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Abstract 42 

Hadal snailfishes are the deepest-living fishes in the ocean, inhabiting trenches from depths 43 

of ~6,000 to 8,000 m. While the microbial communities in trench environments have begun to be 44 

characterized, the microbes associated with hadal megafauna remain relatively unknown. Here, 45 

we describe the gut microbiomes of two hadal snailfishes, Pseudoliparis swirei (Mariana Trench) 46 

and Notoliparis kermadecensis (Kermadec Trench) using 16S rRNA gene amplicon sequencing. 47 

We contextualize these microbiomes with comparisons to the abyssal macrourid Coryphaenoides 48 

yaquinae and the continental shelf-dwelling snailfish Careproctus melanurus. The microbial 49 

communities of the hadal snailfishes were distinct from their shallower counterparts and were 50 

dominated by the same sequences related to the Mycoplasmataceae and Desulfovibrionaceae. 51 

These shared taxa indicate that symbiont lineages may have remained similar to the ancestral 52 

symbiont since their geographic separation or that they are dispersed between geographically 53 

distant trenches and subsequently colonize specific hosts. The abyssal and hadal fishes contained 54 

sequences related to known, cultured piezophiles, microbes that grow optimally under high 55 

hydrostatic pressure, including Psychromonas, Moritella, and Shewanella. These taxa are adept at 56 

colonizing nutrient-rich environments present in the deep ocean, such as on particles and in the 57 

guts of hosts, and we hypothesize they could make a dietary contribution to deep-sea fishes by 58 

degrading chitin and producing fatty acids. We characterize the gut microbiota within some of the 59 

deepest fishes to provide new insight into the diversity and distribution of host-associated 60 

microbial taxa and the potential of these animals, and the microbes they harbor, for understanding 61 

adaptation to deep-sea habitats. 62 

 63 

 64 
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Importance 65 

 Hadal trenches, characterized by high hydrostatic pressures and low temperatures, are 66 

one of the most extreme environments on our planet. By examining the microbiome of abyssal 67 

and hadal fishes, we provide insight into both the physiology of the deepest-living vertebrates 68 

and the microbes which colonize them. Our findings show that there are similar microbial 69 

populations in fishes geographically separated by thousands of miles, reflecting strong selection 70 

for specific microbial lineages. Only a handful of psychropiezophilic taxa, which do not reflect 71 

the diversity of microbial life at great depth, have been successfully isolated in the laboratory. 72 

Our examination of deep-sea fish microbiomes shows that typical high-pressure culturing 73 

methodologies, which have largely remained unchanged since the pioneering work of Claude 74 

ZoBell in the 1950s, may simulate the chemical environment found in animal guts and helps 75 

explain why the same deep-sea genera are consistently isolated. 76 

 77 
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Introduction 89 

The gut microbiome plays an essential role in the physiology of fishes. Microbiota within 90 

fishes can help digest food by producing degradative enzymes, provide the host with vitamins and 91 

fatty acids, and competitively exclude pathogens (1, 2, 3, 4). While the importance of gut 92 

microbiomes is recognized, few studies have explored the structure and function of microbiomes 93 

in deep-sea fishes. Cultivation of microorganisms from deep-sea animals has revealed the presence 94 

of piezophiles (5, 6, 7, 8), microbes capable of optimal growth under in situ, deep-sea high 95 

hydrostatic pressure conditions. This includes members of the genera Colwellia, Psychromonas, 96 

Shewanella, Moritella, and Photobacterium, some of the only lineages which have been 97 

experimentally demonstrated in the laboratory to be piezophilic (9, 10). These microbes represent 98 

a small fraction of the broader water and sediment communities in the deep ocean, which are 99 

instead composed primarily of members of the Thaumarchaeota, Marinimicrobia (SAR406), and 100 

other members of the Proteobacteria (11, 12, 13, 14). However, a description of the complete 101 

breadth of microbial diversity within the guts of deep-sea fishes is lacking. 102 

Distinct fish communities have evolved to life in the deep sea, with pronounced 103 

compositional changes within different depth zones (15). The abyssal ocean (depths 4,000–6,000 104 

m) is home to several major fish families with cosmopolitan distributions, including the rattails 105 

(Macrouridae), cusk eels (Ophidiidae), eelpouts (Zoarcidae), cutthroat eels (Synaphobranchidae), 106 

and tripodfishes (Ipnopidae). Rattails are attracted to bait and therefore have been the focus of 107 

much of the deep-sea demersal fish literature. Members of the rattail genus Coryphaenoides, which 108 

includes Coryphaenoides yaquinae Iwamoto and Stein 1974 (16) and Coryphaenoides armatus 109 

Hector 1875 (17), are among the most widespread fishes in abyssal ecosystems (18). 110 

Coryphaenoides species are known scavengers (19, 20, 21, 22) and their predominant food source 111 
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is deep-sea carrion, although stomach contents and stable isotope analyses show that rattails also 112 

feed on fishes, squid, and crustaceans (18). Culture-based analyses of the microbiota associated 113 

with Coryphaenoides have found piezophilic members related to the lineages Moritella and 114 

