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Abstract 
Motivation: Ubiquitination is widely involved in protein homeostasis and cell signaling. Ubiquitin E3 

ligases are critical regulators of ubiquitination that recognize and recruit specific ubiquitination targets 

for the final rate-limiting step of ubiquitin transfer reactions. Understanding the ubiquitin E3 ligase ac-

tivities will provide knowledge in the upstream regulator of the ubiquitination pathway and reveal po-

tential mechanisms in biological processes and disease progression. Recent advances in mass spec-

trometry-based proteomics have enabled deep profiling of ubiquitylome in a quantitative manner. Yet, 

functional analysis of ubiquitylome dynamics and pathway activity remains challenging.   

Results: Here, we developed a UbE3-APA, a computational algorithm and stand-alone python-based 

software for Ub E3 ligase Activity Profiling Analysis. Combining an integrated annotation database with 

statistical analysis, UbE3-APA identifies significantly activated or suppressed E3 ligases based on 

quantitative ubiquitylome proteomics datasets. Benchmarking the software with published quantitative 

ubiquitylome analysis confirms the genetic manipulation of SPOP enzyme activity through overexpres-

sion and mutation. Application of the algorithm in the re-analysis of a large cohort of ubiquitination 

proteomics study revealed the activation of PARKIN and the co-activation of other E3 ligases in mito-

chondria depolarization-induced mitophagy process. We further demonstrated the application of the 

algorithm in the DIA-based quantitative ubiquitylome analysis.  

Availability: Source code and binaries are freely available for download at URL: 

https://github.umn.edu/chen-lab/Ub-E3-ligase-Activity-Profiling-Analysis, implemented in python and 

supported on Linux and MS Windows  

Contact: yuechen@umn.edu 

Supplementary information: Supplementary data are available. 

 

 

1 Introduction  

Ubiquitylation is a key protein post-translational modification (PTM) 

involved in diverse cellular processes including protein homeostasis, cell 

signaling and epigenetic regulations. Its E1-E2-E3 cascades linking an iso-

peptide bond between the c-terminus of ubiquitin and a lysine residue of 

the target protein (Pickart, 2003) to form a mono- or a polymer chain of 

ubiquitin with eight distinct linkage types. Ubiquitylation not only acts as 

the essential modification in protein degradation through proteasome that 

accounted for the breakdown of over 80% of the proteins (Lee and 

Goldberg, 1998), but it also plays a crucial role in non-degradative func-

tions, including regulation of protein trans-location, protein-protein inter-

actions and enzymatic activity (Schnell and Hicke, 2003). Within the pro-

cess of ubiquitylation, E3, also known as the ubiquitin ligase, mediates the 

ubiquitination substrates specificity (Ordureau et al., 2015; Pickart, 2003). 

Changes in the E3 ligase activities will lead to changes in ubiquitination 

of its target proteins, and further regulate various downstream cellular pro-

cesses including cell-cycle, apoptosis, and transcription regulation 
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(Hoeller and Dikic, 2009). Studies have found that dysfunction of E3 lig-

ases and these cellular functions may lead to neurodegenerative diseases 

(McNaught et al., 2001; Oddo, 2008), cardiovascular diseases (Herrmann 

et al., 2004), and development of cancer (Hoeller et al., 2006; Nakayama 

and Nakayama, 2006), while therapies and drugs have been developed to 

target specific E3 ligases for potential clinical applications (Petroski, 

2008; Bulatov and Ciulli, 2015). Therefore, it is important to develop strat-

egies that evaluate the activities of different E3 ligases in a system-wide 

manner. 

Recent advances in mass spectrometry have enabled deep profiling of 

PTM pathways. Combining with quantitative proteomics strategies such 

as SILAC and isobaric labeling, proteomics analysis allows system-wide 

profiling of PTM dynamics at the site-specific level. Such quantitative in-

formation provides a rich resource to develop computational tools evalu-

ating PTM pathway activities (Olsen and Mann, 2013). Recent efforts 

studying kinase activities based on quantitative phosphorylation datasets 

have led to the development of several tools, including  PTMsigDB (Krug 

et al., 2019), IKAP (Mischnik et al., 2016), KinasePA (Yang et al., 2016), 

KSEA (Wiredja et al., 2017), and KEA3 (Kuleshov et al., 2021). Among 

these models, KEA3 collected 24 kinase substrate libraries from different 

sources as their database and test significance of kinase integrating sum 

rank tests results of all libraries, while the rank-sum test in PTMsigDB 

was supported by a collection of site-specific PTM signature of perturba-

tions, kinase states and pathway activities from published studies (Krug et 

al., 2019). IKAP used a non-linear optimization routine to find enriched 

kinase, KinasePA used the direction pathway analysis to study insulin 

pathways (Yang et al., 2014) and KSEA applies z-score test to find differ-

entially activated kinases. Despite these advances in kinase analysis, there 

is lack of bioinformatic strategies for evaluating ubiquitin E3 ligase activ-

ities.      

