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Abstract

Summary: The number of cells measured in single-cell transcriptomic data has grown fast
in recent years. For such large-scale data, subsampling is a powerful and often necessary
tool for exploratory data analysis. However, the easiest random subsampling is not ideal from
the perspective of preserving rare cell types. Therefore, diversity-preserving subsampling is
required for fast exploration of cell types in a large-scale dataset. Here we propose scSampler,
an algorithm for fast diversity-preserving subsampling of single-cell transcriptomic data. Using
simulated and real data, we show that scSampler consistently outperforms existing subsam-
pling methods in terms of both the computational time and the Hausdorff distance between the
full and subsampled datasets.
Availability: scSampler is implemented in Python and is published under the MIT source
license. It can be installed by pip install scsampler and used with the Scanpy pipline. The
code is available on GitHub: https://github.com/SONGDONGYUAN1994/scsampler.
Contact: linwang@gwu.edu; jli@stat.ucla.edu

1 Introduction

Single-cell RNA sequencing (scRNA-seq) technologies have undergone rapid development in
recent years. A remarkable achievement is the generation of large-scale datasets, and there
are even datasets containing a million cells (See Supplementary Materials Table S1). Such
massive scRNA-seq datasets have impeded exploratory data analysis (e.g., visualization) on
standard computers.

An intuitive solution to this “big data” challenge is to subsample (downsample) a large-
scale dataset, i.e., to select a subset of representative cells. Random subsampling is fast and
unbiased, and it has been implemented in popular pipelines such as Seurat [1] and Scanpy [2].
However, random subsampling may miss rare cell types and is thus not ideal for preserving the
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transcriptome diversity. To overcome this drawback of random subsampling, Hie et al. proposed
the first algorithm Geosketch for “intelligently selecting a subset of single cells”, which they
called “sketching” [3]. Geosketch aims to evenly sample cells across the transcriptome space
by minimizing the Hausdorff distance between the subsample and the original sample (i.e.,
the large-scale dataset) (Supplementary Materials S3.1). In the follow-up algorithm Hopper,
the authors improved the performance of Geosketch in terms of minimizing the Hausdorff
distance. Moreover, prior to Geosketch and Hopper and outside of the single-cell field, this
“intelligent subsampling” problem has been well studied in the field of computer experiment
design, in which the “space-filling designs” implement the idea of even subsampling across
the transcriptomic space [4]. The most popular space-filling designs are the minimax distance
design and the maximin distance design [5]. Geosketch and Hopper conceptually belong to
the minimax distance design, which, however, is much more computationally intensive than the
maximin distance design [5]. Here we propose scSampler, a Python package for fast diversity-
preserving subsampling of large-scale single-cell transcriptomic data. By “diversity-preserving
sampling,” scSampler implements the maximin distance design to make cells in the subsample
as separative as possible. Using 8 simulated datasets and 10 real datasets, we show that
scSampler outperforms existing subsampling methods in minimizing the Hausdorff distance
between the subsample and the original sample. Moreover, scSampler is fast and scalable for
million-level data.

2 Implementation

scSampler is implemented in Python and can be installed by pip install scsampler. The
input is a matrix or an anndata object from scanpy pipeline. Denote the input matrix by X ∈
Rn×p, whose columns correspond to p features (by default, top p PCs from a cell-by-gene
log(count + 1) matrix and scaled to [0, 1]) and whose rows correspond to n cells. Therefore, X
can also represent a set X = {x1, · · · , xn}, where xi ∈ Rp. Our goal is to find a size ns subset
Xs ⊂ X , which satisfies:

max
Xs

min
xi,xj∈Xs

d (xi, xj) , (2.1)

where d(·, ·) is the Euclidean distance. The optimality in (2.1) can be achieved by minimizing
a scalar loss function:

min
Xs

ns−1∑
i=1

ns∑
j=i+1

1

dα (xi, xj)
, (2.2)

for a sufficiently large α [6]. It is found by [7] and in our numerical results that α = 4p

is big enough and keeps the algorithm numerically stable, so we set α = 4p by default. For
computational efficiency, scSampler can randomly split the original sample into subsets and
perform subsampling on each subset. The detailed optimization algorithm is in Supplementary
Materials S1.
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3 Results

To comprehensively benchmark scSampler—three variants: scSampler-sp1 (no sample split-
ting; the slowest), scSampler-sp4 (splitting the sample into 4 subsets), and scSampler-sp16
(splitting the sample into 16 subsets; the fastest)—against random sampling and two state-
of-the-art subsampling methods, Geosketch and Hopper, we use the scRNA-seq simulator
Splatter [8] to generate 8 simulated datasets and collect 10 real datasets (See Supplemen-
tary Materials Table S1). On each dataset, we subsample 1000, 3000, 5000 and 10000 cells
using each subsampling method. Fig. 1a shows an example that illustrates the difference
between random subsampling and scSampler: compared to random sampling, scSampler
selects more cells from small cell clusters. Quantitatively, we compare subsampling methods by
two measures: (1) the Hausdorff distance between the subsample and the original sample, (2)
computation time, both of which are better if smaller (Fig. 1b, Supplementary Materials Table
S3-S4). Fig. 1b summarizes the performance of subsampling methods in the two measures.
Notably, scSampler-sp1 consistently yields the smallest Hausdorff distances across all datasets
and all subsample sizes. Moreover, scSampler is fast: on the largest cortex dataset (more than
1 million cells), scSampler-sp1 finishes in 15 minutes, and scSampler-sp16 takes only 1 minute
and still outperforms Geosketch and Hopper by achieving a lower Hausdorff distance. Fig. 1c
shows that scSampler is consistently ranked the top (smaller ranks are better) across the 18
datasets.

To verify if rare cell types are better captured by scSampler than other methods, we calcu-
late the Gini coefficient of cell type proportions in each subsample; a smaller Gini coefficient
indicates more balanced cell types (Supplementary Materials S3.3). In more than 60% of
the combinations of 18 datasets and 4 subsmaple sizes, the fastest scSampler-sp16 leads to
the smallest Gini coefficient (Supplementary Materials Table S5). Considering that the real
datasets may not have accurately annotated cell types, we examine the simulated datasets and
find that scSampler-sp16 leads to the smallest Gini coefficient in 90% of the combinations of
8 simulated datasets and 4 sample sizes, confirming that scSampler well preserves rare cell
types.
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Figure 1: Benchmarking scSampler against other subsampling methods. (a) UMAP visualization of selected cells in the
original data by random subsampling and scSampler-sp1, respectively. (b) Scatter plots of Hausdorff distance against
computation time. (c) Summary of the performance of each methods. The table shows the mean ranks and standard
deviations across all datasets and subsample sizes.
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