Shewanella (5, 6). However, whether these lineages are representative of the entire microbiota 115 

within the gut of Coryphaenoides, one of the most widespread fishes in the ocean, is unknown. 116 

In hadal trenches, sites deeper than 6,000 m which are typically formed at subduction 117 

zones, the fish community differs from that of the surrounding abyssal plain. Snailfishes (family 118 

Liparidae) are the dominant fishes below 6,000 m, with at least twelve species found in nine 119 

trenches worldwide (23). The Liparidae include the planet’s deepest known vertebrates, such as 120 

Pseudoliparis swirei Gerringer & Linley 2017 (24; depth range 6198–8078 m) and Notoliparis 121 

kermadecensis Nielsen 1964 (24, 25, 26; depth range 5879–7669 m). Many hadal snailfish species 122 

have been found in only one trench and are likely endemic, confined to one specific hadal 123 

environment (23, 25, 26, 27). These fishes have evolved adaptations to high pressure, including 124 

intrinsic enzyme adaptations (28, 29) and the accumulation of protein-stabilizing osmolytes such 125 

as trimethylamine n-oxide (TMAO; 30, 31). No fishes have been found deeper than ~8,200 m, a 126 

putative physiological depth limit for vertebrates arising from the osmotic constraints of this 127 

TMAO pressure-adaptation strategy. Stomach contents, stable isotope analyses, and observed 128 

feeding behavior indicate that snailfishes are one of the top predators at hadal depths, consuming 129 

highly-abundant amphipods in trench habitats (26, 32, 33). Recently, a member of the 130 

Mycoplasmataceae was identified in Pseudoliparis swirei that may provide the host with riboflavin 131 

(34). However, it is unclear how differences in fish species, diet, and environmental conditions 132 

may influence the composition of gut microbiomes of abyssal and hadal fishes, or how these 133 

microbial associates may impact the physiology of the host. 134 
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Here, we describe the gut microbiota of four representative, ecologically-important deep-135 

sea fishes using 16S rRNA gene amplicon sequencing. This includes two of the deepest-living 136 

hadal snailfishes, Pseudoliparis swirei from the Mariana Trench and Notoliparis kermadecensis 137 

from the Kermadec Trench. These fishes and the trenches they inhabit are geographically 138 

separated, residing approximately 6,000 km apart within the Pacific Ocean. The Mariana Trench 139 

is located in the Northern Hemisphere and extends to a depth in excess of 10,900 m (35). The 140 

Kermadec Trench is in the Southern Hemisphere off the coast of New Zealand and reaches a depth 141 

exceeding 10,000 m (36). We compared the microbiota of the snailfishes with two shallower-142 

dwelling fishes, the abyssal macrourid Coryphaenoides yaquinae which inhabits depths of ~3,000 143 

to 7,000 m (26), and Careproctus melanurus Gilbert 1892 (37), a demersal snailfish typically 144 

found at depths 200 – 1,600 m (38). Our findings inform new understanding of host-symbiont 145 

interactions in the abyssal and hadal ocean, the ecology of piezophilic microbes, and the biology 146 

of the planet’s deepest-living vertebrates. 147 

 148 

Results 149 

The gut microbial communities within snailfish from the Mariana Trench (Pseudoliparis 150 

swirei; n=18, collection depths 6,898 – 7,966 m) and Kermadec Trench (Notoliparis 151 

kermadecensis; n=7, collection depths 6,456 – 7,515 m) were compared against those in a 152 

continental shelf-dwelling snailfish (Careproctus melanurus; n=11, collection depths 381 – 834 153 

m) and an abyssal rattail (Coryphaenoides yaquinae; n=4, collection depths 4,441 – 6,081 m; 154 

Figure 1; Table S1). We identified a total of 2,034 Amplified Sequence Variants (ASVs) across 155 

these four species with final amplicon libraries ranging from 2,545 – 106,059 reads per sample 156 

(average ~46,500 reads per sample).  157 
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 158 

Fish microbiome comparative analyses 159 

Gut microbial communities were distinct between the hadal snailfishes, the rattail C. 160 

yaquinae, and the slope-dwelling C. melanurus. The hadal fishes had lower alpha diversity than 161 

the shallower fishes, with the gut microbiome of C. yaquinae appearing more even (Figure 2, 162 

Figure S1). NMDS ordination analysis of Bray-Curtis dissimilarity demonstrated that microbial 163 

gut communities of each fish species were distinct from one another, where species type accounted 164 

for 37% of the variability (Figure 2C; PERMANOVA, R2 = 0.37, F = 7.22, DF = 3, p < 0.001). 165 

Pairwise comparisons showed that while the microbiome of Pseudoliparis swirei differed from 166 

that in Notoliparis kermadecensis (R2 = 0.09, p < .013, F = 2.52), these differences were small in 167 

comparison to the other fishes. For further context, the gut microbiomes of the four species of 168 

interest were compared to those from a diverse collection of fishes. This dataset included 16 marine 169 

fish hosts (Iacuniello et al., in prep.) spanning a range of depths (all shallower than 1000 m) and 170 

feeding strategies (15, 39). The abyssal and hadal microbial communities were also distinct from 171 

those within the broader fish gut dataset, while bathydemersal Careproctus melanurus gut 172 

communities were interspersed with samples from other shallower fishes (Figure S2; species type, 173 

