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Abstract

Starting with the classical biophysical Morris-Lecar model of neuronal excitability,

we introduce a functional analog of the Hutchinson equation initially obtained for

population dynamics with delayed negative feedback. It is shown that the resulting

equation with a �xed time delay qualitatively reproduces the dynamics of the original

model upon direct current stimulation, preserving both the initial type of neuronal

excitability and biophysically realistic spike shape within a wide range of the delay

values. If the delay becomes very small (2 ms or less), the simpli�ed delay-based

model exhibits a distinct transition from the 1st to the 2nd excitability type.

Keywords: Morris-Lecar model, Neuronal excitability, Constant current stimula-

tion, Periodic spiking, Time-delay system, Delay di�erential equation
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1. Introduction

In 1948, ecologist G.E. Hutchinson, studying dynamics of a population size, generalized

the Verhulst logistic equation
dN

dt
= r(1− N

K
)N, (1)

where N is the population size, r is the population growth rate, and K is the average (and

asymptotic) population size. Provided with initial condition N(t = t0) = N0, the equation

has a well-known exact solution in the form of logistic function,

N(t) =
KN0

N0 + (K −N0) exp(−r(t− t0))
. (2)

To account for the period of sexual maturation of individuals, Hutchinson added a constant

time delay tdel to the multiplier limiting population growth [1],

dN

dt
= r(1− N(t− tdel)

K
)N, (3)

that led to the emergence of nontrivial self-oscillatory solutions (Fig. 1, left graph) [2].

In particular, it turned out that the period of such self-oscillations can be much longer

than tdel. By that time, similar self-oscillatory solutions were already known in the Lotka-

Volterra model describing the dynamics of two populations (conventionally, "predators" and

"preys") with a one-sided antagonistic interaction between them. However, the emergence

of such self-oscillations for a single delay-di�erential equation [3] came as a surprise, so the

denominative "Hutchinson equation" arose.

In the same 1948, A.L. Hodgkin, as a result of classical experiments on stimulating

isolated axons with direct current, proposed to classify spiking excitability of an axon into

the following three types or classes [4]. Type 1: the average frequency f(Istim) of spike

generation, as a function of constant stimulating current Istim, can be arbitrarily small

(or, in other words, it starts growing from zero continuously). Type 2: function f(Istim)

is discontinuous, i.e., it abruptly takes a non-zero minimal value. Type 3: the axon is

unable to periodically generate spikes, regardless of the stimulating current value. This

classi�cation has been later transferred without changes to the entire neuron and is now

generally accepted.

In this paper, we show that it is possible to get a functional analog of the Hutchinson

equation based on the classical biophysical Morris-Lecar (ML) model of neuronal excitability
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Figure 1. Left graph: An example of self-oscillatory solution (blue thin curve) of the Hutchinson

equation (3) for N0 = 100, K = 150, r = 0.4, and tdel = 5. The red thick curve is the corresponding

solution (2) of the Verhulst logistic equation (1) with t0 = 0. Note that at t ≤ tdel both solutions

coincide. Right graph: An example of self-oscillatory solution for the Mayorov-Myshkin model (5),

where λ = 3, R1 = 1, R2 = 2.2.

[5, 6], which takes into account the dynamics of voltage-dependent ion channels and plausi-

bly describes the action potential (i.e., spike) waveform. In general, the spike generation is

a manifestation of nonlinear impulse relaxation of the neuron transmembrane potential to

a stationary physiological value, the so-called resting potential. In standard electrophysio-

logical studies, a basic method ("protocol") for studying the spiking response of a neuron

and identifying the type of neuronal excitability is micro-electrode stimulation of the neu-

ron by constant depolarizing current. In what follows, we imply this protocol everywhere.

Mathematically, the ML model consists of a system of two nonlinear di�erential equations:

a dynamic equation for the transmembrane potential V of the neuron and a relaxation equa-

tion for the dimensionless conductance w of potassium ions, which can also be considered as

the probability of opening potassium ion channels in the neuron membrane. Spikes represent

characteristic pulses of the potential V (see Fig. 2). The change rate of V depends on the

current value of w so that the dynamics of w provides a negative feedback with respect to

the dynamics of V . In turn, change rate of w is proportional to the di�erence between the

current value of w and the "stationary" (or asymptotic) value w∞(V ), to which w tends

when the stimulation is turned o� and which depends nonlinearly on V . It is also worth

noting that, as the ML model has been originally developed for the excitability of a muscle
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�ber, it considers the transmembrane dynamics of calcium but not sodium ions.