Improvements in biochemical enrichment and chemical labeling strate-

gies have allowed global quantification of ubiquitination dynamics (Kim 

et al., 2011; Wagner et al., 2011; Udeshi et al., 2013; Elia et al., 2015) and 

measurement of site-specific ubiquitination stoichiometries (Li et al., 

2019). Recent bioinformatic efforts have led to the development of multi-

ple enzyme-substrate databases in the ubiquitination pathway (Li et al., 

2017; Nguyen et al., 2016; Li et al., 2021; Chen et al., 2019; Han et al., 

2012; Du et al., 2011). In this study, based on an integrated resource of 

ubiquitin E3 ligase and substrate network, we proposed a computational 

strategy UbE3-APA, Ubiquitin E3 ligase Activity Profiling Analysis (Fig-

ure 1, Table S1), for systematic evaluating ubiquitin E3 ligase activity 

based on quantitative ubiquitylome analysis. The model was validated 

with two published large-scale proteomics studies with different biologi-

cal context (Theurillat et al., 2014; Sarraf et al., 2013) and confirmed 

known regulatory mechanisms in the pathway.   

2 Methods 

2.1 Collecting E3–substrate interactions (ESIs) 

We integrated ubiquitin E3 ligases and substrates relationship data from 

the following three sources: UbiBrowser (Li et al., 2017), Ubinet (Li et 

al., 2021; Nguyen et al., 2016), and a multidimensional database collec-

tion (Chen et al., 2019). UbiBrowser is an extensive database that collects 

interactions between E3 ligases and substrates. They incorporate ESIs 

from both literature manual curation of and prediction based on a set of 

biological features and Bayesian models in their database. Another online 

platform that updated recently, Ubinet, focuses on ESI collection, predic-

tion, and visualization across different species. They predicted ESIs based 

on the substrate specificity of E3 ligases extracted from experiment veri-

fied interactions. To characterize the interaction network between E3 lig-

ases and their substrates, the Chen group collected ESIs from a variety of 

sources: E3net (Han et al., 2012), hUbiquitome (Du et al., 2011), Uniprot 

(Bateman et al., 2017), and BioGRID (Chatr-Aryamontri et al., 2017). 

They collected ESIs directly from the first two sources, and they gathered 

the interaction between E3 ligase and proteins in the last two databases 

through data mining and selected those physical interactions supported by 

low throughput methods. By integrating the Ub E3-substrate interaction 

network from these three resources, we established the database for Ub E3 

ligase activity profiling analysis (Table S2).  Only the interactions that 

were supported by literature from all sources above were integrated into 

our database. Those interactions solely supported by prediction models 

were not included. 

2.2 Algorithm development for ubiquitin E3 ligase activ-

ity profiling analysis  

The E3 ligase activity analysis model profiles E3 ligase activities based 

on a bootstrapping procedure by evaluating the difference between the 

Figure 1. A workflow of analyzing quantitative ubiquitylation proteome with E3 ligases activity profiling analysis. 
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quantitative ratios of E3 ubiquitination targets and the overall background. 

Firstly, the program collects the quantitative ratios of identified ubiquiti-

nation sites and proteins from proteomics analysis. To normalize the site-

specific ubiquitination ratios for statistical analysis, the program offers 

two options – computationally normalized values or protein-normalized 

values. Computationally normalized ubiquitination ratios are often pro-

vided by the quantification software. For example, Maxquant provides 

normalized site-specific ubiquitination ratios based on the median ratios 

of all quantified sites. To obtain protein-normalized ubiquitination ratios,  

the program will fetch the original ratios of both the ubiquitination sites 

and their corresponding ubiquitination proteins. The protein quantification 

ratios should be calculated excluding ubiquitinated peptides. The protein-

normalized ubiquitination site ratios are calculated by dividing the original 

site ratios by the original ratios of the corresponding proteins. The normal-

ized site-ratios are then log2 transformed for downstream analysis and av-

eraged to generate the quantification ratios of ubiquitination protein sub-

strates.  