R2 = 0.46, F=4.25, DF = 16, p < .001).  174 

 175 

The hadal snailfish microbiome 176 

The microbiome of Notoliparis kermadecensis was dominated by only a few ASVs such 177 

that the top ten most abundant sequences made up more than 75% of the communities of each fish 178 

(Figure 3). Two of the most abundant ASVs were related to the Mycoplasmataceae and composed 179 

~60% (range ~ 5–99%) of the gut community. One of these Mycoplasmataceae ASVs was 180 
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identical to the 16S rRNA gene reported from a hadal fish from the Mariana Trench (34) and was 181 

distantly related (<95% similar) to sequences found within other fishes (40, 41, 42; Figure S3). 182 

The second ASV was also similar to those found in other cold-water fish, including notothenioids 183 

from Antarctica (43) and grayling from Siberia (44). Together, two ASVs related to Moritella 184 

made up ~19% of each community (range ~0–60%) and were more than 97% similar to 16S rRNA 185 

genes from both piezophilic (45) and non-piezophilic taxa. An ASV related to the 186 

Desulfovibrionaceae was present in all seven N. kermadecensis specimens (mean ~3%, range 187 

~0.005–14%). This ASV was highly similar to sequences from notothenioid fish from Antarctic 188 

waters (43) and freshwater grayling from Lake Baikal, but less than 95% similar to other sequences 189 

(Figure S4). We also identified an ASV related to the Rhodobacteraceae (range ~0–43%) which 190 

was present in one sample in high abundance and was identical to sequences from the deep ocean, 191 

including the Japan Trench at 7000 m (46). Other abundant ASVs included those classified as 192 

members of the Pseudarthrobacter (Micrococcaceae; mean ~5%, range ~0–17%, identified in 193 

every specimen), Corynebacteriaceae (mean ~0.5%, range ~0–3%), and Photobacterium (average 194 

~0.5%, range ~0–1.5%).  195 

Like N. kermadecensis, the microbiome of Pseudoliparis swirei was primarily composed 196 

of only a few taxa (Figure 3). Members of the Mycoplasmataceae were some of the most abundant 197 

(combined mean abundance of four ASVs 53%, range ~2–99%). Two of these Mycoplasmataceae 198 

ASVs were the same as those present in N. kermadecensis. A third ASV was present in only one 199 

fish but made up ~27% of that community. The fourth Mycoplasmataceae ASV, closely related to 200 

sequences from stone flounder and turbot, was detected in five P. swirei specimens with a mean 201 

abundance of ~0.5% (range ~0-9%). The Desulfovibrionaceae ASV found in N. kermadecensis 202 

was also present at high abundances in P. swirei (mean ~27%, range ~0–98%). Other taxa included 203 
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two ASVs related to the genus Psychromonas (combined mean abundance ~15%, range ~0–93%). 204 

These sequences were similar to known piezophilic microbes obtained from deep-sea amphipod 205 

material (Figure S5; 7, 47, 48).  206 

We compared the microbial communities in the two hadal fishes against one another. 207 

Psychromonas was more abundant in the Mariana snailfish, while Moritella, Pseudarthrobacter, 208 

and Photobacterium were enriched in the Kermadec snailfish (Figure 4C). Sequences related to 209 

the Mycoplasmataceae and Desulfovibrionaceae were not differentially enriched within either fish.  210 

 211 

Bathyal, abyssal, and hadal fish gut microbiome comparisons 212 

We also analyzed the microbiota of the shallower-living snailfish Careproctus melanurus 213 

collected from ~300–800 m depth. Although this fish had higher alpha diversity than the hadal 214 

snailfishes (Figure 2), the gut-associated microbial community was still dominated by only a 215 

handful of sequences (Figure 3). The most abundant ASV was related to the Holosporaceae, (mean 216 

~50%, range ~0–92%) and showed >97% sequence similarity to taxa identified within other host-217 

associated systems (49). Other ASVs included three relatives of the genus Brevinema (combined 218 

mean abundance ~20%, range ~0–100%) which were similar to those found in graylings from 219 

Lake Baikal, mudsuckers, and unicornfish. We note the presence of two ASVs related to the genera 220 

Moritella (combined mean ~1%, range 0–11%) and Photobacterium (combined mean ~7%, range 221 

~0–33%). These ASVs were similar (>99%) to both known piezophilic and piezosensitive species. 222 

Other abundant ASVs included taxa in the Vibrionaceae (mean ~3%, range ~0–13%), 223 

Clostridiaceae (mean ~2%, range ~0–17%), and Synechococcus (mean ~1%, range ~0.005– 4%). 224 

The Clostridiaceae ASV was present in both N. kermadecensis and P. swirei at low abundances. 225 
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When comparing C. melanurus against P. swirei, many ASVs were more abundant in the 226 

continental slope-dwelling fish, reflecting the overall lower alpha diversity of the hadal snailfish 227 

