognition domain by a transmem-
brane linker. Later advances in CAR design resulted in sec-
ond-generation CARs, which have one additional costimula-
tory signaling domain originating from signaling endodomains 
of natively occurring costimulatory receptors (Srivastava and 
Riddell, 2015). For example, the CD28 costimulatory domain 
is utilized in two of the FDA-approved CAR-T therapies as of 
February 2021 (Albinger et al., 2021). Notably, the inclusion 
of CD28 significantly enhances proliferation and target cyto-
toxicity among the T cells (Zhao et al., 2015).  However, de-
spite this progress, certain gaps in CAR-T performance 

remain. Importantly, current CAR-T therapies are sufficiently 
effective only against liquid tumors, while the performance 
against solid tumors is still limited (Sterner and Sterner, 2021). 
In addition, CD28-based CAR-T therapies suffer from some 
major side effects (Namuduri and Brentjens, 2016), which can 
be life-threatening (Tabernero and Thompson, 2018). These 
considerations necessitate further improvements in the CAR-
T technology, with two broad aims: on one hand, make CAR-
T cells efficient against a more extensive set of targets; on the 
other hand, mitigate the observed side effects.  

Mathematical modeling is an integral approach in Systems Bi-
ology and has been applied to explain biological phenomena 
and generate testable hypotheses to guide experimental re-
search (Kitano, 2002). One successful strategy of mathemat-
ical modeling is ordinary differential equation (ODE)-based 
mechanistic modeling, whereby dynamic processes occurring 
in a biological system are represented via differential equa-
tions describing the rate of change of each component as a 
function of its interactions with other components (Raue et al., 
2013). With suitable estimates of interaction parameters and 
initial conditions, these ODEs can be integrated to obtain time 
courses for each component. In the past, various research 
groups, including ours, have utilized ODE-based mechanistic 
modeling to gain quantitative insights into immune cell signal-
ing dynamics. For example, this approach was successful in 
describing native T cell receptor (TCR)-induced activation of 
MAPK/ERK signaling (Altan-Bonnet and Germain, 2005). Our 
group has focused on simulating the dynamics of ERK signal-
ing in CAR-T cells in response to antigen binding (Rohrs et 
al., 2020). Particularly, by calibrating model parameters 
against data obtained by phosphoproteomic measurements, 
the authors were able to obtain a close correspondence be-
tween model predictions and observed experimental dynam-
ics. In addition, we made quantitative comparisons between 
first-generation CAR-T cells with CD3ζ as the only signaling 
domain and second-generation CAR-T cells with an additional 
CD28 co-stimulatory domain. Thus, modeling was success-
fully used to gain quantitative insights into CAR-T cells, 
thereby augmenting experimental knowledge. 

Variability has been observed for essentially all dimensions of 
single cell measurements, with the ensemble behavior of a 
cell population not necessarily reflecting the behavior of an 
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individual cell (Altschuler and Wu, 2010). Examples of varia-
bility caused by differential protein expression have been ob-
served among endogenous T cell populations, including T 
regulatory cells (Yuan et al., 2014), T helper cells, and T killer 
cells alike (Zhang et al., 2019). Thus, it is natural to expect 
that various sources of variability would affect the perfor-
mance of CAR-T cells used in a therapeutic setting.  Although 
we previously used our calibrated model of CAR-mediated 
signaling to investigate the effects of variability in the expres-
sion levels of signaling proteins on ERK activation (Cess and 
Finley, 2020), other manifestations of variability remain to be 
addressed. First, while in prior single-cell simulations we as-
sumed that the cell encounters a well-defined antigen concen-
tration on the surface of the target, this is not true in the ther-
apeutic setting. For example, prior measurements of acute 
lymphoblastic leukemia (ALL) B cells found a range of values 
for the cell surface concentration of CD19 (Nerreter et al., 
2019), the signature antigen targeted by the recognition do-
main of many CAR-T cells. Second, the chemical reactions 
that mediate signal transduction are subject to fluctuations not 
only due to stochastic protein expression, but also variability 
in cell state, local microenvironment and number of molecular 
collisions (McAdams and Arkin, 1999; Harton and Batchelor, 
2017). Thus, in our current work, we set out to investigate and 
compare the performance of first-generation and CD28-
bearing second-generation CAR-T cells under two modes of 
heterogeneity: exposure to stochastic concentrations of the 
target antigen and stochastic kinetic rates of signaling pro-
cesses. Then, we used a data-driven approach to quantify the 
importance of different kinetic parameters for determining the 
ERK activation time of cells. Finally, based on these findings, 
we propose strategies to further enhance the efficiency of 
CAR-T cells in a therapeutic setting.  