Secondly, based on the integrated ubiquitin E3 ligase-substrate data-

base, the program iteratively analyzes each E3 ligase and extract all sub-

strates quantified for each E3 ligase in the quantitative datasets. Then, for 

each E3 ligase, the program collects the total number of quantified targets 

and the average quantification ratios of its targets.  

Thirdly, the program performs randomized selection from the quantifi-

cation datasets. At this point, the program offers two options for enrich-

ment testing – protein-level profile analysis and site-level profile analysis. 

For protein-level profile analysis, the program randomly selects the same 

number of ubiquitylation proteins as the number of targets for a specific 

E3 ligase and then computes the average quantification ratios of selected 

ubiquitination proteins. For site-level profile analysis, the program ran-

domly selects the same number of ubiquitylation sites as the number of 

sites quantified for known targets of a specific E3 ligase and then com-

putes the average quantification ratios of selected ubiquitination sites. The 

random selection process is repeated various times for every E3 ligase for 

parameter optimization and the data analysis in this study was performed 

with 10,000 repeats. 

Lastly, the average ratios of randomly selected groups of ubiquitination 

proteins or sites were fit into a normal distribution based on the central 

limit theorem. Based on this distribution, the program calculates the sta-

tistical significance for the averaged ratio of the E3 ligase protein targets 

or sites quantified in the dataset using the formula below. 

 

 

 

 

 

Here  𝑠̅  stands for the average quantification ratios of ubiquitination 

substrate proteins or sites quantified for a given E3 ligase in the dataset, 𝑟̅ 

stands for the average ratio of one group of randomly selected proteins or 

sites, 𝜎𝑟̅ stands for the standard deviation for the distribution of all the av-

erage ratios of randomly selected groups of ubiquitination proteins or 

sites, z stands for z-score and p stands for the p-value.  

The program outputs tab-delimited results in text format. To generate a 

more concise output file, the program offers the option to group E3 ligases. 

The grouping is helpful as some E3 ligases share ubiquitination targets 

and depending on the analysis depth, not all targets are quantifiable in the 

datasets. E3 ligases are grouped together with the leading E3 ligases has 

all the ubiquitination substrates in this group while the remaining E3 lig-

ases in the group only accounts for a subset of the ubiquitination substrates 

in the group with no unique substrates. In this way, users can filter out E3 

ligases that have no unique substrates but get enriched because of a few 

common substrates as shown in our analysis result, and therefore, put 

more emphasis on the E3 ligases whose activity profiles dominate the 

ubiquitination dynamics. The workflow was written into a python pack-

age, and can be accessed from either PyPI, the standard way of installing 

python package, or our GitHub webpage. 

2.3 Analysis of large-scale quantitative ubiquitylome pro-

teomics datasets 

We benchmarked our algorithm using two published global ubiq-

uitylome analysis. First, we collected original ubiquitylation ratios gener-

ated by two studies. One study focused on how SPOP-mutant affects ubiq-

uitylome and prostate cancer (Theurillat et al., 2014). From this study, we 

collected the protein-normalized median log2 ratio of quantified ubiquiti-

nation site under each experimental condition. The other one focused on 

the relation between mitochondrial depolarization and PARKIN-

dependent ubiquitylome (Sarraf et al., 2013). In this study, we collected 

the log2 site ratios of quantified ubiquitination site under each experi-

mental condition. Second, we reorganized original data into different ta-

bles according to experimental groups described in literature. In this way, 

the SPOP related data was reorganized into six groups, containing two of 

mutant-control, mutant-wildtype and mutant-wildtype each. Meanwhile, 

the PARKIN-related data was reorganized into 73 groups of experiments 

treated with different chemicals or with various genetic background.  

Thirdly, the protein-level UbE3-APA analysis was applied to profile E3 

ligase activities in both studies. Ubiquitin site ratios from both studies 

were log2 ratios, so we analyzed them directly without further log trans-

formation. For the PARKIN study, the grouped protein-level analysis was 

performed. In the group mode, the E3 ligases in the results were clustered 

when they are sharing the same set of quantifiable targets and the E3 ligase 

that has the greatest number of quantifiable substrates in the group was 

defined as the leading E3 ligase. Correlation of E3 ligase profiles between 

each pair of experiments was calculated with the two-dimensional Euclid-

ean distance between E3 ligase activity profiles in experiments.  

