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ABSTRACT	
In	solid	tumor	oncology,	circulating	tumor	DNA	(ctDNA)	is	poised	to	transform	care	through	accurate	assessment	of	
minimal	residual	disease	(MRD)	and	therapeutic	response	monitoring.	To	overcome	the	sparsity	of	ctDNA	fragments	
in	low	tumor	fraction	(TF)	settings	and	increase	MRD	sensitivity,	we	previously	leveraged	genome-wide	mutational	
integration	through	plasma	whole	genome	sequencing	(WGS).	We	now	introduce	MRD-EDGE,	a	composite	machine	
learning-guided	WGS	ctDNA	single	nucleotide	variant	 (SNV)	and	copy	number	variant	 (CNV)	detection	platform	
designed	 to	 increase	 signal	 enrichment.	 MRD-EDGE	 uses	 deep	 learning	 and	 a	 ctDNA-specific	 feature	 space	 to	
increase	SNV	signal	 to	noise	enrichment	 in	WGS	by	300X	compared	 to	our	previous	noise	suppression	platform	
MRDetect.	MRD-EDGE	also	reduces	the	degree	of	aneuploidy	needed	for	ultrasensitive	CNV	detection	through	WGS	
from	1Gb	to	200Mb,	thereby	expanding	its	applicability	to	a	wider	range	of	solid	tumors.	We	harness	the	improved	
performance	to	track	changes	in	tumor	burden	in	response	to	neoadjuvant	immunotherapy	in	non-small	cell	lung	
cancer	and	demonstrate	ctDNA	shedding	in	precancerous	colorectal	adenomas.	Finally,	the	radical	signal	to	noise	
enrichment	in	MRD-EDGE	enables	de	novo	mutation	calling	in	melanoma	without	matched	tumor,	yielding	clinically	
informative	TF	monitoring	for	patients	on	immune	checkpoint	inhibition.

INTRODUCTION	

Liquid	biopsy	offers	to	reshape	cancer	care	through	the	
noninvasive	 detection	 and	 monitoring	 of	 plasma	
circulating	tumor	DNA	(ctDNA).	The	clinical	potential	of	
this	 emerging	 biomarker	 has	 fostered	 a	 diversity	 of	
approaches	designed	to	capture	ctDNA	signal	 from	the	
broader	 plasma	 cell-free	 DNA	 (cfDNA)	 pool,	 including	
mutation-based	 approaches	 such	 as	 deep	 targeted	
panels1–8,	 approaches	 centered	 around	 cfDNA	
fragmentation	patterns	and	coverage	footprints9–11,	and	
strategies	 focused	 on	 cancer-specific	 methylation	 and	
epigenetic	 patterns12–16.	 Clinically,	 ctDNA	 mutational	

profiling	is	increasingly	used	in	high	tumor	fraction	(TF)	
disease	 (e.g.,	 non-invasive	mutation	detection	 to	 guide	
targeted	therapy1,17,18).	

Extensive	recent	efforts	have	focused	on	extending	the	
use	of	ctDNA	mutation	detection	to	low	TF	settings	such	
as	therapeutic	response	monitoring	or	the	assessment	of	
minimal	 residual	 disease	 (MRD).	 The	 detection	 of	
residual	 ctDNA	 after	 surgical	 or	 non-surgical	
interventions	 could	 enable	 precision	 tailoring	 of	
treatment,	 offering	 treatment	 intensification	 or	 de-
escalation	 based	 on	 MRD	 status.	 To	 overcome	 the	
inherent	ctDNA	signal	sparsity	in	low	TF	settings	such	as	
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MRD,	many	have	employed	deep	targeted	sequencing	to	
capture	 mutations	 from	 tumor-informed	 bespoke	
panels19,20	or	common	cancer	driver	genes4,5,8,21.		Missed	
detections,	however,	remain	prevalent	in	current	assays.	
For	 example,	 MRD	 identified	 via	 bespoke	 panels	 in	
urothelial	 carcinoma	 is	 strongly	 prognostic	 of	 disease	
recurrence,	 though	 up	 to	 40%	 of	 ctDNA-negative	
patients	experienced	relapse19.	Similar	 ‘false	negatives’	
were	 seen	 in	 breast5	 and	 colorectal	 cancer22–24,	
suggesting	 that	 further	 improvement	 in	 sensitivity	 is	
needed.	

We	 and	others25–28	 have	previously	demonstrated	 that	
sensitivity	 barriers	 in	 deep	 targeted	panels	 arise	 from	
the	 limited	 number	 of	 ctDNA	 fragments	 recovered	 at	
targeted	 loci.	 Even	 with	 ideal	 error	 suppression	 and	
ultra-deep	 sequencing,	 a	 somatic	 mutation	 cannot	 be	
observed	 if	 it	 is	 not	 sampled	 in	 the	 limited	 plasma	
volume	 collected	 in	 routine	 testing,	 which	 imposes	 a	
hard	barrier	on	effective	 coverage	depth.	 Sensitivity	 is	
therefore	 tied	 to	 the	 limited	 number	 of	 genome	
equivalents	 (GE)	 in	 a	 plasma	 sample	 (typically	 1,000s	
per	mL29),	 and	when	TF	 is	 below	harvested	GEs,	MRD	
detection	 is	 diminished.	 Targeted	 approaches	 have	
sought	 to	 overcome	 this	 limitation	 by	 increasing	 the	
number	of	panel-covered	mutations	to	dozens3,8,19–21	or	
even	100s25	or	enriching	for	biological	features	of	ctDNA	
such	as	altered	fragment	size7,30.		

