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Abstract 

 It remains challenging for single-sequence protein structure prediction with AlphaFold2 and other 

deep learning methods. In this work, we introduce trRosettaX-Single, a novel algorithm for single-

sequence protein structure prediction. It is built on sequence embedding from s-ESM-1b, a supervised 

transformer protein language model optimized from the pre-trained model ESM-1b. The sequence 

embedding is fed into a multi-scale network with knowledge distillation to predict inter-residue 2D 

geometry, including distance and orientations. The predicted 2D geometry is then used to reconstruct 3D 

structure models based on energy minimization. Benchmark tests show that trRosettaX-Single 

outperforms AlphaFold2 and RoseTTAFold on natural proteins. For instance, with single-sequence input, 

trRosettaX-Single generates structure models with an average TM-score ~0.5 on 77 CASP14 domains, 

significantly higher than AlphaFold2 (0.35) and RoseTTAFold (0.34). Further test on 101 human-

designed proteins indicates that trRosettaX-Single works very well, with accuracy (average TM-score 

0.77) approaching AlphaFold2 and higher than RoseTTAFold, but using much less computing resource. 

On 2000 designed proteins from network hallucination, trRosettaX-Single generates structure models 

highly consistent to the hallucinated ones. These data suggest that trRosettaX-Single may find immediate 

applications in de novo protein design and related studies. trRosettaX-Single is available through the 

trRosetta server at: http://yanglab.nankai.edu.cn/trRosetta/. 
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Introduction 

AlphaFold2 1 and other protein structure prediction methods, such as RoseTTAFold 2, trRosetta 3 

and trRosettaX 4, make use of the co-evolution signal embedded in a pre-generated multiple sequence 

alignment (MSA). However, no MSA could be built for proteins that do not have any homologous 

sequences in the current sequence database. In our test with the CASP14 targets, all methods perform 

poorly for single-sequence input (see Figure S1). For example, the average TM-score 5 for the models 

predicted by AlphaFold2 drops dramatically from >0.8 (with MSA) to ~0.3 (with single sequence). 

Interestingly, all tested methods (AlphaFold2, RoseTTAFold and trRosettaX) show similar level of 

accuracy for single-sequence input. We conclude that it remains challenging to predict accurate structure 

with single-sequence information, even with the state-of-the-art methods. In practice, there do exist some 

proteins (e.g., from eukaryote) with limited number of homologous sequences. It is thus worthwhile 

developing single-sequence protein structure prediction methods. 

Many protein language models 6-11 have been developed in recent years, inspired by the 

development of new natural language processing approach, especially transformer 12 and BERT 13. These 

models are typically trained on large sequence database in an unsupervised way, i.e., to generate training 

objectives from the sequences alone. Subsequent small-scale supervised training for downstream tasks, 

e.g., the prediction of secondary structure and inter-residue contact, shows that the pre-trained models 

are helpful for these structure-related tasks even if they are trained with sequence information only 6. 

These successes pave the way for developing accurate deep learning-based approach to single-sequence 

protein structure prediction. 

Compared with MSA-based protein structure prediction, only limited studies were done for single-

sequence protein structure prediction with deep learning. SSCpred 14 is a deep convolutional network for 

contact map prediction using sequence one-hot encoding and 23 predicted 1D structural features. It is 

improved by SPOT-Contact-Single 15 by using a pre-trained language model ESM-1b 6. Both SSCpred 

and SPOT-Contact-Single predict the 2D contact map only. To the best of our knowledge, RGN2 is the 

first reported deep learning-based single-sequence method for 3D structure prediction 16. RGN2 makes 

use of a transformer protein language model to learn structural information and uses a geometric module 

to generate the backbone structure. However, no web server or standalone package is available for RGN2. 

In this work, we introduce trRosettaX-Single, a deep learning-based single-sequence protein 
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structure prediction method with supervised transformer protein language model. Benchmark tests show 

that our method outperforms AlphaFold2 and RoseTTAFold on natural proteins. On designed proteins, 

trRosettaX-Single is competitive with AlphaFold2 and outperforms RoseTTAFold. trRosettaX-Single 

also generates significantly more accurate contact prediction than SPOT-Contact-Single on all 

independent test sets. 