(Figure 4). Amongst the Gammaproteobacteria, sequences related to the genera Vibrio, Moritella, 228 

and Photobacterium were more abundant in C. melanurus, while Psychromonas was more 229 

abundant in P. swirei. Other taxa of note included the enrichment of Synechococcus and other 230 

Cyanobacteria within the shallower fish, and the enrichment of ASVs related to the 231 

Mycoplasmataceae, Desulfovibrionaceae, and the phylum TM6 within P. swirei. The sequence 232 

belonging to the phylum TM6 was similar to those collected from deep-ocean sediments (50, 51). 233 

Comparisons between C. melanurus and N. kermadecensis revealed similar trends in differentially 234 

abundant taxa as with P. swirei. 235 

 In contrast to the snailfishes, microbial community composition within the gut of the rattail 236 

Coryphaenoides yaquinae, collected from 4000–6000 m depth, was much more even. The ten most 237 

abundant ASVs represented 31–57% of the community (Figure 3). Four of the top ten most 238 

abundant ASVs, related to the Desulfovibrio, Deltaproteobacteria group Rs-K70, Brachyspira, and 239 

family Lachnospiraceae (combined mean ~22%, range 6-37%), were most closely related to 240 

sequences from various low-oxygen environments. A further four ASVs had highest identity to 241 

sequences from fish samples and were classified as belonging to the genera Akkermansia, 242 

Brevinema, Desulfovibrio, and Odoribacter (combined mean ~15%, range 3-27%). We also 243 

identified sequences similar to Shewanella (mean ~4%, range ~0.2–8%) and Moritella (mean 244 

~3.5%, range ~0.3–12%) in all Coryphaenoides yaquinae specimens. The ASV related to 245 

Shewanella was most similar to the piezophiles S. benthica KT99 and S. violacea (52, 53) and to 246 

sequences previously identified from Coryphaenoides yaquinae (Figure S6; 6). The Moritella 247 

ASV was the same as that within N. kermadecensis and C. melanurus and was highly similar 248 
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(>99%) to both piezophilic and piezosensitive strains. Because the communities of C. yaquinae 249 

and P. swirei were so distinct from one another, comparisons between the two fishes showed that 250 

many of the differentially abundant taxa were also the dominant members of the respective 251 

communities (Figure 4). 252 

Finally, we leveraged a broader dataset of fishes and environmental samples to 253 

investigate microbial lineages specific to the hadal fishes. We first screened these samples for 254 

specific ASVs that were abundant in the hadal fishes, including those related to the 255 

Mycoplasmataceae, Desulfovibrionaceae, Psychromonas, Moritella, and Shewanella. While 256 

these lineages dominated the hadal samples, they were not found at high abundances in any other 257 

fish (Figure S7). These ASVs represented a miniscule fraction of Mariana Trench sediment and 258 

water samples, reflecting on average only 0.007% of the community (identified in four of 16 259 

samples; maximum abundance, 0.036%). We broadened our search to include any ASV related 260 

to the Mycoplasmataceae and found that many of the shallower fish gut microbiomes contained 261 

this family (Figure S8). While we did not find high abundances of sequences related to known 262 

piezophilic lineages in the comparison fishes, we found that almost all of the shallower-living 263 

fish gut communities included Photobacterium and Vibrio (Figure 5).  264 

 265 

Discussion 266 

We describe the gut-associated microbial communities within the hadal snailfishes 267 

Pseudoliparis swirei and Notoliparis kermadecensis, the abyssal rattail Coryphaenoides yaquinae, 268 

and the continental slope-dwelling snailfish Careproctus melanurus. These fishes include some of 269 

the dominant vertebrates at abyssal and hadal depths. The microbial communities within these four 270 

species were distinct from one another. Our findings show that while the shallow and deep-water 271 
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snailfishes belong to the same family, they have large differences in their gut microbiota. The 272 

communities were also different between the abyssal and hadal teleosts, indicating fishes that 273 

experience similar environmental conditions at great depth do not necessarily have similar 274 

microbial gut flora. In contrast, many of the most abundant lineages were shared between both 275 

hadal snailfishes. It has been proposed that Pseudoliparis and Notoliparis should be synonymized 276 

as one genus (24, 54), suggesting these fish may have similar host physico-chemical variables that 277 

could influence their microbiome (e.g. pH, O2; 55, 56, 57). One explanation for the observed 278 

differences in the fish gut microbiomes could be diet. Host trophic strategy influences the diversity 279 

of microbial communities within the gut (56, 57, 58, 59) and may be one reason for the shift in 280 

fishes at the abyssal-hadal boundary (60). Hadal snailfishes primarily eat amphipods and 281 

occasionally polychaetes and decapod shrimp, reflecting a restrictive diet. The diet of Careproctus 282 

melanurus also consists of crustaceans, including amphipods, shrimp, mysids, and tanaids, but can 283 

also include bivalves, polychaetes, and fish (61, 62). In contrast, the diet of C. yaquinae is 284 

composed primarily of carrion, along with squid, crustaceans, and other fish (18, 33). The 285 

relatively narrow dietary choices of hadal fishes may shape their gut microbiomes in relation to 286 

shallower fishes. Future work should investigate how host physiology, diet, and environmental 287 

factors, such as differences in water mass or organic matter input (32, 63, 64), impact deep-sea 288 

fish gut microbiota.  289 

The hadal fish gut microbiomes were composed of only a few ASVs and largely dominated 290 

by members of the Mycoplasmataceae, a family common in the digestive tracts of fishes (41, 65). 291 