2 METHODS 

CAR-induced ERK signaling model: The ODE-based 
model utilized in our work was developed in MATLAB by our 
research group (Rohrs et. al, 2020). The model includes four 
signaling modules: phosphorylation of ITAM regions of the 
CD3ζ domain in response to antigen binding, inhibitory activity 
of CD45 and SHP1, LAT signalosome formation and MAPK 
signaling (Supp. Fig. S1). The model was calibrated on ex-
perimental data and gives accurate quantitative estimates of 
the levels of signaling species, indicating that it constitutes a 
plausible description of the underlying biological processes. 
Particularly, the model gives a mechanistic explanation for the 
increased cytoplasmic concentration of doubly-phosphory-
lated ERK (ppERK) in response to antigen binding to the CAR. 
We use ppERK as the primary model output, as it mediates 
cell activation. Given the non-transient “all-or-nothing” re-
sponse typically displayed by ppERK in response to antigen 
stimulation (Altan-Bonnet and Germain, 2005), we termed all 
cells with more than half of their total ERK pool in doubly 

phosphorylated form as “active”, with the time needed to 
reach this state termed the “activation time”.  

Monte Carlo simulations: In simulations of variable antigen 
concentration encountered by CAR T cells, we assumed the 
antigen distribution (in units of molecules/µm2) to be lognor-
mal with the scale parameter µ=1.0 and the scatter parameter 
σ=0.5. Our choice of the lognormal distribution was based on 
the fact that most intracellular protein abundances closely 
obey a lognormal distribution (Furusawa, et al., 2005).  We 
picked the location and scale parameters to match the ob-
served concentration of CD19, a frequent target of CAR T cell 
therapies. The surface concentration of CD19 ranges be-
tween 0.16 molecules/µm2 and 5.2 molecules/µm2 in ALL B 
cells (Nerreter, et al., 2019). Simulations for variability of ki-
netic parameters were carried out by sampling each parame-
ter from an independent normal distribution with the mean 
equal to the parameter’s accepted value and a standard devi-
ation equal to a third of the mean. These simulations were 
repeated for different antigen concentrations:  4.5 mole-
cules/µm2 (“low”, close to experimentally observed) and 45 
molecules/µm2 (“high”, near saturating). All Monte-Carlo sim-
ulations were run in MATLAB, with multiple random seeds to 
ensure reproducibility.  

Gradient-boosted tree predictor: The gradient-boosted tree 
ensemble is a non-linear machine learning method used suc-
cessfully for both regression and classification tasks. It is 
based on a succession of individually weak decision trees. 
The first tree in the sequence fits the observed outcome di-
rectly, while each successive tree fits the residual left from the 
collective prediction of its predecessors. Thus, together, these 
decision trees achieve a significantly enhanced performance 
over a single decision tree (James et al., 2013). We utilized a 
scikit-learn implementation of gradient-boosted trees 
(Pedregosa et al., 2011) to obtain a data-driven mechanism-
independent predictor of cell activation time based on the val-
ues of kinetic parameters as sole input. The training and test-
ing dataset was generated by using the ODE-based model to 
compute ERK activation times for 105 different sets of values 
of 48 impactful kinetic parameters. Then, the predictor was 
trained on this synthetic dataset in Python 3.7 to regress cell 
activation time from the corresponding parameter vector. The 
accuracy of the gradient-boosted tree ensemble was adjusted 
by tuning hyperparameters and evaluating resultant perfor-
mance by 5-fold cross validation of the coefficient of determi-
nation (R2) and explained variance (EV). Notably, by analyz-
ing the formulas for these metrics, it can be shown that if the 
obtained R2 and EV are equal, then the predictor is unbiased. 

Permutation importance scores: The permutation feature 
importance score is defined to be the decrease in the R2 value 
of model prediction when a single feature value is randomly 
shuffled across all data points (Pedregosa et al., 2011). This 
shuffling procedure preserves the marginal distribution of the 
feature across the population, but otherwise decouples it from 
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the output value of the data point. The underlying assumption 
is that if a feature is important in determining the output value, 
then this population-wide random shuffling will greatly reduce 
the predictive power of the model resulting in a proportionate 
drop in predictor performance as evaluated by R2 values on a 
test set. Similarly, since this decoupling procedure is highly 
unlikely to improve the performance of a predictor, permuta-
tion importance scores cannot be negative. We utilized the 
scikit-learn library to calculate permutation importance scores 
with five different shufflings for each parameter, using these 
iterative calculations to evaluate the statistical significance of 
obtained scores according to a one-tailed t-test. 