 

 

Results 

Overview of trRosettaX-Single 

The overall architecture of trRosettaX-Single is shown in Figure 1A. The only input to trRosettaX-

Single is the amino acid sequence of a target protein. The sequence is fed into a new transformer protein 

language model s-ESM-1b to obtain single representation and attention maps (pair representations). 

Together with one-hot encoding, the protein sequence is represented as a L×L×4756 tensor, which is the 

input to a multi-scale network (denoted by Res2Net_Single) used in trRosettaX. The network outputs the 

predicted 2D geometry, including inter-residue distance and orientations defined in trRosetta3. The 

predicted 2D geometry is then converted into spatial constraints to guide structure folding based on fast 

energy minimization. 

 

 

Comparison with MSA-trained methods 

We compare trRosettaX-Single with three methods trained with MSA (AlphaFold2, RoseTTAFold 

and trRosettaX) in terms of accuracy of predicted inter-residue distance and structure models on three 

benchmark datasets. The accuracy of predicted inter-residue distance is measured by distance precision 

proposed in 17. The residue pairs are first ranked by the predicted probability of inter-residue distance ≤ 

20 Å. The distance precision is then defined as the ratio of correctly predicted residue pairs (i.e., the 

difference between the predicted and the real distances is less than 2 Å) over the top 15L residue pairs 

(separation ≥ 12), where L is the length of sequence. The accuracy of the predicted structure models is 

measured by TM-score 5. All methods are installed and run locally without any sequence or structural 

homologs. For RoseTTAFold, we only assess its pyRosetta version, which was more accurate than its 

e2e version in our observations. 
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Performance on the CASP14 dataset. The full-length sequences for 51 targets from CASP14 are 

first submitted to all methods to predict inter-residue distances/contacts and full-length structure models. 

Similar to the official evaluation, the predictions are then trimmed into domains based on the official 

domain definitions for the subsequent domain-based assessment. On CASP14’s 77 domains, trRosettaX-

Single achieves a mean distance precision of 0.475 for the predicted inter-residue distances, significantly 

higher than AlphaFold2 (0.298), RoseTTAFold (0.249) and trRosettaX (0.179) (Table S1). Figure 1B 

shows that all methods have higher distance precision for the TBM domains than the FM+FM/TBM 

domains, though no sequence or structure homologs were used for both types of domains. This may 

suggest that the TBM domains are on average easier to fold than the FM+FM/TBM domains by nature, 

as further illustrated by the quality of the predicted structure models. trRosettaX-Single’s average TM-

score is 0.596 for 50 TBM domains (Figure 1C), for which 33 have correctly predicted fold (i.e., TM-

score > 0.5). In comparison, the average TM-scores (resp. the number of domains with correctly predicted 

fold) are 0.364, 0.371, 0.28 (resp. 10, 10, 4) for AlphaFold2, RoseTTAFold and trRosettaX, respectively 

(Figure 2A). It remains challenging to predict the structure for CASP14’s FM+FM/TBM domains with 

single sequence, for which trRosettaX-Single and AlphaFold2 have similar average TM-score (~0.33), 

much lower than the TBM domains. 

Performance on targets with few sequence homologs. As there exists a significant number of 

sequence homologs for most CASP14 targets (even for the FM targets), we further tested all methods on 

a set of 54 targets (named as Orphan54) with limited number of homologous sequences in the current 

sequence database (the effective number of homologous sequences is less than 10 according to HHblits 

18 search against the Uniclust30_2018). Figure 1B shows that the average precision of the predicted 

distances on this dataset by trRosettaX-Single (0.365) is higher than AlphaFold2 (0.339), RoseTTAFold 

(0.321) and trRosettaX (0.179). When this improved distance is used in the subsequent folding, 

trRosettaX-Single generates more accurate structure models than others: the average TM-scores (Figure 

1C) are 0.455, 0.411, 0.406, 0.307 for trRosettaX-Single, AlphaFold2, RoseTTAFold and trRosettaX, 

respectively. 

A total of 7 proteins in Orphan54 do not have any homologous sequences in Uniclust30_2018 (red 

points in Figure 2B). For these proteins, the average TM-score of the structure models predicted by 

trRosettaX-Single is 0.63, significantly higher than AlphaFold2 (0.46), RoseTTAFold (0.471) and 
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trRosettaX (0.345). trRosettaX-Single is able to predict correct fold for six out of these proteins. Figure 

3A shows the results on a representative target (PDB ID: 6LF2). The distance maps predicted by 

AlphaFold2 and RoseTTAFold are blurred with low distance precisions (0.178 and 0.326, respectively). 