While Mycoplasma can be pathogenic (66, 67, 68), it was recently suggested that 292 

Mycoplasmataceae in P. swirei may supply the host with the cofactor riboflavin (34). Based on 293 

our analyses, there are multiple strains of Mycoplasmataceae present within hadal snailfishes. This 294 
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family was present in nearly all fishes in the broader dataset but was not as abundant in our two 295 

comparison species. Instead, C. melanurus appears to have high abundances of the Holosporaceae, 296 

a group which are known to infect shrimp and ciliates (49, 69). We show that known host-297 

associated, potentially-pathogenic lineages such as Mycoplasmataceae are common in fishes from 298 

the surface ocean to hadal depths, although with apparent differences at the ASV level. The 299 

Mycoplasmataceae represent interesting targets for identifying adaptations to high pressure 300 

because of their exceptionally reduced genome sizes and limited metabolic functionality (70). 301 

Trenches are typically isolated by large expanses where seafloor depths are shallower than 302 

6,000 m. If we assume that hadal species are obligately adapted to in situ pressures, trenches would 303 

have high rates of biogeographic isolation. Indeed, many megafaunal species found in trenches 304 

appear to be endemic (32, 71, 72), including hadal snailfishes which appear genetically isolated 305 

from one another (24). Despite the geographic and genetic separation of the hosts, several identical 306 

ASVs were found within both hadal snailfishes, including those related to the Mycoplasmataceae 307 

and Desulfovibrionaceae. Neither the Mycoplasmatacaeae nor Desulfovibrionaceae sequences 308 

were present in high abundances in any of the other fishes analyzed in this study. One explanation 309 

is that the extant Mycoplasmataceae have not undergone appreciable genomic evolution to diverge 310 

from the ancestral symbiont present within snailfishes prior to their radiation into separate trenches 311 

approximately 20–40 mya (54). An alternative explanation could be the dispersal of very closely 312 

related microbial taxa between two trenches 6,000 km apart and subsequent host selection for these 313 

lineages. Certain microbial symbionts are highly specific within deep-sea anglerfishes and may be 314 

dispersed horizontally through the water column (73, 74). The possibility of dispersal of water and 315 

sediment microorganisms between trenches has been previously highlighted (12, 13, 75). Whole 316 

genome sequencing, e.g. metagenome-assembled genomes, will be required to determine if these 317 
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strains are similar beyond their 16S rRNA gene and to understand their dispersal and evolution in 318 

hadal habitats. 319 

We show that abyssal and hadal fishes have high abundances of sequences related to known 320 

piezophilic taxa, including Psychromonas, Moritella, and Shewanella. This finding is consistent 321 

with the observation that guts of deep-sea animals can show high levels of piezophily (5, 76, 77, 322 

78) and that piezophiles are most successfully cultivated from deep-sea hosts (6, 7, 8, 52, 79, 80). 323 

This is in contrast to hadal water and sediment communities where sequences associated with 324 

previously cultured piezophiles represent relative abundances of less than 1% (11, 12, 13, 81). We 325 

therefore add to a growing body of evidence that known, isolated piezophilic genera are associated 326 

with deep-sea animals. However, different piezophilic lineages were abundant in each species of 327 

fish: Psychromonas in P. swirei, Moritella in N. kermadecensis, and Shewanella in C. yaquinae. 328 

None of the Mariana snailfish reported in a different study had high abundances of Psychromonas 329 

(n=2; 34). One hypothesis is that these piezophilic taxa may represent more transient members of 330 

the fish gut, for example acquired through the consumption of amphipods (e.g. Psychromonas; 48, 331 

82, 83, 84). If there was a strong signal from transient taxa, we might expect to see 332 

Pseudoalteromonas or Psychrobacter, which can reach abundances of >20% of the gut-associated 333 

microbiota of amphipods in the Mariana Trench (83, 84), within the guts of amphipod-feeding 334 

hadal fish. However, we did not find these genera in appreciable abundances in any of the abyssal 335 

or hadal fish (maximum of 0.13% for Pseudoalteromonas and 0.36% for Psychrobacter). It is 336 

therefore likely that the piezophilic microbes are present at least in part because of host-microbe 337 

specificity. Indeed, piezophilic Colwellia with > 99% average genomic nucleotide identity have 338 

been isolated from deep-sea amphipods collected over 30 years apart (85), highlighting strong 339 

selection temporally in some hadal organisms. Representative piezophiles can contain genes 340 
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encoding chitinase, including isolates belonging to Psychromonas, Moritella, Shewanella, and 341 