We	 previously	 proposed	 an	 alternative	 approach	 in	
which	 breadth	 of	 sequencing	 could	 supplant	 depth	 of	
sequencing	 via	 integration	 of	 thousands	 of	 single	
nucleotide	 variants	 (SNVs)	 and	 copy	 number	 variants	
(CNVs)	 across	 the	 cancer	 genome28.	 We	 implemented	
whole	 genome	 sequencing	 (WGS)	 of	 plasma	 and	
matched	 tumor	 for	 enhanced	 MRD	 signal	 recovery	 in	
colorectal	 cancer	 (CRC)	 and	 lung	 adenocarcinoma	
(LUAD).	 Our	 accompanying	 denoising	 approach	
MRDetect	enabled	the	detection	of	plasma	TFs	as	low	as	
1*10-5	and	identified	postoperative	MRD	linked	to	early	
disease	 recurrence28,	 supporting	 WGS	 as	 a	 viable	
strategy	for	MRD	detection.	

WGS	allows	for	increased	signal	recovery	at	the	expense	
of	increased	sequencing	noise,	yet	denoising	tools	such	
as	high	sequencing	depth	and	molecular	tags	leveraged	
by	deep	targeted	panels	are	not	typically	deployed	in	the	
WGS	 setting.	 In	 our	 previous	 MRDetect	 work,	 we	
designed	a	support	vector	machine	approach	to	identify	
patterns	specific	to	WGS	sequencing	error	and	suppress	
low	quality	SNV	artifacts.	Herein	we	posit	that	learning	

patterns	specific	to	ctDNA	mutagenesis	can	offer	signal	
enrichment	 to	 complement	 suppression	 of	 sequencing	
error.	 We	 developed	 MRD-EDGE	 (Enhanced	 ctDNA	
Genomewide	 signal	 Enrichment),	 which	 integrates	
complementary	signal	from	SNVs	and	CNVs	to	increase	
ctDNA	 signal	 enrichment	 in	 plasma	 WGS.	 For	 SNVs,	
MRD-EDGE	uses	deep	 learning	 to	 integrate	 the	myriad	
local	 and	 regional	 properties	 of	 somatic	 mutations	 to	
identify	ctDNA	mutations	among	sequencing	error.	For	
CNVs,	 MRD-EDGE	 uses	 machine	 learning-based	
denoising	 and	 an	 expanded	 feature	 space	 including	
fragmentomics	and	allelic	 frequency	of	germline	single	
nucleotide	 polymorphisms	 (SNPs)	 to	 enable	
ultrasensitive	 ctDNA	 detection	 at	 lower	 degrees	 of	
aneuploidy	than	MRDetect.	The	increased	performance	
of	 MRD-EDGE	 enabled	 ultrasensitive	 MRD	 and	 tumor	
burden	monitoring	 in	tumor-informed	settings,	as	well	
as	the	detection	of	ctDNA	shedding	from	precancerous	
colorectal	 adenomas.	 Further,	 the	 signal	 to	 noise	
enrichment	 from	 MRD-EDGE	 enabled	 de	 novo	 (non-
tumor-informed)	detection	of	melanoma	ctDNA	SNVs	at	
sensitivity	on	par	with	tumor-informed	targeted	panels.	
We	 demonstrate	 the	 clinical	 utility	 of	 this	 de	 novo	
approach	by	using	plasma	ctDNA	response	 to	 immune	
checkpoint	 inhibition	 (ICI)	 to	 predict	 long-term	
treatment	outcomes.	

RESULTS	

Deep	 learning	 integrates	 mutagenesis	 features	 to	
distinguish	ctDNA	SNVs	from	sequencing	error	

A	prominent	obstacle	to	WGS-based	detection	of	ctDNA	
SNVs	 is	 distinguishing	 true	 tumor	 mutations	 from	 far	
more	 abundant	 sequencing	 error.	 In	 our	 previous	
work28,	we	developed	an	error	suppression	framework	
that	 operates	 at	 the	 individual	 fragment	 (rather	 than	
locus)	level.	This	significant	departure	from	traditional	
consensus	 mutation	 callers	 was	 driven	 by	 the	
expectation	that	in	standard	WGS	coverage	(e.g.,	30X)	of	
low	TF	samples	(e.g.,	TF	<	1:1000),	at	best	only	a	single	
supporting	 fragment	 will	 be	 detected	 for	 any	 given	
mutation.	A	support	vector	machine	(SVM)	classification	
framework	was	applied	to	exclude	error	associated	with	
lower	quality	sequencing	metrics	including	variant	base	
quality	(VBQ),	mean	read	base	quality	(MRBQ),	variant	
position	 in	 read	 (PIR),	 and	 paired-read	 mutation	
overlap.	Focused	solely	on	eliminating	sequencing	error,	
the	classifier	was	trained	on	reads	with	germline	SNPs	
(true	 labels)	 vs.	 reads	 with	 sequencing	 errors	 (false	
labels).		
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We	posited	that	signal	to	noise	enrichment	may	emerge	
not	 only	 from	 characterizing	 features	 specific	 to	
sequencing	 errors	 (decreasing	 noise),	 but	 also	 from	
learning	 features	 indicative	 of	 true	 ctDNA	 mutations	
(increasing	signal).	Learning	features	specific	to	ctDNA	
required	a	rethinking	of	our		machine	learning	training	
paradigm,	 as	 germline	 SNPs	 can	 no	 longer	 serve	 as	 a	
source	 for	 true	(positive)	 labels.	 Instead,	we	 leveraged	