The predicted structure models also have low TM-scores, i.e., 0.248 for AlphaFold2 and 0.348 for 

RoseTTAFold. In contrast, the distance map predicted by trRosettaX-Single is similar to the native 

distance map with a distance precision of 0.906; and the predicted structure model has a high TM-score 

of 0.897. 

Performance on human-designed proteins. Human-designed proteins are ideal candidates for 

benchmarking single-sequence folding. Here we evaluate our method on 101 human-designed proteins. 

Figures 1B, 1C and Figure 2 show that all methods predict much more accurate inter-residue distances 

and structure models on these proteins. For example, trRosettaX-Single achieves a mean TM-score of 

0.765 on this dataset, significantly higher than that on other datasets (0.455 on Orphan54; 0.497 on 

CASP14 domains). This is consistent with our previous observation that trRosetta generates significantly 

more accurate structures for designed proteins than natural proteins3. This is probably because the 

designed proteins have been manually optimized with exceptional stability and easier to predict than 

natural proteins. Except AlphaFold2, trRosettaX-Single outperforms RoseTTAFold and trRosettaX on 

the designed proteins. Figures 1C and 2C show that trRosettaX-Single achieves an average TM-score of 

0.765 and generates correct fold for 95 out of 101 designed proteins, higher than RoseTTAFold (0.745, 

92) and trRosettaX (0.663, 85).  

We find that the recycle mechanism in AlphaFold2 plays a key role in improving the structure 

models for designed proteins. If we run AlphaFold2 with no recycle (i.e., walking through the whole 

model only once, by assigning the parameter “num_cycle” to zero), the average TM-score drops from 

0.841 to 0.649, lower than trRosettaX-Single (Figure S2). Figure 3B shows a representative example 

(PDB ID: 6W3G), on which the TM-scores of the models predicted by the single-pass and the recycled 

AlphaFold2 are 0.16 and 0.868, respectively. The predicted structure model by the single-pass 

AlphaFold2 is a turned alpha-helix with no long-range interactions. The recycle mechanism helps 

AlphaFold2 to fix the interactions, resulting in a much more accurate predicted structure. trRosettaX-

Single achieves a TM-score of 0.875 on this protein, which is significantly higher than the single-pass 

AlphaFold2 model and close to the recycled one. Inspired by AlphaFold2, we also tried to train a model 
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with similar mechanism but did not see significant improvement. This may be because our method is not 

end-to-end and only the predicted 1D and 2D information rather than 3D structure information could be 

fed into the network. 

 

Comparison with methods trained with single sequence 

As mentioned in the Introduction, a few methods trained with single sequence have been reported 

in the literature, including SSCpred, RGN2 and SPOT-Contact-Single 15. As RGN2 is not available and 

SPOT-Contact-Single was shown to outperform SSCpred, we compare trRosettaX-Single with SPOT-

Contact-Single only. The comparison is based on contact precision because SPOT-Contact-Single 

predicts inter-residue contacts rather than 3D structure. The contact precision is defined as the number 

of correctly predicted contacts out of the predicted top L long-range contacts (i.e., with distance ≤ 8 Å 

and sequence separation ≥ 24). The mean precisions of the predicted contacts by both methods are shown 

in Figure 4A, suggesting that trRosettaX-Single consistently outperforms SPOT-Contact-Single for all 

benchmark datasets. Head-to head comparisons in Figure 4B indicate that for most targets, trRosettaX-

Single achieves more accurate contact predictions than SPOT-Contact-Single. For example, the average 

precisions of trRosettaX-Single and SPOT-Contact-Single on the 101 human-designed proteins are 0.608 

and 0.41, respectively. For 92 out of these proteins, trRosettaX-Single has higher precision than SPOT-

Contact-Single. As both methods use protein language models to encode the single sequence, the superior 

performance of trRosettaX-Single over SPOT-Contact-Single may be attributed to the more powerful 

multi-scale network Res2Net (compared with ResNet in SPOT-Contact-Single) and a few key factors, 

such as the supervised training of the pre-trained ESM-1b, knowledge distillation, etc. More detailed 

discussions about these factors are given below. 