Colwellia (53, 80, 85, 86), and sediments amended with chitin also showed a response of known 342 

piezophilic taxa (87). Moreover, a recent metagenomic analysis of salmonid fishes revealed gut-343 

associated Mycoplasma harbor genes putatively involved in the degradation of long-chain 344 

polymers such as chitin (88). Amendments of fish guts with chitin, coupled to metagenomic and 345 

transcriptomic sequencing, may reveal catabolic functions that benefit the host via the processing 346 

of recalcitrant dietary compounds. 347 

One unifying characteristic of these piezophilic Gammaproteobacteria is the synthesis of 348 

long-chain omega-3 polyunsaturated fatty acids (LC-PUFAs), with Psychromonas, Moritella, and 349 

Colwellia species producing docosahexaenoic acid (DHA, 22:6n-3) and Shewanella species 350 

producing eicosapentaenoic acid (EPA, 20:5n-3; 89). LC-PUFAs are essential fatty acids required 351 

for proper development and growth of all metazoans yet most vertebrates are unable to synthesize 352 

them de novo, thus, they need to be obtained from the diet. In shallow marine habitats, 353 

phytoplankton are the primary producers of LC-PUFAs however the quality and quantity of these 354 

essential fatty acids that reach abyssal and hadal zones is minimal. It is thus compelling to 355 

hypothesize that the enrichment of LC-PUFA producing taxa in hadal metazoan microbiomes may 356 

represent the primary source for delivery of these essential fatty acid nutrients to their hosts. 357 

 While members of piezophilic genera were not present in the broader fish dataset analyzed 358 

here, we instead found high abundances of the gammaproteobacterial genera Photobacterium and 359 

Vibrio (Figure 5). Photobacterium are common within microbiomes of marine fishes (90, 91, 92) 360 

and can be moderate piezophiles, with some strains showing growth up to 70 MPa (93, 94). To our 361 

knowledge, no member of the genus Photobacterium has been isolated at in situ pressures from 362 

hadal depths. Although the Photobacterium ASVs in C. melanurus and N. kermadecensis are 363 
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distinct, the high similarity of the 16S rRNA genes of piezophilic and non-piezophilic ecotypes 364 

(95) precludes an analysis here of their putative pressure sensitivity. We present the hypothesis 365 

that there may be a change in the dominant heterotrophic Gammaproteobacteria within the 366 

microbiomes of animals as a result of the selective pressure of increasing water depth. At shallower 367 

depths (e.g. 0 – 2000 m), taxa such as Photobacterium and Vibrio may be abundant, but with 368 

increasing depth the gut community may shift towards hyperpiezophiles, including members of 369 

the genera Psychromonas, Moritella, and Shewanella. An analysis of fish gut microbial 370 

communities along a more comprehensive depth gradient, for example targeting depths between 371 

1000 – 4000 m, will be needed to assess this hypothesis. 372 

The observation that representatives of known, isolated piezophilic taxa are abundant 373 

within deep-ocean animals reveals two important insights into the lack of high pressure-adapted 374 

isolate diversity in the literature. First, nearly all attempts to isolate microbes from abyssal and 375 

hadal samples have used nutrient-rich media which ultimately select for copiotrophic lineages. The 376 

gut of a host would similarly select for taxa capable of taking advantage of a high-nutrient 377 

environment, unlike the carbon-limited niches in deep-ocean water or sediments. Second, pressure 378 

vessels are generally static incubation chambers, requiring organisms to cope with variable waste, 379 

oxygen, and nutrient concentrations. Similar conditions might be expected in the guts of an abyssal 380 

or hadal fish undergoing varying events of feast and starvation. Piezophilic taxa are capable of 381 

responding to variable environmental conditions: a non-exhaustive list includes enrichment of 382 

these groups on detritus (87), particles (96, 97), oil and dispersant (98, 99, 100, 101, 102), methane 383 

(103), under low oxygen conditions (104), in eukaryotic mesocosms (105), in pressure-retaining 384 

samplers (106), and in hadal sediments after long-term, static, and unamended conditions (13). 385 

Therefore, genera such as Psychromonas, Shewanella, Moritella, and Colwellia are likely isolated 386 
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because of their ability to adapt to the variable nutrient and oxygen conditions found both within 387 

the guts of deep-sea megafauna and the pressure vessels used for cultivation in the laboratory. The 388 

implications of this observation are that static mesocosms performed in the lab using current 389 

methods will almost always select for a distinct group of microorganisms that are not 390 

representative of environmental deep-sea communities at large, but which nonetheless fill a 391 

specific niche in the deep ocean on particles and in the guts of megafauna. 392 

In addition to clarifying the role of recognized, lab-characterized piezophilic lineages, the 393 

examination of microbial diversity associated with extreme deep-sea animals reveals new taxa that 394 

likely possess pressure-adapted lifestyles. These taxa represent broad phylogenetic groups that 395 

significantly extend the hyperpiezophile ranks beyond the Gammaproteobacteria, including 396 