We further applied our model to two recently published ubiquitylome 

studies with DIA analysis. First, we gathered original ubiquitylation in-

tensities generated by two studies. One study explored how tumor necrosis 

factor (TNF) treatment affects ubiquitylome (Hansen et al., 2021a). And 

we collected the average log2 intensities of quantified ubiquitination site 

of treated group and mock group from this study respectively. The other 

study investigated ubiquitylome changes under USP7 inhibition with 

chemical inhibition and knockdown methods (Steger et al., 2021). In this 

study, we collected the average log2 site intensities of quantified ubiqui-

tination site under each experimental condition respectively. Second, we 

reorganized original intensity data into ratios by comparing different treat-

ment groups described in literature. In this way, we calculated the 

Treated/Mock ratios in TNF treatment study.  And we calculated 

siCTRL+FT671 / siCTRL+DMSO and siUSP7+FT671 / siUSP7+DMSO 

in the USP7 study. Lastly, we applied protein-level UbE3-APA analysis 

for both studies in the grouped mode.      

2.4 Model accessibility and utility 

We packed the whole UbE3-APA model into a python3 library on PyPI 

to make it accessible.  And the most direct way of installing the library is 
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executing the pip commend from a python console. For Unix/macOS us-

ers, use “python -m pip install ube3_apa”, and Windows users can use 

“python -m pip install ube3_apa” instead.  

The main function that performs that analysis is e3enrich. It takes two 

tables and a set of parameters as standard input. The first of two tables is 

the site ratio table which records the protein ID, the site position, and site 

ratio of every ubiquitylation site in this experiment. The second one, the 

protein ratio table, contains information about protein ID and the ratio of 

different proteins instead of sites. The input of this table is optional and 

triggers normalization of site ratio by corresponding protein ratio. Other 

parameters can be modified to fit different types of protein ID inputs, 

change the directory that results are generated and select various output 

formats based on research focus. A detailed explanation of this function is 

in the Supplementary Information.  And contents of input and output table 

were also explained (Table S1).  

All related files including the code, the E3 ligase substrate dictionary, 

example input files were also uploaded to GitHub, which can be down-

loaded from the following link: https://github.umn.edu/chen-lab/Ub-E3-

ligase-Activity-Profiling-Analysis/. 

 

3 Results 

3.1 Establish a comprehensive ESI interaction network 

We collected datasets with rich information of ESIs supported by bio-

logical experiments from multiple sources, including the UbiBrowser, the 

Ubinet, and another published ESI database (Li et al., 2017, 2021)(Chen 

et al., 2019). Comparing the information from the three data sources 

showed a largely overlapping information with some differences (Figure 

2). After removing redundancy and discrepancies, we established an inte-

grated database for human ubiquitin E3 ligase-substrate interaction that 

include 354 E3 ligases and 2501 interactions (Table S2). All E3 ligases 

interactions collected in the database were built in the package to allow 

comprehensive analysis. 

 

3.2 Profile E3 ligase activity in quantitative ubiquitylome 

studies 

     With the establishment of a comprehensive E3 ligase-substrate data-

base, the program collects the site and protein-specific data from quanti-

tative ubiquitylome studies. To profile E3 ligase activity based on this 

data, we reasoned that a physiologically meaningful changes in ubiquitin 

E3 ligase activities should be reflected on the overall changes of the ubiq-

uitination abundance of their corresponding targets (Figure 3a). As the 

ubiquitiylome proteomics analysis mainly provide site-specific quantifi-

cation of ubiquitination, the program offers the option to calculate the av-

eraged site ratios of a target protein to represent the ubiquitination changes 

of each protein for the protein-level E3 ligase activity profile analysis. 

Then, all quantified ubiquitination proteins for a specific E3 ligase in the 

dataset will be collected as a sample group. The same number of quanti-

fied ubiquitination proteins as the number of quantified substrates for any 

given E3 ligase will be randomly selected from the ubiquitylome dataset 

in a bootstrapping procedure. Based on the Central Limit Theorem, the 

average quantification ratios of each group of randomly selected ubiqui-

tinated proteins should form a normal distribution. Based on this reference 

distribution, we can estimate the statistical significance of the average 

ubiquitination ratio of the substrate group for an E3 ligase (Figure 3a). A 

significant change in the activity profile can indicate a significant increase 

or decrease of E3 ligase activity in the context of experimental conditions 

comparing to the overall changes in ubiquitination dynamics in the back-

ground. The protein-level E3 ligase activity profile analysis was used for 

the downstream applications.  

To further explore how the number of quantified substrates and the 

times of sampling may affect the analysis processes and results, we per-

formed tests with different parameters (Figure 3b-c). Our data showed 

that if more substrates of any given E3 ligases were quantified, the stand-

ard deviation of randomly selected sample ratios for the activity profile 

analysis decreased, which therefore led to more statistically significant es-

timation of E3 ligase substrate ratios based on the distribution (Figure 3b). 