 

Application to hallucinated proteins 

We further test our method on the 2000 hallucinated proteins, which were de novo-designed by deep 

network hallucination19. As shown in Figure 5A, the predicted structure models by trRosettaX-Single are 

highly consistent to the hallucinated structures, with a mean TM-score of 0.902. As the experimental 

structures for most of these proteins are unknown, we estimate the TM-score of the predicted models 

(see the next section). The average of the estimated TM-scores of the predicted structure models for these 
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proteins is 0.86. For all proteins, the predicted models are estimated to have the correct fold. On three 

proteins (0217, 0515 and 0738) that have been determined by X-ray diffraction or NMR experiments, 

trRosettaX-Single generates structure models with similar accuracy (i.e., TM-score and RMSD) to the 

hallucinated ones (Figure 5B). These data illustrate again the potential application of trRosettaX-Single 

in protein design. The high accuracy achieved on designed/hallucinated proteins implies the possibility 

of developing similar hallucination methods based on trRosettaX-Single.  

 

Ablation study 

With supervised learning, we re-trained the language model ESM-1b from its initial parameters. 

The new model (s-ESM-1b) was then used to generate extra features from single sequence. In addition, 

a few training strategies were explored to make full use of the limited sequence information (see 

Methods). To analyze their contributions, we train and evaluate six ablation models below (the datasets 

used by each model are indicated in parentheses). 

a) baseline model using sequence one-hot encoding only (Single15015); 

b) baseline + ESM-1b (Single15015); 

c) baseline + ESM-1b + knowledge distillation (MSA15015 + Single15015); 

d) baseline + s-ESM-1b (Single15015); 

e) baseline + ESM-1b + extended training set (Cluster22503);  

f) final model with all components listed above (MSA15015 + Single15015 + Cluster22503). 

 

The above ablation models are used to predict the inter-residue distances. trRosettaX is used as a 

control here as it adopts a similar neural network architecture. To save time, no ensemble is applied and 

no structure modeling step is performed in this analysis. The differences between the precisions of the 

predicted distances by the ablation models and trRosettaX are summarized in Figure 6A. When no pre-

trained language model is used, the baseline model has similar or lower precision than trRosettaX. With 

the introduction of the ESM-1b features, the predicted distances for natural proteins become much more 

accurate than trRosettaX. However, for designed proteins, we do not see any significant difference 

between using or not using ESM-1b. With supervised training in s-ESM-1b, knowledge distillation and 

extended training set, we are able to make consistent improvements for all datasets. The most accurate 
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model is obtained by considering all components in the final model, which has 0.3, 0.18, 0.21 higher 

distance precision than trRosettaX on the CASP14, Orphan54 and Design101, respectively. 

 

Confidence score of predicted structure models 

In trRosetta and trRosettaX3, 20, the TM-scores of the predicted structure models are estimated 

using the confidence of the predicted distance and the convergence of the top structure models. Here we 

extend this estimation in trRosettaX-Single using three variables. The first one is mP2017, which 

measures the average probability of the predicted top 15L inter-residue distances (distance ≤ 20 Å). For 

each residue pair, the standard deviation of the probability values from the predicted distance distribution 

is first calculated. The second one is the average of the standard deviations over all residue pairs. The 

third one is the average pair-wise TM-score of the top 10 non-constrained structure models (the same as 

in trRosettaX). Linear regression over these three variables is employed to estimate the TM-score of a 

predicted structure model. For the targets from the three benchmark datasets, the estimated TM-score 

correlates very well with the real TM-score of the predicted models (Pearson’s r is 0.916, Figure 6B). 

 

 

Conclusions 

We have introduced trRosettaX-Single for single-sequence protein structure prediction using 

supervised transformer protein language models and distilled multi-scale networks. trRosettaX-Single 

outperforms AlphaFold2 and RoseTTAFold on natural proteins. trRosettaX-Single achieves an average 

TM-score of 0.77 on 101 human-designed proteins, which is competitive with AlphaFold2 (0.84) and 

more accurate than RoseTTAFold (0.76), but with much less computer resource. Compared with the 

single-sequence-trained contact prediction method SPOT-Contact-Single, trRosettaX-Single is 

significantly more accurate for all benchmark datasets. The above data show that it is possible to increase 

the accuracy of single-sequence protein structure prediction with supervised transformer-based protein 

language models. However, we admit that the accuracy of single-sequence structure prediction for natural 

proteins is still far from satisfactory. In future we hope to move the single-sequence accuracy towards 

the MSA-based level further. 
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Methods 