Parameter selection by optimization: Having quantified the 
importance of kinetic parameters on ERK activation time, we 
had the goal of isolating a handful of kinetic parameters whose 
manipulation would result in the largest reduction of ERK ac-
tivation time. For this purpose, we picked as candidates the 
five highest-scoring kinetic parameters among first-generation 
cells in low-antigen conditions, excluding the affinity constant 
between the CAR and the antigen (to focus on targeting cata-
lytic activities). Next, we used particle swarm optimization to 
minimize the following objective function: 

𝑇!"# + 	𝜆 ∑&𝑙𝑜𝑔
$!
$!,#
&			, 

where TERK is ERK activation time, pi is the parameter value 
to be optimized, pi,0 is the default value of that parameter, and 
λ is a user-defined constraint parameter that specifies how 
much the ratio of the optimal and default parameter value is 
weighted. We varied λ across a range. The structure of the 
objective function, inspired by the LASSO parameter selection 
technique, allows us to optimize parameters with the goal of 
decreasing activation time while changing as few parameters 

as possible. Particularly, it is long established that the penali-
zation of the sum of absolute values in classic LASSO results 
in parameter selection by which only a subset of parameters 
is assigned non-zero values, while the rest remain at zero 
(Tibshirani, 1996). Since, in our case, the “default” value of 
the parameter is non-zero, the use of the logarithm of fold 
change allows us to assign zero penalty to unchanged values, 
while penalizing any change in proportion to the default value. 
We hypothesized that this manner of penalization would result 
in a similar parameter selection such that ERK activation 
times would be reduced by manipulating as few parameters 
as possible. 

3 RESULTS 

3.1 Population response with variable antigen 
exposure 

We simulated the response of CAR-T cell populations to a dis-
tribution of antigen concentrations. Thus, 105 cells expressing 
either the first- or second-generation CARs were stimulated 
by an antigen concentration coming from a lognormal distri-
bution in silico, and their activation times were recorded. Par-
ticularly, we predicted the number of CAR-T cells that became 
active in the course of the simulation (Fig. 1A) and summa-
rized their activation times in a histogram (Fig. 1B). The pres-
ence of the CD28 costimulatory domain in the second-gener-
ation CAR resulted in a higher percentage of activated cells 
(82.59% vs 99.97% for first- and second-generation CAR-T 
cells, respectively), with a shorter mean activation time (18.53 
min vs. 8.93 min for first- and second-generation cells, respec-
tively). Additionally, the distribution of the population response 
has a smaller standard deviation among second-generation 
cells compared to the first-generation cells (3.00 min vs 5.42 
min, respectively). This indicates that the CD28 domain not 
only confers greater activation in a shorter time, but also pro-
vides for a more consistent response. These effects of the 
CD28 domain can be attributed to the shifted dose response 
curve (Supp. Fig. S2). 

3.2 Population response with variable kinetic pa-
rameters  

Another source of variability we set out to explore is the vari-
ability in effective rates of the reactions involved in signal 
transduction. Various sources of biological noise can result in 
heterogeneity of effective kinetic rates across a genetically 
uniform population. Thus, it is important to compare the per-
formance of cells engineered with first- and second-genera-
tion CARs given variable kinetic parameters to account for the 
consequences of this mode of heterogeneity. To investigate 
the effects of kinetic variability, we performed simulations for 
first- and second-generation cells with randomized values of 
48 influential parameters in conditions of either “low” or “high” 
antigen exposure. As evidenced by the resulting population 
distributions, the inclusion of the CD28 domain results in 