This built-in mechanism of our model certainly supports the notion that 

E3 ligase activity profile could be better assessed if more E3 ligase sub-

strates were quantified. Our test of the sampling process showed that in-

creasing the number of random samplings in the bootstrapping process 

could reduce the variation of p-values calculated based on the sampling 

distribution and therefore led to more reliable and precise estimation of 

the statistical significance (Figure 3c). On the other hand, increasing the 

number of random samplings would also cost more time per run and re-

Figure 2. Overlap and integration of the E3 ligase-substrate data resources. 

 

  

Figure 3.  Establishing the statistical model for UbE3-APA a. Statistical model-

ing to evaluate an E3 ligase activity profile in UbE3-APA analysis. b. Variations of 

standard deviations of the sampling ratios towards E3 ligases with different number 

of quantified substrates (testing with a dataset in the SPOP study). c. Variations of 

p-value and analysis time for single run with various number of sampling times for 

SPOP E3 ligase activity profiling in a dataset of the SPOP study.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2022. ; https://doi.org/10.1101/2022.01.16.476541doi: bioRxiv preprint 

https://github.umn.edu/chen-lab/Ub-E3-ligase-Activity-Profiling-Analysis/
https://github.umn.edu/chen-lab/Ub-E3-ligase-Activity-Profiling-Analysis/
https://doi.org/10.1101/2022.01.16.476541
http://creativecommons.org/licenses/by-nc-nd/4.0/


UbE3-APA for E3 Ligase Activity Profiling Analysis 

duce the efficiency of the analysis (Figure 3c). Considering both effi-

ciency and reliability of the results, we have selected 10,000 times of re-

peats for the random selection process in E3 ligase activity profiling anal-

ysis. 

 

3.3 Validate UbE3-APA workflow with the quantitative 

ubiquitylome analysis of SPOP E3 ligase.  

To validate our algorithm, we chose a quantitative proteomics study 

that aimed to characterize ubiquitination dynamics that was mediated by 

SPOP, an E3 ligase that is frequently mutated in prostate cancer and af-

fects the regulation of downstream pathways in cancer progression 

(Theurillat et al., 2014).  This study included two sets of quantitative pro-

teomics experiments and each set of experiment aimed to quantify the 

ubiquitination dynamics upon the overexpression of vector control, SPOP-

wild-type (WT) and one of the two SPOP-mutants F133L and Y87N. Both 

mutations are naturally occurring mutations in prostate cancer and known 

to suppress the SPOP-WT induced ubiquitylation. The quantitative analy-

sis was performed using SILAC workflow with the expression of each 

form of SPOP-WT or vector control pairing to one of the SPOP-mutant. 

Using UbE3-APA workflow, we analyzed the normalized quantitative 

ubiquitination ratios included in their supplemental information across all 

six pairs of SILAC experiments (Table S3). The activity profiling analysis 

showed that the SPOP activity was significantly enriched in cells overex-

pressing SPOP-WT when comparing to cells overexpressing vector con-

trol or either one of the SPOP mutants (Figure 4a). When comparing be-

tween cells expressing SPOP mutant and vector control, our model found 

no significant changes in SPOP activity. These profiling analysis results 

matched well with SPOP ubiquitylation activity differences expected in 

the original study. The activity profiling analysis also allowed us to gen-

erate volcano plots with the statistical significance test and quantification 

ratios. Two examples with the Y87N (L) -WT (H) group and the Y87N 

(L) – mutant (H) group were shown (Figure 4b-c). As clearly shown, 

when SPOP-WT was overexpressed, the SPOP activity increased signifi-

cantly comparing to the overexpression of SPOP-Y87N mutant with sig-

nificantly increased SILAC H/L ratios of SPOP target proteins, while the 

SPOP activity did not change when comparing the cells overexpressing 

SPOP-Y87N mutant and vector control.  

3.4 Apply UbE3-APA model to profile E3 ligase activities 

in response to mitochondrial depolarization 

We applied UbE3-APA workflow to analyze a quantitative ubiq-

uitylome study that focused on PARKIN and global ubiquitylation net-

work in response to mitochondrial depolarization (Sarraf et al., 2013). 