cfDNA	 samples	 with	 high	 TF	 (range	 9-24%,	
Supplementary	Table	2)	across	three	common	cancer	
types	 with	 high	mutational	 burden:	melanoma,	 LUAD,	
and	 colorectal	 cancer.	 These	 high	 TF	 plasma	 samples	
(range	n=2-4)	provided	an	abundant	(51,160	to	270,648,	
Supplementary	Table	2)	source	of	fragments	enriched	
with	 somatic	 mutations	 (true	 labels)	 from	 which	 to	
develop	 a	 ctDNA	 SNV	 feature	 space.	 Our	 ctDNA	 SNVs	
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were	 compared	 to	 cfDNA	 fragments	 containing	
sequencing	 errors	 drawn	 from	 controls	 (range	n=4-5)	
without	a	known	malignancy	(Supplementary	Table	2	
and	Methods).	To	ensure	that	classification	is	optimized	
to	 detect	 more	 subtle	 differences	 between	 signal	 and	
noise,	we	implemented	a	set	of	quality	filters	to	remove	
germline	 SNPs,	 recurrent	 plasma	 WGS	 artifacts,	 and	
variants	 with	 low	 base	 or	 mapping	 quality	 scores	
(Supplementary	Table	3	and	Methods).		

After	 obtaining	 a	 large,	 pre-filtered	 training	 corpus	 of	
ctDNA	SNVs	and	cfDNA	SNV	artifacts,	we	next	explored	
a	broader	feature	space	to	help	distinguish	the	two.	First,	
single	 base	 substitutions	 (SBS)	 sequence	 patterns	 are	
closely	 associated	 with	 cancers	 driven	 by	 distinct	
mutational	 processes31,32	 such	 as	 SBS4	 signature	
(tobacco	exposure)	in	LUAD	or	SBS6	(ultraviolet	light)	in	
melanoma.	 Second,	 ctDNA	 has	 been	 associated	 with	
shorter	 fragment	 size30,33,34.	 Third,	 SNVs	 are	
overrepresented	in	distinct	locations	within	the	genome,	
including	a	predilection	for	quiescent	chromatin	and	late	
replicating	 regions35–38,	 allowing	 for	 inference	 of	 the	
local	 (e.g.,	 20Kb)	 mutation	 likelihood.	 This	 evaluation	
allowed	us	to	identify	informative	features	with	varying	

contribution	across	tumor	types	(Fig	1b,	Extended	Data	
1a,	Supplementary	Table	3).		

To	 integrate	 this	 expanded	 feature	 set	 for	 optimal	
classification,	we	reasoned	that	neural	networks	would	
best	 serve	 the	 size	 of	 our	 training	 sets	 (100,000s	 of	
fragments)	 and	 the	underlying	 feature	 complexity.	We	
developed	a	two-dimensional	representation	of	a	cfDNA	
fragment	 (Fig	 1d,	 top	 and	 Methods)	 to	 capture	
fragment-level	 features	 such	 as	 SBS,	 fragment	 length,	
and	quality	metrics	 like	 read	 edit	 distance	 and	PIR.	 In	
parallel,	 a	 second	model	 architecture	was	 designed	 to	
capture	regional	context,	whereby	each	SNV-containing	
fragment	 is	 scored	 based	 on	 salient	 regional	 features	
associated	 with	 mutation	 frequency	 (Fig	 1d,	 bottom).	
For	example,	a	fragment	can	be	annotated	with	the	local	
density	 of	 melanoma	 tumor	 SNVs	 in	 a	 20Kb	 interval	
surrounding	 the	 candidate	 SNV	 (Methods,	
Supplementary	 Table	 3	 for	 a	 full	 list	 of	 features	 by	
cancer	 type).	We	 combined	our	 fragment	and	 regional	
architectures	as	inputs	to	an	ensemble	model	featuring	
a	convolutional	neural	network	(fragment	CNN)	for	our	
fragment	 architecture	 and	 a	 multilayer	 perceptron	
(regional	 MLP)	 for	 our	 regional	 architecture.	 This	