A B

Figure 1. Activation of CAR T cells exposed to varying amounts 
of antigen. Predicted activation for 105 cells with first- and second-
generation CAR constructs stimulated by the same stochastic anti-
gen concentrations in silico: (A) The number of cells becoming active 
or remaining inactive in course of the 30-minute simulation (no inac-
tive cells were detected among second-generation cells); (B) Distri-
bution of the activation times for cells that became active in course 
of the 30-minute simulation. Blue, predictions for first-generation 
cells (CAR-CD3ζ); orange, predictions for second-generation cells 
(CAR-CD3ζ-CD28).  
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shorter mean activation time and a smaller standard deviation 
(Fig. 2). Particularly, in low antigen conditions, more cells 
were activated in cells expressing the CAR that contains the 
CD28 domain (76.68% vs. 94.24%, for first- and second-gen-
eration cells, respectively), with a shorter activation time 
(14.06 min vs. 8.91 min, for first- and second-generation cells, 
respectively) and reduced standard deviation (6.48 min vs. 
5.15 min, for first- and second-generation cells, respectively). 
In high antigen conditions, the presence of CD28 caused a 
similar change in the population response, albeit less pro-
nounced (98.41% vs. 98.91% of cells were activated, with 
mean activation time of 4.45 min vs 3.32, and standard devi-
ation of 2.83 min vs 1.95 min, for first- and second-generation 
cells, respectively).  

3.3 Mechanism of CD28 induced changes in pop-
ulation behavior  

A natural question to pursue is to determine the mechanism 
by which CD28 causes this reduction in the mean and stand-
ard deviation of response times. Specifically, we focused on 
three possible mechanisms: the interaction between CD28 
and the adaptor protein Grb2, the interaction between CD28 
and the adaptor protein GADS (Watanabe et al., 2006), and 
the enhancement of the catalytic activity of LCK by CD28 
(Rohrs et al., 2018). The baseline model includes all three of 
these CD28 mechanisms (Supp. Fig. S1). To isolate the con-
tribution of each interaction, we again ran simulations with sto-
chastic kinetic parameters but with only one CD28-mediated 
mechanism available at a time. We found that in the case of 
the isolated CD28/Grb2 interaction, second-generation cells 
perform poorly compared to first-generation cells, with in-
creased mean activation time and standard deviation (Fig. 3A; 
Table 1). Similar results were obtained for the case of the iso-
lated CD28/GADS interaction (Fig. 3B; Table 1). On the other 
hand, with the isolated effect of CD28 on LCK catalytic 

activity, we saw the reduced mean and standard deviation that 
are the hallmark of second-generation cells (Fig. 3C; Table 
1). Thus, based on our simulations, the kinetic effect of CD28 
on LCK activity is the leading mechanism of CD28’s role in 
influencing ERK activation. Overall, the interaction between 
CD28 and Grb2 or the interaction between CD28 and GADS 
proved insufficient to bring about any improvement, while 
CD28’s effect on LCK’s catalytic activity is shown to be nec-
essary and sufficient. 

3.4 Data-driven sensitivity analysis of activation 
time 

Next, we aimed to quantify the impact of each parameter 
through a data-driven procedure. Here, the influence of each 
parameter is exclusively based on the model output without 
explicit consideration of the mechanistic details of the model. 
Such data-driven analysis would help identify potential targets 
for enhancing cell activation. In order to obtain data-driven im-
portance scores for those 48 parameters, we first created a 
synthetic dataset in which the model was simulated for 105 
different and independently sampled values of the 48 param-
eters. This created a 48-by-105 matrix of parameter values 
with corresponding activation times. This procedure was per-
formed for four settings: first- and second-generation cells, 
each in “low” and “high” antigen conditions. Then, we devel-
oped a gradient-boosted tree ensemble (GBTE) and trained it 
on each dataset. Here, each of the 48 varied parameters were 
treated as input features and activation time as the output 
value. Hyperparameters were tuned until satisfactory predic-
tive performance by 5-fold cross-validation was obtained. Two 
performance metrics of the resulting GBTE, R2 and EV, are 
given for each condition in Table 2. Since the obtained values 
for R2 and EV are identical in all settings, this implies that the 
GBTE is an unbiased estimator. 