This large-scale study included 73 quantitative ubquitylome proteomics 

analysis to explore the dynamics of the ubiquitination pathways under var-

ious mitochondrial depolarization treatment as well as in cells with differ-

ent genetic background, and detailed information of experiment condition 

of each group we collected from supplemental data in original paper 

(Sarraf et al., 2013) were listed (Table S4). Analysis of all the datasets 

with UbE3-APA workflow showed that when mitochondria was not dam-

aged, there was not an apparent PARKIN activity even when PARKIN 

was overexpressed (Table S5). Once the mitochondria were polarized, 

there was a significant increase of PARKIN activity (Figure 5a). Inhibi-

tion of Pink1, the upstream kinase activating PARKIN, abolished the ac-

tivation of PARKIN as expected when mitochondria was depolarized. 

When mitochondria were depolarized, we could not see an apparent acti-

vation of PARKIN based on ubiquitylome analysis data (Figure 5b). But 

when cells were treated with baflomycin, an autophagy inhibitor, there 

was a strong indication of activation of PARKIN upon mitochondria de-

polarization (Figure 5c), suggesting that the ubiquitinated substrates of 

PARKIN could not be efficiently degraded. Therefore, this data agrees 

well with the knowledge that PARKIN activation led to mitochondria deg-

radation through autophagy process and it also suggested that PARKIN 

substrates are mainly degraded through autophagy pathways. In addition, 

the dataset also included the proteasome inhibition experiment upon mi-

tochondria depolarization. Interestingly, our analysis showed that the in-

hibition of proteasome activity alone showed no strong enrichment of 

PARKIN substrate ubiquitination, which could suggest that either 

    

      

 

  

  

 

Figure 4. Protein level E3 ligase activity profiling results of the SPOP study. Ctrl, 

vector control; WT, wildtype-SPOP; 133L, SPOP-F113L; 87N, SPOP-Y87N; 1 and 

2, experiment set one and two.  a) All experiments of the SPOP study in box plot, 

each box contained enrichment p-values of all E3 ligases in one SILAC experiment.  

b) SPOP-Y87N to SPOP-WT group in volcano plot. c) SPOP-Y87N to vector control 

group in volcano plot. 

 

Figure 5. Ubiquitin E3 ligase activity profiling analysis of PARKIN under vari-

ous genetic and chemical treatment. a. PARKIN activity difference in HCT116 

cells with PARK2 overexpression and with or without carbonyl cyanide m-chloro-

phenyl hydrazone (CCCP, mitochondrial depolarization inducer) treatment. b. 

PARKIN activity difference in HCT116 cells with PARK2 overexpression and with 

or without Pink1 inhibition. c. PARKIN activity difference in HCT116 cells with the 

treatment of bafolmycin (BafA, an autophagy inhibitor) and/or Velcade (a proteo-

some inhibitor). 
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PARKIN substrates were mainly degraded through processes other than 

proteasome degradation (such as autophagy), or PARKIN was not acti-

vated upon mitochondria depolarization when proteasome was inhibited 

(Figure 5c). Analysis of the dataset with the cotreatment of cells with both 

proteasome inhibitor and autophagy inhibitor showed that PARKIN was 

indeed not activated upon proteasome inhibition because even autophagy 

inhibitor treatment failed to enrich PARKIN ubiquitination substrates 

(Figure 5c). This finding agreed well with previously published observa-

tion that upon proteasome inhibition, mitochondria depolarization failed 

to induce mitochondria fragmentation despite of PARKIN translocation to 

mitochondria (Tanaka et al., 2010).  

We then integrated the analysis of the ubiquitylome dynamics in all ex-

perimental conditions in the mitochondria depolarization study and plot 

the E3 ligase activity profiles in heatmap (Figure 6, Table S6). The E3 

ligases were clustered with hierarchical clustering based on how similar 

their activity profiles change under different treatment conditions. Out of 

203 E3 ligases profiled by our model across all experimental conditions, 

three E3 ligases (FZR1, AMFR, MARCHF5) showed a very similar activ-

ity pattern as PARKIN across most of the experimental conditions. Since 

the activity profiles of E3 ligases were analyzed based on their correspond-

ing substrates, it was likely that E3 ligases showed similar activity profiles 

when they shared common substrates. For better clarification, we mapped 

        

 

    

  

Figure 7. Regulation networks between four E3 ligase, PARKIN, MARCHF5, AMFR and FZR1 in the PARKIN study.  a) Interaction network of four E3 ligases and 

their substrates found in the mitochondria depolarization experiments. Blue square represents E3 ligases, circle represents substrates, edge represents Enzyme-substrate Inter-

action (ESI), size of circles indicates the number of groups (out of 73 experimental groups) this substrate being quantified and used for the corresponding E3 ligase activity 

analysis, and the color of the circle indicates the difference in average log2 quantification ratio between the substrate ratio and the group average. b) Correlation matrix and 

heatmap of leading E3 ligase activity profiles from all experiments. Color gradient represents 2-D Euclidean distance (Dist) between a pair of leading E3 ligase activity 

profiles. Only E3 ligases with p < 0.2 in at least one experiment were included. 