Figure	 1:	 Application	 of	 disease-specific	 deep	 learning	 classifier	 to	 distinguish	 ctDNA	 SNV	 fragments	 from	 cfDNA	
artifacts.	a)	Illustration	of	whole	genome	sequencing	(WGS)-based	ctDNA	single	nucleotide	variant	(SNV)	detection	in	plasma	
with	MRD-EDGE.	Healthy	cfDNA	and	ctDNA	are	admixed	in	the	plasma	pool.	Both	cfDNA	and	ctDNA	are	subjected	to	WGS,	and	
SNVs	 are	 identified	 against	 the	 reference	 genome	 and	 subjected	 to	 quality	 pre-filters	 designed	 to	 reduce	 artifact	 from	
sequencing	error	and	germline	variants.	A	complex	feature	space	designed	to	distinguish	ctDNA	signal	from	cfDNA	noise	serves	
as	input	to	a	deep	learning	neural	network,	where	fragments	containing	SNVs	are	classified	as	ctDNA	or	cfDNA	with	sequencing	
artifacts.	b)	Heatmap	of	 selected	post-filter	model	 features	and	 the	 single	variable	 area	under	 the	 receiver	operating	curve	
(svAUC)	between	individual	features	and	label	(ctDNA	or	cfDNA)	in	LUAD,	CRC,	and	melanoma.	In	this	comparison,	ctDNA	SNV	
fragments	and	cfDNA	SNV	artifacts	are	drawn	from	within	the	same	plasma	sample	to	remove	potential	inter-sample	biases	
when	establishing	predictive	capacity	of	individual	features.	For	categorical	features,	AUC	was	assessed	on	a	held-out	validation	
set	of	fragments	after	a	linear	classifier	was	trained	to	predict	positive	or	negative	label	based	on	one-hot	encoded	categorical	
features.	Features	are	annotated	with	whether	they	are	used	in	MRDetect	or	MRD-EDGE.	c)	Selected	feature	density	plots	for	
post-filter	ctDNA	and	cfDNA	SNV	artifacts:	trinucleotide	context,	replication	timing37,	PCAWG81	tumor	SNV	mutation	density,	
read	edit	distance,	and	fragment	length.	d)	(top)	Illustration	of	the	fragment	tensor,	an	18x240	matrix	encoding	of	the	reference	
sequence,	R1	and	R2	read	pairs	(including	padding	where	reads	do	not	overlap	the	reference	sequence),	R1	read	length	and	R2	
read	length,	and	the	position	of	the	SNV	in	the	fragment	(‘Alt	position’).	The	fragment	architecture	allows	for	 integration	of	
fragment-specific	features	such	as	trinucleotide	context,	fragment	length,	and	edit	distance,	among	others.	The	fragment	tensor	
is	passed	as	input	to	a	convolutional	neural	network.	(bottom)	Illustration	of	the	relationship	between	regional	features	and	
local	ctDNA	SNV	mutation	density	at	the	chromosome	level.	Disease-specific	inaccessible82	and	quiescent83	genomic	regions,	as	
well	 as	 late	 replicating	 regions37,	 are	 associated	with	 somatic	mutagenesis	 as	 represented	 by	 increased	 density	 of	 tumor-
confirmed	ctDNA	SNVs.	Regional	features	(Supplementary	Table	3)	are	encoded	as	tabular	values	and	passed	as	input	to	a	
multilayer	 perceptron.	 An	 ensemble	 classifier	 takes	 input	 from	 both	 the	 fragment	 and	 regional	 models	 to	 determine	 the	
likelihood	 that	 each	 fragment	 is	 ctDNA	 or	 cfDNA	 SNV	 artifact.	e)	 In	 silico	 studies	 of	 cfDNA	 from	 the	metastatic	 cutaneous	
melanoma	sample	MEL-01	mixed	into	cfDNA	from	a	healthy	plasma	sample	(‘C-16’)	at	mixing	fractions	TF	=	10-7–10-4	at	16X	
depth,	performed	in	20	technical	replicates	with	independent	sampling	seeds.	Tumor-informed	MRD-EDGE	enables	sensitive	
TF	 detection	 as	measured	 by	 Z	 score	 against	 unmixed	 control	 plasma	 (TF=0,	n=20	 randomly	 chosen	 replicates)	 as	 low	 as	
TF=5x10-7	 (AUC	0.70).	 Box	 plots	 represent	median,	 lower	 and	 upper	 quartiles;	whiskers	 correspond	 to	 1.5	 x	 IQR.	 An	AUC	
heatmap	benchmarks	detection	sensitivity	vs.	TF=0	at	different	mixed	TFs.	IQR,	interquartile	range.	
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ensemble	model	 uses	 a	 sigmoid	 activation	 function	 to	
output	a	score	between	0	and	1	to	indicate	the	likelihood	
that	a	candidate	SNV	is	either	cfDNA	sequencing	error	or	
a	 ctDNA	mutation.	Our	 ensemble	model	 outperformed	
both	 the	 fragment	 and	 region	models	 individually	 and	
other	 machine	 learning	 architectures	 in	 a	 melanoma	
validation	 plasma	 sample	 (‘MEL-01’)	 held	 out	 from	
training	 and	 paired	 with	 SNV	 artifacts	 from	 healthy	
control	 plasma	 (Extended	 Data	 1b,	 Supplementary	
Table	2).	We	note	that	our	deep	learning	methods	were	
applied	to	a	more	stringent	classification	task	than	in	our	
previous	work,	 as	we	 applied	 our	 classifier	 to	 heavily	
pre-filtered	 fragments	 in	 which	 the	 majority	 of	 low	
quality	cfDNA	sequencing	errors	were	excluded	(mean	
92.8%,	 range	91.2%-93.6%).	 In	 this	 context,	we	 found	
that	 our	 classification	 method	 yielded	 area	 under	 the	
receiver	operating	curves	(AUCs)	at	the	fragment	level	of	
0.95	(95%:	0.94-0.95)	in	melanoma,	0.87	(0.86-0.88)	in	
LUAD,	 and	 0.84	 (0.83-0.84)	 in	 colorectal	 cancer	 in	
validation	 plasma	 samples	 held	 out	 from	 training	
(Extended	Data	1c,	Supplementary	Table	2).	

We	next	sought	to	benchmark	our	platform’s	enrichment	
capacity	 in	 the	 tumor-informed	 setting,	 in	 which	 a	
patient-specific	 mutational	 compendia	 drawn	 from	
resected	 tumor	 tissue	 is	 used	 to	 nominate	 SNVs	 for	
classification.	 We	 used	 tumor-confirmed	 ctDNA	 SNVs	
from	MEL-01	admixed	with	SNV	artifacts	drawn	from	6	
healthy	control	plasma	samples	that	were	held	out	from	
model	 training	 ('Melanoma	 held-out	 validation	
fragments’,	 Supplementary	 Table	 2).	 First,	 we	
measured	signal	to	noise	enrichment	for	the	pipeline	as	
a	whole	and	at	 individual	 stages	 (Extended	Data	1d).	
Given	 the	 higher	 likelihood	 of	 a	 true	 positive	 in	 the	
tumor-informed	 setting,	 we	 used	 a	 balanced	
classification	 threshold	 (0.5)	 on	 the	 final	 ensemble	
model	to	classify	ctDNA	signal	from	noise.	In	a	matched	
analysis	 in	 which	 both	 platforms	 were	 applied	 to	 the	
same	 data,	 we	 found	 a	 higher	 signal	 to	 noise	 (S2N)	
enrichment	for	MRD-EDGE	(mean	118-fold,	range	100-
153	fold)	compared	to	MRDetect	(mean	8.3-fold,	range	
8-9	fold),	which	translates	to	a	mean	additional	14-fold	
S2N	enrichment	(range	12-18	fold).	