If one completely neglects the relaxation dynamics of w and equates w(t) = w∞(V (t)),

then spike generation in the ML model does not occur. To simplify the relaxation dynamics,

we have replaced the original equation for w by the equation w(t) = w∞(V (t− tdel)), where

tdel is a �xed time delay of several milliseconds. The ML model modi�ed in such a way

can be called as Simpli�ed Delay-based ML (SDML) model. In this case, when the neuron

is stimulated with a direct current, spikes can occur and, importantly, the original type of

neuronal excitability is preserved within a wide range of tdel values. Thus, it turns out to

be possible formulating a biophysically realistic (with respect to the spike shape) model

of neuronal excitability, consisting of only one dynamic equation for the neuron potential.

This result virtually refutes a widespread belief that the minimal number of equations in a

dynamic model of neuronal excitability to describe more-or-less realistic spike shape should

be equal to two - as in the original ML model or in the FitzHugh-Nagumo model [7, 8],

which has originated as a result of attempts to simplify the Hodgkin-Huxley model [9].

It should be noted that using a delay di�erential equation [3] for the description of

neuronal dynamics has been already considered in the so-called Mayorov-Myshkin (MM)

model [10] (see also [11, 12]),

dv

dt
= [γNa(v(t)) + γK(v(t− tdel))]v, (4)

where v ≥ 0 is the dimensionless deviation of the membrane potential from the level of the

highest membrane polarization (i.e., when the neuron is in the hyperpolarization state), and

γNa(v) = a − fNa(v) and γK(v) = fK(v) − b are respectively the sodium and potassium

conductances divided by the electrical capacitance of the membrane. Further, fNa(v) and

fK(v) are positive and monotonically decreasing functions, and parameters b > a > 0 are

such that fNa(0) > a, fK(0) > b, and fK(0)− fNa(0) > b− a. Taking fNa(v) and fK(v) in

the form of the Gaussian functions, fNa(v), fK(v) ∝ exp(−v2), and taking the value of time

delay tdel as the normalizing time scale, the authors arrived at the �nal equation of their

model:
dv

dt
= λ[−1−R1 exp(−v2(t)) +R2 exp(−v2(t− 1))]v, (5)

where λ = (b− a)tdel, R1, and R2 are constant parameters. Their typical values are λ = 3,

R1 = 1, and R2 = 2.2 [10]. The model plausibly describes the spike waveform, and exhibits a

rich dynamic behavior including pacemaker (i.e., self-oscillation) regime (see the right graph
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in Fig. 1). Despite all other assumptions, the key point of the MM model is a �nite delay in

the dynamics of potassium conductance. This point is the same as in our simpli�ed version

of the ML model. Nevertheless, the SDML model seems a way more grounded than the MM

model, which is derived from purely speculative consideration. Indeed, the parameters of the

former model are adopted from the ML model and have a clear biophysical meaning, while

the ones for the MM model are relatively abstract. In addition, there are many numerical

studies of both the ML model itself and neuronal networks with it as the single neuron

model (e.g., [13, 14]). In most of these studies, the ML model can be readily transformed

into the SDML model, but not into the MM model. This is especially true for the need

to adapt the constituent model of "chemical" synaptic interaction between neurons: unlike

the MM model, SDML neurons are coupled in exactly the same way (i.e., using the same

synapse model) as ML neurons. Therefore, the preference for the SDML model is apparent,

even though the MM model might also be quite fruitful potentially.

Finally, in a recent study [15] the standard ML neuron model has been supplemented

with a synapse-autapse [16], when the outgoing synapse of a neuron is simultaneously the

incoming one to the same neuron, i.e., the neuron is connected through the synapse to

itself. Due to the �nite time of both the axonal and chemical synaptic transmissions, the

synaptic current provides a delayed feedback for the neuron potential dynamics (cf. [17]).

The delayed feedback is functionally similar to the one we consider, though it has no relation

to the conductance of potassium ions.