 

 

 

         

         

Figure 6. E3 ligase co-activation profiles across all experiments involved in the mitochondria depolarization study. The p value enrichment of E3 ligases across 73 

groups of experiments were -ln transformed. Only E3 ligases that were enriched (p<0.05) in at least one experiment were included in this heatmap. 
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the E3-ligase - substrate interaction networks for the four E3 ligases (Fig-

ure 7a, Table S7). The network indicated the shared and unique connec-

tion between each E3 ligase and corresponding substrates, the number of 

times the substrates were quantified under all conditions and the signifi-

cance of ubiquitination level changes for the substrate proteins. We can 

clearly see that the unique substrates of AMFR and FZR1 did not change 

significantly to contribute to activity profiles and their activity changes 

were mainly caused by the changes of ubiquitination levels in substrates 

shared with PARKIN. Only MARCHF5 had unique substrates whose ra-

tios were changed significantly and similarly along with those unique sub-

strates of PARKIN. For better clarification of the data, we included 

“Group” mode to the result output. In this mode, the software will group 

E3 ligases that share substrates together if the E3 ligases do not have 

unique substrate and only the E3 ligases that contain all the substrates in 

the group were labeled as leading E3 ligases of the group. We re-analyzed 

all the data using the Group mode and identified 127 E3 ligase groups 

(Table S8). Then, we performed correlation analysis of all the E3 ligase 

groups in distance matrix. The data clearly showed that MARCHF5 and 

PARKIN shared the most similar activation profiles (Figure 7b). This 

finding confirmed that MARCHF5 was also activated during mitochon-

drial depolarization, which agrees well with the previous finding that 

PARKIN-dependent ubiquitination targets MARCHF5 for translocation 

and activation (Koyano et al., 2019). 

3.5 Apply UbE3-APA model to Data Independent Acqui-

sition (DIA) Dataset 

To further explore the usage of our UbE3-APA model, we applied it to 

two recently published quantitative ubiquitylome studies based on DIA 

analysis. The first study explored how the ubiquiyltome was associated 

with the TNF signaling pathways (Hansen et al., 2021b) by treating cells 

with or without TNF. We collected site-specific intensities of all replicates 

in treated group and mock group and calculated the intensity ratios be-

tween TNF treated and mock treated cells. Then we performed UbE3-

APA analysis on the protein level in the grouped mode. The activity pro-

filing analysis revealed several distinct up- and down-regulated E3 ligases 

under TNF treatment (Figure 8, Table S9). Among these up-regulated E3 

ligases, TRAF2 and TRAF6 were members of tumor necrosis factor re-

ceptor-associated factors whose ubiquitination activity was crucial in the 

TNF signaling pathways (Bradley and Pober, 2001). In addition our anal-

ysis also identified up-regulation of activity for RNF216, SOCS3 and 

down-regulation of activity for MIB1 and FBXO33.  

The second study investigated the ubiquitylome changes in response to 

the inhibition of deubiquitinase USP7 by siRNA knockdown or chemical 

inhibitor such as FT671 (Steger et al., 2021). We extracted their DIA-

based ubiquitylome data under these four conditions: siCTRL+DMSO, 

siCTRL+FT671, siUSP7+DMSO, and siUSP7+FT671 and then calcu-

lated the ratio difference between FT671 and DMSO treatments under ei-

ther siCtrl background or siUSP7 background. Analyzing the two pairs of 

ubiquitylome datasets with UbE3-APA revealed differential activation 

profiles of E3 ligases upon the FT671 treatment with siUSP7 background 

or siCTRL background (Figure S1, Table S10). In agreement with the 

findings in the published study, more E3 ligases showed altered activity 

profiles upon FT671 treatment but these activity changes were attenuated 

under siUSP7 background, suggesting that FT671 treatment was specific 

in targeting USP7 activity in cells.      