We	next	evaluated	the	 lower	 limit	of	detection	(LLOD)	
for	our	tumor-informed	MRD-EDGE	classifier	in	in	silico	
TF	admixtures	 (TFs	10-4–10-7,	n=20	 in	 silico	 admixture	
replicates,	 Methods)	 using	 reads	 from	 MEL-01	 mixed	
into	 control	 cfDNA	 from	an	 individual	 (‘C-16’)	with	no	
known	 cancer	 (Fig	 1e).	 When	 compared	 to	 the	 noise	
distribution	 in	 randomly	 chosen	 TF=0	 replicates,	 we	

found	higher	performance	even	in	the	parts	per	million	
range	 and	 below	 (AUC	 of	 0.84	 at	 TF	 1*10-6	 and	 0.7	 at	
5*10-7	 for	 MRD-EDGE,	 compared	 to	 0.77	 and	 0.65	 for	
MRDetect,	respectively).	

Advanced	denoising	and	an	enriched	feature	space	
enable	enhanced	CNV-based	ctDNA	detection	

Aneuploidy	 is	 observed	 in	 the	 vast	 majority	 of	 solid	
tumors	 and	 is	 a	 prominent	 hallmark	 of	 the	 cancer	
genome39.	 We	 have	 shown	 that	 MRDetect-based	 CNV	
detection	can	monitor	disease	burden	in	cancers	with	a	
high	 degree	 of	 aneuploidy	 but	 low	 SNV	 mutation	
burden28.	 MRDetect	 sought	 to	 identify	 plasma	 read	
depth	skews	corresponding	to	matched	tumor-informed	
CNV	profiles	to	measure	MRD	in	CRC	and	LUAD.	While	
our	 results	 demonstrated	 a	 2	 order	 of	 magnitude	
improvement	 in	 sensitivity	 compared	 to	 leading	 CNV-
based	 ctDNA	 algorithms10,28,	 we	 required	 substantial	
aneuploidy	(>1Gb	altered	genome)	to	detect	TFs	of	5*10-
5.		

We	reasoned	that	detection	of	subtle	read	depth	skews	
related	to	low	TF	ctDNA	may	be	hindered	by	biases	that	
arise	from	sample	preparation	(e.g.,	GC	bias),	alignment	
(e.g.,	 variable	 mapping),	 and	 biological	 factors	 (e.g.,	
replication	 timing).	 These	 biases	 can	 introduce	
distortions	 (‘waviness’)	 in	 read	 depth	 signal	 which	
interfere	 with	 CNV	 estimation	 in	 both	 tumors	 and	
plasma40.	 To	 correct	 for	 such	 biases,	 we	 developed	 a	
machine-learning	 guided	 CNV	 denoising	 platform	 for	
use	 in	 plasma	 WGS.	 Our	 plasma	 read	 depth	 classifier	
uses	robust	principal	component	analysis	(rPCA)	trained	
on	 a	 panel	 of	 normal	 samples	 (PON)	 to	 correct	 read	
depth	distortions	due	to	background	artifacts	related	to	
assay,	batch,	and	recurrent	noise	(Methods).	

To	 evaluate	 the	 performance	 of	 ctDNA	 detection	with	
our	enhanced	read	depth	classifier,	we	admixed	in	silico	
reads	 from	 a	 pretreatment	 high	 burden	 melanoma	
plasma	sample	with	a	high	degree	of	aneuploidy	 (‘AD-
12’,	 TF	 17%	 with	 1.6	 GB	 of	 total	 aneuploidy,	
Supplementary	Table	2)	 into	a	posttreatment	sample	
from	 the	 same	 patient	 following	 a	 major	 response	 to	
immunotherapy,	varying	the	TF	admixtures	(range	10−3–
10-6;	 n=50	 technical	 admixing	 replicates	 with	 random	
independent	 seeds).	 We	 identified	 signal	 from	 read	
depth	skews	at	TF	admixtures	as	low	as	1*10-5	(Fig	2b).	
Directional	skew	signal	from	copy	neutral	regions	in	the	
matched	tumor	served	as	a	negative	control	(Extended	
Data	2d).	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.17.476508doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.17.476508