B DA C

Figure 2. Activation of CAR T cells with varied kinetic parameters. Predicted activation for 105 cells with first- or second-generation CAR con-
structs stimulated by the same antigen concentration (high or low) with stochastic kinetic parameters in silico: (A) The number of cells becoming 
active or remaining inactive in course of the 30-minute simulation with low antigen stimulation; (B) Distribution of the activation times for cells from 
panel A that became active in course of the 30-minute simulation; (C) The number of cells becoming active or remaining inactive in course of the 30-
minute simulation with high antigen stimulation; (D) Distribution of the activation times for cells from panel C which became active in course of the 
30-minute simulation. Blue, predictions for first-generation cells (CAR-CD3ζ); orange, predictions for second-generation cells (CAR-CD3ζ-CD28).  
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With a successful “black-box” predictive model at hand, we 
set out to quantify the importance of each parameter for the 
prediction made by the GBTE. We did this by using permuta-
tion importance scores. The importance of each parameter 
was quantified in each of the four conditions (Fig. 4, Supp. 
Fig. S3). With these results, we isolated the top five kinetic 
parameters that have a large impact on first-generation cells 
in low-antigen conditions: the catalytic activity of LCK in phos-
phorylating ITAM regions of CD3ζ (Kcat_LCKPU_CD3z), as-
sociation rate of CSK with LCK (CSKon), catalytic activity of 
ZAP70 (Kcat_ZAP), catalytic activity of CD45 in dephosphor-
ylating LCK (Kcat_CD45_LCK505), and the catalytic activity 
of CD45 in dephosphorylating ITAM regions of CD3ζ 
(Kcat_CD45_A1). Notably, the three highest-scoring parame-
ters were identical between first- and second-generation cells 
in low antigen conditions. 

3.5 Parameter selection by constrained optimiza-
tion 

We hypothesized that due to the large impact in determining 
the activation time of the cell, each of the five influential pa-
rameters identified from the GBTE could serve as a target for 
engineering more efficient CAR-T cell lineages. A key goal of 
such engineering would be to minimize the number of inter-
ventions into the system given the complexity of designing 
proteins with desired properties and then expressing them in 
engineered cells. Thus, we performed parameter selection by 
constrained optimization to identify which one of these param-
eters could serve as the most optimal target of a limited ex-
perimental intervention. The objective function was to mini-
mize activation time while modifying as few of parameters as 

possible (see Methods section). This optimization routine was 
performed with both first- and second-generation cells, each 
in low- and high- antigen conditions, and with different values 
of the optimization constraint parameter (Fig. 5). When the 
value of the constraint parameter is 10, kinetic parameters do 
not change at all in course of the optimization. However, as 
we relax the constraint parameter (i.e., reduce its value to 
1.0), two kinetic parameters change within one order of mag-
nitude to actuate a decrease in cell activation time: 
Kcat_LCKPU_CD3z and Kcat_ZAP. These two kinetic param-
eters remain the only ones whose values should be optimized 

A B C

Figure 3. Activation of CAR T cells considering alternative CD28 signaling mechanisms. Predicted activation for 105 cells with first- and second-
generation constructs with one CD28 signaling mechanism implemented at a time. (A) CD28 exclusively associates with Grb2; (B) CD28 exclusively 
associates with GADS; (C) CD28 exclusively affects the activity of LCK. Bar plot shows the number of cells becoming active or remaining inactive in 
course of the 30-minute simulation. Histogram shows the distribution of the activation times for cells that became active in the 30-minute simulation. 
Top, low-antigen simulation. Bottom, high-antigen simulation: Blue, predictions for first-generation cells (CAR-CD3ζ); orange, predictions for second-
generation cells (CAR-CD3ζ-CD28). 
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Figure 4. Permutation importance scores for select kinetic param-
eters used in machine learning model to predict cell activation 
times. A gradient boosted tree was used to predict the cell activation 
times based on model kinetic parameters. We show the most important 
kinetic parameters that influence the predicted activation time under dif-
ferent conditions: (A) CAR-CD3ζ with low antigen concentration, (B) 
CAR-CD3ζ-CD28 with low antigen concentration, (C) CAR-CD3ζ with 
high antigen concentration, (D) CAR-CD3ζ-CD28 with high antigen con-
centration.  
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even when we further decrease the constraint parameter. 
Thus, we predict that when the goal is to decrease cell activa-
tion time, an increase in Kcat_LCKPU_CD3z and Kcat_ZAP 
will result in the largest such decrease.  