4 Discussion 

Advances in quantitative proteomics have enabled large-scale profiling 

of ubiquitination substrates, also known as the ubiquitylome. Application 

of quantitative proteomics in ubiquitylome analysis revealed the key ubiq-

uitination targets in the biological processes and determined the down-

stream signaling pathways that were most significantly affected by the 

ubiquitination process. Yet, few studies systematically examine the up-

stream regulatory pathways of the ubiquitination. Analysis of regulatory 

enzyme activities has been largely limited to a few well-selected targets 

of each enzyme. Recent advances in the collection and biological valida-

tion of E3 ligase-substrate database provide a great opportunity to use 

ubiquitylome quantitative analysis as an activity-readout to profile the 

ubiquitin E3 ligases.  

In this study, we developed a statistical framework and workflow to 

identify the ubiquitin E3 ligase activity in a high-throughput and unbiased 

manner. This open-source python package enabled effective profiling of 

E3 ligase activities through robust statistical analysis based on quantitative 

ubiquitylation results. In the case study of SPOP E3 ligase ubquitylome 

analysis, our model correctly validated the SPOP activity upon the over-

expression of SPOP WT and mutant forms with various activity. Applica-

tion of our workflow to analyze the ubiquitylome dynamics upon mito-

chondria depolarization confirmed that activation of PARKIN E3 ligases 

under various conditions and unexpectedly discovered the role of pro-

teasome inhibition on PARKIN activation. Our statistical framework al-

lowed us to collect the E3 ligase activity profiles across multiple condi-

tions. Application of our workflow to profile 73 quantitative ubiquitylome 

analysis enabled clustering analysis of E3 ligases across the experimental 

conditions and revealed the co-activation of PARKIN and MARCHF5 

upon mitochondrial depolarization. Our mothods was further applied to 

two studies with DIA ubiquitomes, and in both case studies, E3 ligases 

related with the treatment proved by previous papers were revealed by our 

model through activation profile changes.  

The statistical framework described in this study can be generally ap-

plied to other PTM pathway analysis. We have recently applied the work-

flow and developed Kinase Activity Profiling Analysis (KAPA) to iden-

tify iron deficiency induced activation of AMPK pathway in neuronal cells 

(Erber et al., 2021). Our study demonstrated that it is possible to apply 

statistical analysis workflow to systematically profile E3 ligase activity. 
Figure 8. E3 ligase activation analysis based on the ubiquitination dynamics 

between TNF treated and mock treated cells in the TNF study.  
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However, we also recognize that efficient analysis of E3 ligase activity in 

a system-wide manner is limited by several factors. First, the number of 

E3 ligase-substrate interaction in our knowledgebase is still limited com-

paring to other PTMs such as phosphorylation and acetylation. Our inte-

grated database from various sources contained 2354 gene-level interac-

tions of humans in total, which is quite small comparing to 13855 gene-

level interactions between phosphorylation sites and kinases collected by 

PhosphoSitePlus in human (Hornbeck et al., 2015). Continued effort in 

the high throughput discovery of E3 ligase and substrate interaction is 

needed to expand the knowledgebase for more reliable and confident anal-

ysis of upstream regulatory enzyme activities.  

Secondly, although current high throughput proteomics have allowed 

in-depth quantification of ubiquitylome in single experiment, the data-de-

pendent analysis (DDA) often suffers from limited reproducibility and re-

duced quantification precision. For example, in our analysis of mitochon-

dria depolarization ubiquitylome study, for E3 ligase FZR1 and AMFR, 

they have 56 and 14 substrate proteins respectively based on our ESI da-

tabase, but only 10 and 4 substrates were found at least once in all 73 

groups of experiments. Therefore, their activity profiles were affected by 

the shared substrates with PARKIN. If more substrates were reproducibly 

quantified, the analysis profiles of the two E3 ligases could be more accu-

rate and informative. Application of data independent acquisition (DIA) 

for ubiquitylome analysis as we demonstrated in our study will certainly 

help address this challenge (Hansen et al., 2021a). 

Lastly, currently E3 ligase and substrate interaction database has been 

largely based on the protein-level and there is limited knowledge on the 

site-specificity of ubiquitination regulatory pathways comparing to the 

knowledge on the kinase-phosphorylation regulatory network. Lack of 

site-specific regulation information presents a challenge to reveal poten-

tial regulatory enzyme activities on overlapping protein substrates but on 

distinct target sites., making it less precise compared to other well-studied 

PTMs based on the regulatory network between enzymes and sites, for 

example, phosphorylation and acetylation. It requires the continued devel-

opment technologies to identify major enzyme target sites in the ubiquiti-

nation pathway. Future updates of the program will include updated E3 

ligase-substrate interactions database with the potential for site-specific 

enzyme activity analysis. 
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