Mycoplasmataceae, Desulfobacterota, and Actinobacteria (Pseudarthrobacter). For example, the 397 

presence of Desulfovibrionaceae ASVs within both abyssal and hadal fishes may indicate the 398 

presence of sulfate reduction occurring within the guts of deep-ocean fishes at high hydrostatic 399 

pressure. Future studies that integrate metagenomic profiling combined with novel cultivation 400 

approaches that mimic the in vivo fish gut microbial ecosystem will be required to more fully 401 

define the breadth of metabolic activities that support the success of the microbes and the fish they 402 

inhabit within the deep sea. 403 

 404 

Methods 405 

Sample collection 406 

Abyssal and hadal fishes were collected from the Kermadec and Mariana trenches aboard 407 

the R/V Thomas G. Thompson and R/V Falkor during April–May 2014 and November–December 408 

2014, respectively. Fishes were caught using free-vehicle lander systems equipped with acoustic 409 
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releases (26). The traps were baited with mackerel and squid wrapped in nylon mesh to limit bait 410 

ingestion by sampled taxa. Once fish specimens were on board they were immediately placed on 411 

ice and processed. Gut material was carefully extracted from the hindgut, flash-frozen in liquid 412 

nitrogen either dry or in RNA Later, and stored at -80°C. One Notoliparis specimen was reported 413 

as belonging to a different species, Notoliparis stewarti, based on morphological characteristics 414 

(NK100329; 107). Because of the similarity of these two potentially different species, their 415 

presentation as the same species in previous publications, and the apparent similarity of their 416 

microbiomes, we report this one specimen as N. kermadecensis throughout this manuscript but 417 

acknowledge future work is needed to fully characterize the taxonomy hadal fishes. Specimens of 418 

Careproctus melanurus were collected by trawl aboard the F/V Noah’s Ark and F/V Last Straw 419 

during the summer 2014 NOAA NWFSC Groundfish Bottom Trawl Survey. One specimen was 420 

also collected from a 2015 UC Ship Funds-supported student cruise aboard the R/V Sproul. 421 

Following the storage of whole fishes at -20ºC, specimens were defrosted and the hindgut 422 

dissected. Gut contents from C. melanurus were submerged in Chaos lysis buffer (5M guanidine 423 

thiocyanate, 2% sarkosyl, 50 mM EDTA, 40 ug/ml proteinase K, and 15% beta-mercaptoethanol) 424 

and stored at -80ºC prior to analysis. We acknowledge that these slightly different methods of 425 

sample processing and preservation, given the constraints of shipboard sample processing, may 426 

influence microbial community composition downstream.  427 

 428 

DNA extraction and 16S rRNA gene amplicon sequencing 429 

DNA was extracted from gut samples using an organic extraction method. Intestinal 430 

contents were defrosted and resuspended in Chaos buffer. After a 30 min incubation at 55ºC, 431 

samples were homogenized by bead-beating with silica beads. Lysate was then treated with one 432 
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volume of phenol:chloroform:isoamyl alcohol (25:24:1). DNA in the resulting aqueous layer was 433 

cleaned with the Zymo Research Quick-gDNA MiniPrep kit (Irvine, CA). Negative control 434 

extractions were performed with each set of fish samples. 435 

After extraction, the V4 region (~290 bp) of the 16S rRNA gene was amplified using a 436 

two-step PCR protocol to create dual-barcoded amplicons. The first reaction used primers 515F-437 

Y and 806rb with overhangs for attachment of Illumina-compatible indexes in the second reaction 438 

(108). The initial reaction was performed in triplicate using Q5 polymerase (NEB, Ipswitch, MA) 439 

as follows: initial denaturation of 30 s at 98ºC; 25 cycles of 10 s at 98ºC, 20 s at 50ºC, 30 s at 72ºC; 440 

final extension of 2 min at 72ºC. Triplicate reactions were combined and 5 μL of each sample pool 441 

was used as template in a second reaction to attach unique indexing primer pairs. The second 442 

reaction was performed as above except using only 8 cycles and an annealing temperature of 56ºC. 443 

Barcoded amplicons were cleaned using AMPure XP Beads (Beckman Coulter, Brea, CA), pooled 444 

in equimolar concentrations, and sequenced on Illumina's MiSeq platform (2 × 300 bp) at the UC 445 

San Diego Institute for Genomic Medicine and the UC Davis Genome Center.  446 

 447 

Sequence processing and analysis 448 

Paired raw reads were trimmed with Trimmomatic v0.35 (109) and filtered to sequences 449 

≥100 bp. Trimmed reads were imported into the QIIME 2 platform v2018.6 (110) where the Dada2 450 

workflow plugin v2018.6 (111) was used to trim primer regions, denoise, and merge sequences to 451 

generate ASVs. Chimeras were removed using the consensus method. Non-ribosomal sequences 452 

were excluded and taxonomy was assigned to ASVs using the scikit-learn naive Bayes machine-453 

learning classifier (112) in QIIME 2 trained on the SILVA v128 SSU database (113). Further 454 

filtering and all downstream analyses were performed in R (114). Singletons, sequences classified 455 
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as eukaryotic, or those unassigned at the domain level were removed. To ensure a conservative 456 

analysis, potential contaminants were identified by co‐occurrence network of all ASVs using the 457 