2. Standard Morris-Lecar model and its delay-based simpli�cation

In the standard two-dimensional ML model [5, 6] (cf. [18]), the equations for dynamics

of the neuronal potential V and for relaxation dynamics of the normalized conductance w

of potassium ions are given by
Cm

dV

dt
= −Iion(V,w) + Istim,

dw

dt
=
w∞(V )− w

τ(V )
,

(6)

where Iion(V,w) is a sum of two ion currents and the leakage current,

Iion(V,w) = gCam∞(V )(V − VCa) + gKw(V − VK) + gL(V − VL), (7)
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Figure 2. Left graph: The blue (darker) curve is the numerical solution for dynamics of neuron

potential V (t) in the standard Morris-Lecar model (6) with the 1st excitability type at Istim = 45

µA/cm2. The red (lighter) curve is the corresponding numerical solution of the Simpli�ed Delay-

based ML (SDML) model (11) at tdel = 3 ms. Note that the spike shape is well preserved. Right

graph: The analogous solutions for the 2nd excitability type at Istim = 122 µA/cm2 and tdel = 3

ms. For the 2nd type, the spike amplitude in the SDML model grows substantially with increasing

tdel (see the bottom right graph in Fig. 3).

Istim is an external stimulating current, and the constituent functions

m∞(V ) =
1

2
[1 + tanh((V − V1)/V2)] , (8)

w∞(V ) =
1

2
[1 + tanh((V − V3)/V4)] , (9)

τ(V ) = τmax/ cosh((V − V3)/(2V4)). (10)

In numerical simulations reported further, we have used the following values of parame-

ters. For the ML model of the 1st neuronal excitability type [6]: Cm = 20 µF/cm2, gCa = 4

mS/cm2, gK = 8 mS/cm2, gL = 2 mS/cm2, VCa = 120 mV, VK = −84 mV, VL = −60

mV, V1 = −1.2 mV, V2 = 18 mV, V3 = 12 mV, V4 = 17.4 mV, τmax = 14.925 ms. These

parameters result in the resting potential value Vrest = −59.47 mV, which is the solution of

equation Iion(V,w∞(V )) = 0 and is very close to VL value. For the ML model of the 2nd

excitability type [6]: gCa = 4.4 mS/cm2, V3 = 2 mV, V4 = 30 mV, τmax = 25 ms, and all the

rest parameters are the same as those for the 1st type. In turn, these parameters result in

Vrest = −60.85 mV.
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The initial conditions for all numerical simulations of the ML model in this paper were

as follows: V (t = 0) = Vrest, w(t = 0) = w∞(Vrest).

As described above, the ML equations (6) can be simpli�ed to a single delay di�erential

equation

Cm
dV

dt
= −[gCam∞(V )(V − VCa) + gKw∞(V (t− tdel))(V − VK) + gL(V − VL)] + Istim, (11)

where tdel > 0 is a �xed time delay of several milliseconds. In particular, we have used tdel

value equal 3, 6, and 9 ms. For the interval 0 ≤ t < tdel, in Eq. (11) we use w∞(V (t))

instead of w∞(V (t− tdel)), i.e., while the time is small enough there is no delay. We refer to

the model described by Eq. (11) as the Simpli�ed Delay-based ML (SDML) model.

3. Results

We have numerically studied excitability properties of the SDML model (11) for the case

of stimulating the model neuron by constant depolarizing current.

The main results are shown in Fig. 3. In particular, according to the hallmark dependence

"spike generation frequency - strength of constant stimulating current", for the SDML model

with parameters corresponding to the 1st and 2nd types of excitability for the ML model,

the excitability types are preserved within the time delay interval 2.5 ms ≤ tdel ≤ 15 ms

(blue curves on the upper graphs in Fig. 3). De�ned as di�erence Vmax − Vmin, where Vmax

and Vmin are the maximal and minimal values of the neuron's potential at given stimulating

current Istim, the spike amplitude is shown ibid, by the corresponding green curves for three

di�erent values of tdel. In the above tdel interval, periodic spike generation depending on the

value of Istim ≥ Imin always starts with a discontinuous occurrence of the spike amplitude at

Istim = Imin, regardless of the excitability type. Periodic spiking stops at Istim ≥ Imax [19]

so that it is possible only in a �nite range of stimulating current values, Imin ≤ Istim < Imax.

In turn, upon stimulation with the minimal current necessary for periodic spike generation,

Istim = Imin, the spike amplitude monotonically increases as the function of tdel over the

entire interval 2.5 ms ≤ tdel ≤ 15 ms for the 1st excitability type. For the 2nd type,

this dependence is not monotonic in the range of 2.5 ms ≤ tdel ≤ 7 ms, but it returns to

monotonous growth further (see the green curves in the lower graphs in Fig. 3).