Datasets 

Two datasets are used to train our network. The first is a high-quality dataset from our previous 

works3, 4, including 15051 non-redundant (< 30% pairwise sequence identity) chains from PDB released 

before 2018-05. The structures in this dataset are from high-resolution (≤ 2.5 Å) X-ray entries and each 

chain’s MSA has at least 100 homologous sequences. Knowledge distillation is done with the MSAs in 

this dataset. For convenience, we denote this dataset by MSA15015 or Single15015, respectively, 

depending on if MSAs or single sequences are used during training. The second set is an extended version 

of the first one by relaxing the criteria (i.e., no requirements of structure determination methods and 

number of homologous sequence). It contains 330080 protein chains released before 2018-05, which are 

then clustered at 30% sequence identity cutoff, resulting in 22503 clusters. For convenience, this dataset 

is denoted by Cluster22503. At each training epoch, we cycle through all clusters and randomly select a 

protein chain from each cluster. 

Three independent test sets are used to compare our method with others. 1) CASP14 targets. We 

collect 77 domains from CASP14, after removing two targets without experimental structures (T1085 

and T1086, involving 6 domains). T1044 (due to its huge size) and its domains (T1031, T1033, T1035, 

T1037, T1039, T1040, T1041, T1042, T1043) are also removed. 2) Orphan54. This set contains 54 non-

redundant (< 30% pairwise sequence identity) single sequences from native proteins released after 2020-

05 with Neff (i.e., the effective number of homologous sequences in MSA) less than 10 (according to 

HHblits18 search against Uniclust30_2018 with default parameters). 3) Human-designed proteins 

(Design101). From PDB, we collect all single-chain structures with keywords “de novo designed” or 

“computational designed” in the structure titles. Structures with <50 or >300 AAs or with too simple 

topologies (e.g., a single α-helix) are removed. Then we run HHblits against Uniclust30_2018 and 

remove the structures with sequence homologs. The remaining targets are then merged with the 35 

designed proteins from previous works3, 21, resulting in 101 human-designed targets. Details about the 

above datasets are summarized in Table S3.  
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Network architecture 

As shown in Figure S3, trRosettaX-Single’s network (denoted by Res2Net_Single) contains two 

groups of Res2Net blocks, which output 128 and 256 feature maps, respectively. After the last Res2Net 

block, four classifiers consisting of a 1×1 convolutional layer and a softmax operation are used to predict 

the probability distributions of the inter-residue geometries (Cβ-Cβ distance and three orientations, 

defined in trRosetta 3). 

 

Supervised transformer protein language model s-ESM-1b 

The features extracted from unsupervised pre-trained protein language model (i.e., ESM-1b6) 

show strong correlation with some structural characteristics, such as secondary structure, inter-residue 

contact and ligand-binding site. We propose that the correlation can be further enhanced by supervised 

training of ESM-1b on specific tasks starting from the pre-trained parameters.  

In this work, we re-train the ESM-1b parameters based on supervised learning, resulting in a new 

model s-ESM-1b (Figure S4). As shown in Figure S4, we optimize ESM-1b on two objectives. The first 

is to predict the amino acid types of the randomly masked positions (with 15% rate), supervised by the 

cross-entropy loss (Lmask) between the predicted probability distributions and the one-hot encoding of 

real types. Note that the calculation of Lmask involves all positions of the sequence to guarantee that the 

amino acid types of the unmasked positions are also predicted correctly. The second is to predict the 

inter-residue geometry. The attention maps and the 1D representation of the masked sequence are fed 

into the network Res2Net_Single together with the one-hot encoding of the predicted sequence to predict 

the inter-residue geometry, supervised by its cross-entropy loss with the native (Lgeometry, the same as 

those defined in trRosetta). The parameters in Res2Net_Single are also updated in this process. The total 

loss is Lmask + Lgeometry with equal weights. 