 
6	 	 Widman	et	al.	(2022).	BioRxiv.	

In	addition	to	enhanced	denoising	of	read	depth	skews,	
we	reasoned	that	loss	of	heterozygosity	(LOH)	can	serve	
as	 an	 important	 additional	 source	 of	 CNV	 signal.	 Copy	

neutral	LOH	cannot	be	captured	by	read	depth	skews	but	
can	be	nonetheless	measured	through	allelic	imbalances	
in	germline	SNPs	in	plasma.	Here,	inference	of	the	major	
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Figure	2:	Machine	learning-based	error	suppression	and	additional	features	enhance	plasma	WGS-based	CNV	detection	
sensitivity.	a)	(left)	Illustration	depicting	use	of	copy	number	denoising	for	inference	of	plasma	read	depth.	(top	left)	Patient-
specific	CNV	segments	are	selected	through	the	comparison	of	tumor	and	germline	WGS.	In	plasma,	these	CNV	segments	may	
be	obscured	within	noisy	raw	read	depth	profiles	(middle	left).	Machine-learning	guided	denoising	through	use	of	a	panel	of	
normal	samples	(PON)	drawn	from	healthy	control	plasma	samples	removes	recurrent	background	noise	to	produce	denoised	
plasma	read	depth	profiles	(bottom	left).	Plasma	samples	used	in	the	PON	are	subsequently	excluded	from	downstream	CNV	
analysis.	(middle)	Loss	of	heterozygosity	(LOH)	results	in	replacement	of	heterozygous	single	nucleotide	polymorphisms	(SNPs)	
with	homozygous	variants	and	can	be	measured	via	changes	in	the	B-allele	frequency	of	SNPs	in	cfDNA.	(right)	Increased	or	
decreased	fragment	length	heterogeneity	is	expected	in	regions	of	tumor	amplifications	or	deletions,	respectively,	due	to	varying	
contribution	of	ctDNA	(shorter	fragment	size)	to	the	plasma	cfDNA	pool.	Fragment	length	heterogeneity	is	measured	through	
Shannon’s	entropy	 of	 fragment	 insert	 sizes.	 Fragment	 entropy	signal	 is	aggregated	based	on	matched	 tumor	amplifications	
(positive	signal)	or	deletions	 (negative	signal)	 .	b-e)	 In	 silico	mixing	studies	of	admixed	high	and	 low	TF	samples	 from	the	
melanoma	patient	AD-12.	Pretreatment	plasma	(TF	=	17%)	was	mixed	into	posttreatment	plasma	(TF	undetectable	following	a	
major	response	to	immunotherapy)	in	50	replicates.	Admixtures	model	tumor	fractions	of	10-6–10-3.	Box	plots	represent	median,	
lower	and	upper	quartiles;	whiskers	correspond	to	1.5	x	 IQR.	An	AUC	heatmap	demonstrates	detection	performance	at	 the	
different	admixed	TFs	vs.	negative	controls	(TF=0,	n=25	replicates	used	to	generate	the	noise	distribution	and	n=25	used	to	
benchmark	performance)	as	measured	by	Z	score.	b)	(top)	Copy	number	denoising	with	the	read	depth	classifier	demonstrates	
detection	sensitivity	above	TF=0	as	low	as	1*10-5	(AUC	0.72).	(bottom)	Normalized	error	at	different	mixed	TFs	between	MRD-
EDGE	read	depth	classifier	and	MRDetect.	Error	is	measured	as	!"!"#$%&#!'#!"%$(!'

!"%$(!'
.	c-d)	SNP	BAF	(c)	and	fragment	length	entropy	

(d)	classifiers	demonstrate	Z	score	detection	sensitivity	at	5*10-5	(AUC	0.82	and	0.81,	respectively).	e)	Empiric	measurement	of	
the	MRD-EDGE	lower	limit	of	detection	for	the	combined	feature	set	as	a	function	of	the	CNV	load	and	admixture	modeled	TF.	
Sensitive	detection	(AUC	0.74)	is	observed	at	TF	=	5*10−5	at	200	Mb.	IQR,	 interquartile	 range.	AUC,	area	under	 the	receiver	
operating	curve.	
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allele	in	genomic	regions	affected	by	LOH	is	derived	from	
tumor	 WGS41,42,	 and	 perturbations	 of	 	 the	 B-allele	
frequency	 (BAF)	 in	 plasma	 are	 indicative	 	 of	 ctDNA	
contribution	 to	 the	 plasma	 cfDNA	 pool	 (Fig	 2a).	 To	
leverage	 LOH	 signal,	 plasma	 SNPs	 are	 aggregated	 in	
large	 genomic	 windows	 (1Mbp)	 and	 assessed	 for	
window-wide	 allelic	 imbalance.	 To	 account	 for	
underlying	biases	and	mosaicism	within	the	cfDNA	pool,	
BAF	 values	 are	 compared	 both	 to	 the	 expected	
contribution	 of	 0.5	 and	 to	 the	 underlying	 peripheral	
blood	 mononuclear	 cell	 (PBMC)	 BAF	 reference43	
(Methods),	 and	 quality	 filters	 are	 used	 to	 exclude	
aberrant	signal	due	to	low	coverage	and	bias	from	PBMC	
(Extended	Data	2f).	Benchmarking	of	our	BAF	classifier	
in	the	same	in	silico	admixtures	yielded	allelic	imbalance	
signal	in	LOH	regions	in	TF	admixtures	as	low	as	5*10-5	
(Fig	2c).	