To test the consequences of targeting the parameters identi-
fied by the optimization procedure, we again performed simu-
lations with varying antigen concentrations, with one or both 
of the selected parameters set to their optimized values and 
all others kept at their default values. Based on our results, 
setting Kcat_ZAP to the optimized value resulted in the reduc-
tion of activation time (Fig. 6A), with a greater fraction of sec-
ond-generation cells becoming active compared to first-gen-
eration cells (Table 3). However, setting Kcat_LCKPU_CD3z 
to the optimized value was sufficient to not only induce a dras-
tic reduction in cell activation time, but also to make first-gen-
eration cells more efficient than second-generation cells (Fig. 
6B, 6C; Table 3). Particularly, with Kcat_LCKPU_CD3z opti-
mized alone, both populations showed 100% activation with 
mean activation times 5.20 min vs. 6.25 min for first- and sec-
ond-generation cells, respectively; when both 
Kcat_LCKPU_CD3z and Kcat_ZAP were optimized, both 
populations showed 100% activation with mean activation 
times of 3.09 min vs. 3.54 min for first- and second-generation 
cells, respectively (Table 3). When we reran simulations of ki-
netic variability with the same optimized parameters, we ob-
tained similar results. Specifically, Kcat_LCKPU_CD3ζ opti-
mization is predicted to be sufficient to make first-generation 
cells respond faster to antigen presence than second-gener-
ation cells (Fig. 7; Table 4). 

4 DISCUSSION 

In this study, we applied an existing ODE-based mechanistic 
model of CAR-induced ERK signaling to compare the perfor-
mance of first- and second-generation engineered CAR-T 
cells given external and internal sources of variability. By sim-
ulating variable antigen concentrations, we showed that cost-
imulatory signaling from CD28 causes both a reduced activa-
tion time and more consistent population response. In addi-
tion, by simulating stochastic kinetic interaction parameters, 
we were able to show that when considering kinetic variability 
caused by biochemical noise, second-generation cells yield 
similar results: reduced activation time and variability of the 
population response compared to first-generation cells. In or-
der to track the mechanism by which CD28 induces this 
change, we repeated simulations of kinetic variability with only 
one CD28-mediated mechanism available at a time: the asso-
ciation between CD28 and Grb2, the association between 
CD28 and GADS, or the CD28-mediated change in the cata-
lytic activity of LCK. We found that CD28’s effect on the cata-
lytic activity of LCK is both necessary and sufficient to produce 
the performance improvement in second-generation cells. 
Next, we set out to identify parameters that could be modu-
lated to further reduce response times and variability in the 
population response. To this end, we trained a gradient-
boosted tree predictor, which is able to predict system activa-
tion time based on values of kinetic parameters. After confirm-
ing the predictor’s accuracy, we quantified the importance of 
each parameter in the predictor’s estimation of activation time. 
Using this method, we isolated five influential kinetic parame-
ters. Then, we performed a constrained optimization 

C D

A B

Figure 5. Results from constrained optimization. Logarithms of fold changes in each of the five parameters used in the constrained optimization 
to minimize activation time are shown for given constraint strength (λ), under different conditions: (A) first-generation cells under low antigen; (B) 
second-generation cells under low antigen; (C) first-generation cells under high antigen; (D) second-generation cells under high antigen. 
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procedure on our model by using an objective function that 
sought to minimize system activation time while manipulating 
as few of the five candidate parameters as possible. Based 
on results of this optimization procedure, the most optimal tar-
gets are predicted to be Kcat_LCKPU_CD3z and Kcat_ZAP. 
To elucidate how implementing the values suggested by the 
optimization procedure would affect population performance 
of the engineered T-cells, we repeated simulations of the sys-
tem with antigen variability and kinetic variability by using the 
optimized parameter value. Optimizing Kcat_ZAP resulted in 
an overall reduction in cell response time but preserved the 
overall superiority of second-generation cells. In contrast, ma-
nipulating Kcat_LCKPU_CD3z independently or in conjunc-
tion with Kcat_ZAP not only drastically improved perfor-
mance, but also made first-generation cells perform at least 
as efficiently as, and in some cases better than, second-gen-
eration cells. 