 

Input features 

The input to the network includes 1D and 2D features. The 1D features include the one-hot 

encoding of each residue’s amino acid type (20 channels) and the sequence representation vector (1280 

channels) from s-ESM-1b. A linear layer with 1×1 convolution is first used to reduce the number of 1D 

channels from 1300 (=20+1280) to 64. They are then converted to 4096 (=642) 2D feature maps with 
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outer product operation. Additionally, we extract the attention maps from all 33 layers (20 heads per layer) 

of s-ESM-1b, resulting in 33×20=660 attention maps. To summarize, the input to Res2Net blocks consists 

of 4756 (=4096+660) 2D feature maps. 

 

Knowledge distillation guided by MSA-based network 

Knowledge distillation22 is a training technique to transfer the knowledge from a confident pre-

trained network (also named as teacher network) into a pre-mature network (also named as student 

network). The student network is trained under the supervision of the soft labels generated by the teacher 

network. In this work, the knowledge from a pre-trained MSA-based network (i.e., the teacher network, 

denoted by Res2Net_MSA; the MSA features are the same as those used in trRosetta) is distilled to 

Res2Net_Single (i.e., the student network). During training, the MSA of a training target is fed into the 

pre-trained teacher network Res2Net_MSA to produce a probability distribution. The Kullback-Leibler 

divergence between this probability distribution and the one from the student network Res2Net_Single 

are used as an extra loss (Ldistill) together with the geometry loss (Lgeometry). Equal weights are used for 

both losses. The training sets MSA15051 and Single15051 are used as MSAs are needed for the teacher 

network. 

 

Training of the final models 

The training procedure for building the final model consists of two stages. First, we train a 

Res2Net_Single model on MSA15051, with the distillation guided by a pre-trained network 

Res2Net_MSA. The distilled Res2Net_Single parameters are refined by the subsequent training, 

including the supervised re-training of ESM-1b and the update of Res2Net_Single with extended training 

set Cluster22503. A total of 6 models are trained with same configurations. The final prediction is based 

on the ensemble of these models. 
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Figures 

 

Figure 1. The architecture and performance of trRosettaX-Single. A. overview of trRosettaX-

Single. s-ESM-1b is a supervised transformer protein language model with initial parameter from 

ESM-1b. Res2Net_Single is a knowledge-distilled multi-scale neural network. B. comparison with 

MSA-trained methods in terms of the precision of predicted inter-residue distances. The bottom and 

top of each box refer to the first and third quartiles, respectively. The horizontal line and the white 

hole inside the box refer to the median and the mean, respectively. C. comparison with MSA-trained 

methods in terms of the average TM-score of the predicted structure models. All predictions are 

made without any sequence or structural homologs.  
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Figure 2. Head-to-head TM-score comparison between trRosettaX-Single and other MSA-

trained methods. The red and blue points in A are for CASP14 FM+FM/TBM and TBM domains, 

respectively. The red points in B are targets without any sequence homologs. The dashed horizontal 

and vertical lines in A-C correspond to TM-scores of 0.5. 
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Figure 3. Comparison between trRosettaX-Single, AlphaFold2 and RoseTTAFold on two 

example proteins. The lower and upper triangles are the native and predicted distance maps, 

respectively. The predicted structure models and the native structure are shown in color and gray 

cartoons, respectively. A. comparison with AlphaFold2 and RoseTTAFold on 6LF2, an orphan 

protein without any homologous sequence. B. comparison with both the single-pass and the recycled 

AlphaFold2 on a human-designed protein 6W3G. 
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Figure 4. Precision of predicted contacts.  A. average precisions of the top L long-range contacts 

predicted by trRosettaX-Single and SPOT-Contact-Single on the benchmark datasets. B. head-to-

head comparisons based on contact precision. The red and blue points in the first plot are CASP14 

FM+FM/TBM and TBM domains, respectively. 
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Figure 5. Application to hallucinated proteins. A. TM-score distributions. The blue curve is for the 

TM-scores between trRosettaX-Single models and the hallucinated models (predicted by trRosetta). 

The orange curve is for the estimated TM-scores of the trRosettaX-Single models. B. the superposition 

of the trRosettaX-Single models (blue cartoon) and the hallucinated models (red cartoon) against the 

experimental structures (grey cartoon) for three hallucinated proteins.  
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Figure 6. Ablation study and estimation of model accuracy. A. distance precision difference 

between trRosettaX and other ablation models. B. correlation between the real and the estimated 

TM-scores. The formula for estimating the TM-score is given at the bottom of the figure. 
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