A striking di�erence between the 1st and 2nd types of excitability can be seen in the

corresponding dependencies of Imin on tdel: for the 1st type, Imin = 40 µA/cm2 and does not
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Figure 3. For the 1st (left graphs) and 2nd (right graphs) excitability types, the top graphs show the

dependencies of the spike amplitude (left green scale and green curves) and spiking frequency (right

blue scale and blue curves) on constant stimulating current Istim for time delay tdel = 3 ms (thin

curves), 6 ms (intermediately thick curves), and 9 ms (thick curves). The minimal values of Istim

for generating periodic spikes, denoted further by Imin, are marked with the gray upward-pointing

arrow. In turn, the bottom graphs show dependencies of the minimal stimulating current Imin (left

blue scale and blue curves with �lled circles) and the spike amplitude (right green scale and green

curves with �lled triangles) on time delay tdel.

depend on tdel in the entire range 2.5 ms ≤ tdel ≤ 15 ms, and, for the 2nd type, an explicit

hyperbolic-like dependence Imin(tdel) is observed (see the blue curves on the lower graphs in

Fig. 3).

Finally, another striking di�erence occurs at small values of tdel, in particular, at tdel

= 1.5 ms and 2 ms. For the ML model parameters resulting in the 2nd excitability type,

at these values of tdel periodic generation of spikes in the SDML model does not occur at

any value of Istim. In turn, for the parameters leading to the 1st type in the ML model,
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Figure 4. Two central graphs: Dependencies of the spike amplitude (left green scale and green

curves) and spiking frequency (right blue scale and blue curves) of the SDML model neuron on

constant stimulating current Istim at time delay tdel = 1.5 ms (left graph) and tdel = 2 ms (right

graph), for the model parameters corresponding to the 1st excitability type in the original ML model.

In the SDML model, however, the graphs show the discontinuous occurrence of spiking frequency

meaning that the excitability type has changed to the 2nd one. The four gray-background graphs

on both sides show examples of dynamics of the neuron potential in the SDML model at tdel = 1.5

ms (the leftmost graphs) and tdel = 2 ms (the rightmost graphs) for speci�c Istim values indicated

on each graph.

the SDML model at small tdel values changes its excitability type to the 2nd one (Fig. 4).

Speci�cally, at tdel = 1.5 ms, periodic spikes appear sharply with high frequency 156.3 Hz

at Imin = 84 µA/cm2 that is typical for the 2nd excitability type. At lower values of Istim,

periodic spikes are preceded by damped oscillations of the neuron potential, which are also

a sign of the 2nd type (e.g., see [20]). At tdel = 2 ms, the picture is similar, although in this

case Imin = 40 µA/cm2, i.e., it coincides with Imin value for the true 1st excitability type

(see the left graphs in Fig. 3). Nevertheless, in this case periodic spikes at Istim = Imin also

occur at a su�ciently high frequency (62.5 Hz) straight away (notice a pronounced latency

of the occurrence). Thus, these results for the SDML model indicate that (i) at small values

of tdel (. 2 ms) only the 2nd excitability type is possible, and (ii) for the model parameters

corresponding to the 1st type in the ML model, the 2nd type transforms into the 1th type

with increasing tdel (this transition occurs in the range 2 ms < tdel < 2.5 ms).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 18, 2022. ; https://doi.org/10.1101/2022.01.15.476459doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.15.476459


10

4. Conclusion

The classical two-dimensional Morris-Lecar (ML) model has been elementary simpli�ed

to a single delay di�erential equation (referred as "Simpli�ed Delay-based Morris-Lecar

(SDML) model"), which preserves the occurrence of spikes upon stimulation of the model

neuron with direct current. With this simpli�cation, both (i) the initial type of neuronal

excitability and (ii) the biophysically realistic waveform of a spike are also preserved in

a relatively wide range of the time delay parameter. An additional observation is that a

simulation (by the standard Euler method, see Supplementary Material) of the SDML model

runs noticeably faster than that of the ML model. It could be bene�cial for modeling large

neuronal networks, where the ML model is used for single neuron dynamics (cf. [21]).

Data and code availability

The Supplementary Material to this paper contains the data for all graphs in the Figures

and ready-to-use MATLAB/Octave codes for reproducing the simulations. It is available

online at https://doi.org/10.6084/m9.figshare.18480767.
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