R package ccrepe v1.24.0 (115).  Twelve ASVs which belonged to the genera Acinetobacter and 458 

Pseudomonas and the families Comamonadaceae, Caulobacteraceae, and Methylophilaceae were 459 

identified as both co-occurring and representative of common contaminants (116). These ASVs 460 

were filtered from all samples (Figure S9). Alpha and beta diversity of communities were 461 

estimated using the R package phyloseq v1.32.0 (117). Differentially abundant taxa between the 462 

different fishes were identified using DESeq2 v1.28.1 (118) with ASVs of less than 10 reads 463 

excluded. We statistically tested the importance of host species on structuring Bray-Curtis 464 

dissimilarity by permutational analysis of variance (PERMANOVA) using the adonis and 465 

pairwiseAdonis functions (119, 120). For phylogenetic analyses, representative 16S rRNA gene 466 

sequences were aligned using the SINA Aligner (121) and trees built using FastTree using default 467 

settings (122). Trees were visualized using the Interactive Tree of Life (iTOL; 123).  468 

For further context, the gut microbiomes of the four fish of interest were compared to 469 

microbial datasets from a diverse collection of fishes from depths shallower than 1000 m and water 470 

and sediments from the Mariana Trench. The comparative fish dataset included catshark 471 

(Apristurus brunneus), hatchetfish (Argyropelecus affinis and other Sternoptichydae), smelt 472 

(Atherinopsis californiensis), hagfish (Eptatretus deani, Eptatretus stoutii), bristlemouths 473 

(Gonostomatidae), ridgehead (Melamphaidae), manta ray feces (Mobula birostris), lanternfish 474 

(Myctophidae), California yellowtail (Seriola lalandi), and dragonfishes (Stomiidae). These fishes 475 

were typically frozen at -20ºC prior to hindgut dissection and then processed in the same manner 476 

as described above. The complete microbial communities of these fish will be described elsewhere 477 

(Iacuniello et al., in prep). The water (RG02, RG07, RG08, RG16, RG18; 3.0, 0.2, and 0.1 µm 478 
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size-fractionated samples) and sediment samples (FVCR02, FVCR03, FVCR04; 0-1 cm depth 479 

fraction) were collected from depths exceeding 5,000 m in the Mariana Trench. A full description 480 

of their collection and extraction has been previously described (12, 13). PCR amplification and 481 

all further downstream analyses were performed as described above. 482 

 483 

Data Availability 484 

Raw sequencing data for the fish species in this study have been submitted to the NCBI 485 

Short Read Archive under BioProject PRJNA720542. 486 
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Figure 1. Map of the Pacific Ocean showing the locations and depths of collection of the four 1000 

fish species described in this study. a) Pseudoliparis swirei (n=18), Mariana Trench, 7626 m, 1001 

#200133, scale bar 1 cm. b) Notoliparis kermadecensis (n=7), Kermadec Trench, 7515 m, 1002 

#100171, scale bar 1 cm. c) Coryphaenoides yaquinae (n=4), abyssal plain, 5255 m, #200152, 1003 

scale bar 5 cm. d) Careproctus melanurus (n=11), continental slope, representative image, scale 1004 

bar 1 cm. 1005 

 1006 

Figure 2. Alpha (A, Shannon; B, Chao1) and beta (C, NMDS ordination based on Bray-Curtis 1007 

dissimilarity; stress = 0.12) diversity comparisons of the four fishes in this study show that their 1008 

gut microbiomes are unique from one another. Snailfishes from the continental slope 1009 

(Careproctus melanurus) and hadal trenches (Notoliparis kermadecensis and Pseudoliparis 1010 

swirei) are compared to an abyssal rattail (Coryphaenoides yaquinae). Colors are the same in all 1011 

panels, with each species in panel C also reflected by a different shape. 1012 

 1013 

Figure 3. Top; The most abundant ASVs present within each fish species, colored and labeled 1014 

by their lowest identifiable taxonomic rank. ASVs are shown only if they reach relative 1015 

abundances greater than 0.5 % in a given sample. Bottom; The total, summed relative abundance 1016 

of the taxa shown above within each sample. 1017 

 1018 

Figure 4. ASVs identified as differentially abundant when comparing fish species against one 1019 

other. Communities from the Mariana snailfish, Pseudoliparis swirei, compared to A) the 1020 

snailfish Careproctus melanurus from the continental slope, B) the abyssal rattail 1021 

Coryphaenoides yaquinae, and C) a hadal snailfish from the Kermadec Trench, Notoliparis 1022 

kermadecensis. ASVs are labeled based on their lowest identifiable taxonomic rank. 1023 

 1024 

Figure 5. The abundances of gammaproteobacterial genera which are known to contain cultured 1025 

piezophilic and/or piezosensitive members within the four comparison species and a wider 1026 

dataset of fishes. (Top row, Psychromonas; second row, Moritella; third row; Shewanella; fourth 1027 

row, Photobacterium; bottom row; Vibrio). 1028 
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Figure 1.  
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Figure 2.  
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Figure 3.  
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Figure 4.  
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Figure 5.  
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