Experimental studies have shown that the second-generation 
CAR constructs with a CD28 costimulatory domain promote a 
better immune response during in vivo testing, compared to 
first-generation constructs. While theoretical underpinnings of 
this phenomenon were explored in prior research, our work 
provides a new context for this discrepancy. Particularly, we 
showed that the incorporation of the CD28 costimulatory do-
main results in both shorter and more consistent response 
times in the face of various sources of variability. A population 
of CAR-T cells infused into the patient’s bloodstream would 
face highly variable external and internal conditions. As this 
variability is not reflected in the in vitro setting, our predictions 
provide valuable insight into the features of engineered CAR-
T cells. In addition, we explored potential routes for the further 
improvement of CAR-T therapies. So far, work has mostly fo-
cused on incorporating more signaling domains or activity-de-
pendent expression cassettes into the structure of the CAR 
(Akhoundi et al., 2021). We explored the alternative possibility 
of enhancing CAR T cell response by manipulating the cata-
lytic activity of enzymes involved in signal transduction. The 
ability to engineer enzymes with desired properties, including 
improved catalytic activity, has already found broad applica-
tions in biotechnology (Lutz and Iamurri, 2018). While tradi-
tional methods use either a targeted substitution of key amino 
acids or directed evolution of random mutations, new ap-
proaches based on machine learning empower specialists to 
look for candidates in silico (Yang et al., 2019). Based on our 
model, engineering a more catalytically active isoform of LCK 
would cause first-generation cells to become at least as effi-
cient as otherwise equivalent CD28-bearing CAR-T cells. It is 
established that despite their greater efficacy, second-gener-
ation cells suffer from multiple side effects, and mitigating 
those side effects is a significant concern. We believe that en-
hancing LCK catalytic activity as an alternative to having the 
CD28 domain in the CAR structure can be one such mitigating 
strategy, since it would potentially exclude undesirable effects 
of CD28 without compromising ERK signaling efficacy. 

Along with the significant findings produced by our work, we 
recognize some limitations of our approach that can be ad-
dressed in the future. When exploring the population re-
sponse of CAR-T cells to stochastic antigen concentrations, 
we assumed lognormal distribution parameters chosen to 
make the distribution fall within an experimentally observed 
range. For simulations of kinetic heterogeneity, we assumed 
a normal distribution centered around the accepted default 
value with a standard deviation as a third of this value. How-
ever, we have no unequivocal evidence that the assumed dis-
tributions in fact reflect what is observed experimentally. While 
our assumed distributions have a clear experimental basis 
both in terms of the distribution chosen and the parameters, 
they are not the only option possible. By trying other assumed 
distributions via altering the distribution parameters, a more 

A

B

C

Figure 6. Activation of CAR T cells with optimized parameter values. 
We simulated simulation of cells with first- or second-generation CAR con-
structs upon implementing the optimized values of the two most influential 
parameters, Kcat_ZAP and Kcat_LCKPU_CD3z. (A) Simulated results 
with optimized Kcat_ZAP only; (B) Simulated results with optimized 
Kcat_LCKPU_CD3z only; (C) simulated results with both Kcat_ZAP and 
Kcat_LCKPU_CD3z optimized. Blue, predictions for cells with a first-gen-
eration CAR construct (CAR-CD3ζ); orange, predictions for cells with a 
second-generation CAR construct (CAR-CD3ζ-CD28).  
Figure 6. Activation of CAR T cells with optimized parameter values. 
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comprehensive understanding of the CAR-T cell’s population 
response may emerge. Another limitation of our study con-
cerns the choice of optimized values for Kcat_ZAP and 
Kcat_LCKPU_CD3z when considering heterogeneity. Our ob-
jective function penalized changes in each parameter propor-
tional to the absolute value of the logarithm of the fold change 
compared to its baseline value. Since the baseline value of 
Kcat_LCKPU_CD3z is different between first- and second-
generation cells due to CD28’s effects in the latter, we ob-
tained different optimal values of Kcat_LCKPU_CD3z for first- 
and second-generation cells. However, since our ultimate 
goal was to simulate the observed effects of an artificially en-
hanced LCK, we assumed that the catalytic properties of such 
enhanced LCK would be the same regardless of the CAR 
structure. Thus, we were compelled to use the same optimal 
Kcat_LCKPU_CD3z value when performing simulations that 
accounted for antigen and/or kinetic variability. Future experi-
mental work can explore the validity of our assumption. 

5 CONCLUSIONS 

Our work focused on exploring the difference in ERK activa-
tion times between engineered CAR-T cells with or without 
CD28 under various sources of cellular variability. We discov-
ered that in line with expectations, the CD28 domain in-
creases the proportion of cells that become activated based 
on ERK phosphorylation. Further, the model increases our 
mechanistic understanding of the role of CD28, predicting that 
CD28 confers shorter and more consistent activation times 
across the cell population. In addition, we discovered that the 
catalytic activity of LCK can serve as a valid target for the fur-
ther improvement of CAR-T cell activation, since increasing 
the value of the corresponding parameter causes a 

pronounced improvement in the performance of first-genera-
tion CAR-T cells. Our work provides novel quantitative in-
sights that can guide the design of CAR-engineered cells for 
immunotherapy.  
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