Finally,	 we	 sought	 to	 leverage	 well-characterized	
abnormal	ctDNA	fragmentation	patterns9,33,34,44,45	 as	an	
additional	 source	 of	 aneuploidy	 signal.	 ctDNA	 is	
associated	 with	 shorter	 and	 more	 heterogenous	
fragment	 lengths	 than	 normal	 cfDNA9,44.	We	 therefore	
measured	 fragment	 length	 entropy	 (measured	 as	
Shannon’s	entropy),	a	marker	of	heterogenous	fragment	
lengths	in	cfDNA,	in	plasma	WGS	segments	matched	to	
amplifications	 and	 deletions	 in	 tumor.	 While	 existing	
approaches	 have	 sought	 to	 recognize	 altered	
fragmentation	 profiles	 inherently	 or	 compared	 to	
control	(non-cancer)	plasma9,46,	in	our	fragment	entropy	
classifier,	use	of	matched	tumor	tissue	enables	the	cfDNA	
fragment	 pool	 in	 neutral	 plasma	 regions	 to	 act	 as	 an	
internal	 control.	 Fragment	 lengths	 in	 matched	 CNV	
segments	can	be	assessed	in	comparison	to	copy-neutral	
segments	rather	than	to	an	absolute	baseline,	removing	
confounding	from	baseline	fragment	length	biases	at	the	
sample	 level.	 We	 then	 measure	 the	 entropy	
contributions	 from	 amplifications	 (greater	 plasma	
cfDNA	 entropy	 due	 to	 a	 larger	 contribution	 of	 ctDNA	
fragments)	and	deletions	(less	plasma	cfDNA	fragment	
entropy)	 to	harness	 signal.	 In	our	 in	 silico	 admixtures,	
our	 fragment	entropy	classifier	 identified	signal	 in	TFs	
as	 low	 as	 5*10-5	 (Fig	 2d,	 Methods).	 To	 demonstrate	
sensitivity	 across	 cancer	 types,	 we	 also	 benchmarked	
our	 CNV	 features	 in	 TF	 admixtures	 derived	 from	 pre-	
and	 postoperative	 plasma	 from	 a	 patient	 with	 early-
stage	 non-small	 cell	 lung	 cancer	 (NSCLC)	 and	 found	
similar	performance	(Extended	Data	2a-c).	

The	 three	 CNV	 classifiers	 –	 read	 depth,	 BAF,	 and	
fragment	 entropy	 –	 gather	 independent	 and	

complementary	 sources	 of	 CNV	 signal.	 MRD-EDGE	
combines	 signal	 from	 these	 classifiers	 as	 independent	
inputs	at	the	sample	level	to	comprehensively	assess	for	
plasma	TF	(Methods).	Because	the	aneuploidy	signal	in	
plasma	WGS	is	a	function	of	both	the	proportion	of	the	
cancer	 genome	 affected	 by	 aneuploidy	 and	 the	TF,	we	
evaluated	classifier	performance	by	downsampling	both	
the	TF	(as	above	in	Fig	2b-d)	and	the	cumulative	size	of	
CNV	segments	 to	characterize	a	LLOD	matrix	 (Fig	2e).	
Classifier	 performance,	 as	 expected,	 improved	 with	
increased	aneuploidy.		While	MRDetect	required	1	Gb	of	
aneuploidy28	for	a	LLOD	of	5*10-5,	MRD-EDGE	achieved	
an	 LLOD	 of	 5*10-5	 (AUC	 0.74)	 with	 only	 200Mb	 of	
aneuploidy,	which	would	 extend	 applicability	 to	many	
more	solid	tumors	(Extended	Data	3).		

MRD-EDGE	 yields	 high	 performance	 in	 tumor-
informed	detection	of	early-stage	colorectal	cancer	
and	postoperative	MRD	

To	 evaluate	 MRD-EDGE	 in	 the	 tumor-informed	 early-
stage	 cancer	 setting,	 we	 tested	 the	 platform	 on	 our	
previously	reported28	clinical	cohort	of	plasma	samples	
from	 patients	 with	 CRC	 (n=19,	 including	 6	 with	
microsatellite	 instability),	 compared	 with	 exposure	
matched	controls	without	known	cancer	(n=34,	‘Control	
Cohort	 A’)	 and	 from	 the	 same	 sequencing	 platform	
(Illumina	HiSeq	X).	Here,	SNVs	and	CNVs	from	resected	
tumors	 form	 a	 patient-specific	 mutational	 compendia,	
which	 is	 then	 used	 to	 assess	 for	 ctDNA	 in	 pre-	 and	
postoperative	 plasma	 and	 to	 form	 noise	 (sequencing	
error)	distributions	in	healthy	control	plasma.	Z	scores	
of	patient	plasma	signal	are	derived	from	control	plasma	
noise	 distributions	 and	 used	 to	 assess	 for	 ctDNA	
detection	in	both	the	MRD-EDGE	SNV	and	CNV	platforms	
independently	 (Methods).	 The	 Z	 score	 detection	
threshold	 was	 set	 at	 90%	 specificity	 against	 control	
plasma	 in	 the	receiver	operating	curve	(ROC)	analysis,	
and	a	positive	 ctDNA	detection	was	defined	as	patient	
plasma	SNV	or	CNV	Z	score	above	this	threshold.	

In	 our	 early-stage	 CRC	 cohort,	 area	 under	 the	 curve	
(AUC)	for	preoperative	ctDNA	SNV	detection	with	MRD-
EDGE	was	1.00	(95%	CI:	0.99	to	1.00)	and	sensitivity	was	
100%	at	90%	specificity	(compared	with	MRDetect	AUC	
0.97,	 95%	 CI:	 0.91	 –	 1.00,	 95%	 sensitivity	 at	 90%	
specificity,	Fig	3a).	A	cross-patient	analysis,	where	the	
patient-specific	 mutational	 compendia	 was	 compared	
between	 matched	 and	 unmatched	 plasma,	 showed	
similar	performance	(Extended	Data	4a).	We	note	that	
our	MRD-EDGE	CRC	SNV	classifier	was	trained	on	high	
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burden	 plasma	 sequenced	with	 a	 different	 sequencing	
platform	and	at	a	different	facility	than	the	one	used	for	
the	 early-stage	 CRC	 samples	 (Illumina	 NovaSeq	 v1.5,	

Aarhus	University,	Denmark	vs.	 Illumina	HiSeq	X,	New	
York	 Genome	 Center,	 Supplementary	 Table	 1),	
demonstrating	 generalizability	 across	 platforms.	MRD-
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Figure	 3:	 Detection	 of	 postoperative	 colorectal	 ctDNA	 and	 tracking	 neoadjuvant	 response	 to	 immune	 checkpoint	
inhibition	 and	 radiation	 in	 non-small	 cell	 lung	 cancer.	 a)	 ROC	 analysis	 on	 preoperative	 colorectal	 SNV	 mutational	
compendia	for	MRD-EDGE	(blue)	and	MRDetect	(red).	Preoperative	plasma	samples	(n=19)	were	used	as	the	true	label,	and	the	
panel	of	control	plasma	samples	against	all	patient	mutational	compendia	(n=646;	19	mutational	compendia	assessed	across	34	
control	samples	from	Control	Cohort	A)	was	used	as	the	false	label.	b)	ROC	analysis	on	preoperative	colorectal	CNV	mutational	
compendia	for	MRD-EDGE	(blue)	and	MRDetect	(red)	methods.	Preoperative	plasma	samples	(n=18,	1	sample	excluded	due	to	
insufficient	aneuploidy)	were	used	as	the	 true	label,	and	the	panel	of	 control	plasma	samples	against	all	patient	mutational	
compendia	(n=180;	18	mutational	compendia	assessed	across	10	control	samples	from	Control	Cohort	A)	was	used	as	the	false	
label.	Twenty-four	samples	from	Control	Cohort	A	were	included	in	the	read	depth	classifier	panel	of	normal	samples	(PON,	Fig	
2a)	and	were	held	out	from	the	CNV	ROC	analysis.	c)	Kaplan–Meier	disease-free	survival	analysis	was	done	over	all	patients	
with	 detected	 (n=9)	 and	non-detected	 (n=10)	 postoperative	 ctDNA.	 Postoperative	 ctDNA	detection	 shows	 association	with	
shorter	recurrence-free	survival	(two-sided	log-rank	test).	d)	Illustration	of	the	neoadjuvant	non-small	cell	lung	cancer	(NSCLC)	
clinical	treatment	protocol50.	Plasma	TF	is	tracked	throughout	the	preoperative	period	to	evaluate	for	response	to	SBRT	and	ICI	
therapy	 and	 after	 surgery	 to	 detect	 the	 presence	 of	MRD.	 The	 detection	 threshold	 for	MRD	 reflects	 90%	 specificity	 in	 an	
independent	 cohort	 of	 preoperative	patients	with	early-stage	 LUAD	 evaluated	 previousuly28	 (Extended	Data	4c).	e)	 serial	
tumor	burden	monitoring	on	neoadjuvant	 immunotherapy	with	MRD-EDGE	 in	2	NSCLC	patients	 on	 ICI	 therapy	 (no	SBRT).	
Tumor	burden	estimates	are	measured	as	 the	Z	 score	 of	 the	 patient-specific	mutational	 compendia	against	healthy	control	
plasma.	In	both	patients,	unchanged	plasma	TF	Z	score	demonstrates	lack	of	response	to	ICI	prior	to	surgery.	(top)	Upon	surgical	
resection,	there	is	no	evidence	of	MRD	and	no	recurrence	at	29	months	(patient	Neo-02).	(bottom)	Upon	surgical	resection,	
plasma	TF	is	above	the	detection	threshold	indicative	of	MRD,	and	disease	recurrence	is	seen	at	12	months	postoperatively	
(patient	Neo-03).	f)	demonstration	of	plasma	TF	decrease	following		radiation	in	a	patient	who	was	randomized	to	receive	SBRT.	
ctDNA	remains	detectable	following	SBRT,	and	tumor	burden	increases	postoperatively	indicating	MRD.	The	patient	had	disease	
recurrence	at	18	months.	ROC,	Receiver	operating	curve.	MRD,	minimal	 residual	 disease.	SBRT,	 stereotactic	body	radiation	
therapy.	ICI,	immune	checkpoint	inhibition.	
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EDGE	 for	 CNVs	 was	 applied	 independently	 to	 this	
preoperative	 cohort	 and	 demonstrated	 improved	
performance	 (AUC	 =	 0.82,	 95%	 CI	 0.71	 –	 0.91,	 61%	
sensitivity	 at	 90%	 specificity)	 compared	 to	 MRDetect	
(AUC	=	0.73,	95%	CI:	0.59	–	0.83,	 sensitivity	=	40%	at	
90%	 specificity,	 Fig	 3b).	 Moreover,	 the	 ability	 to	
evaluate		copy	neutral	LOH	in	MRD-EDGE	allowed	us	to	
apply	 	CNV-based	detection	 to	18	/	19	samples	 in	 this	
CRC	cohort	compared	to	15	/	19	samples	with	MRDetect.		

In	the	postoperative	plasma	samples,	we	defined	MRD	as	
a	Z	score	in	excess	of	the	same	90%	detection	threshold	
previously	defined	in	preoperative	samples.	MRD-EDGE	
detected	postoperative	MRD	in	8	/	19	samples	on	plasma	
drawn	a	median	of	43	days	after	surgery,	four	of	which	
had	 confirmed	disease	 recurrence.	 Postoperative	MRD	
was	 found	 to	 be	 associated	 with	 shorter	 disease-free	
survival	(Fig	3c)	over	a	median	follow-up	of	49	months	
(range	18–76).	Recurrence	was	not	observed	 in	any	of	
the	11	patients	in	whom	ctDNA	was	not	detected.	Of	the	
4	 patients	 with	 postoperative	 detection	 who	 did	 not	
show	 evidence	 of	 recurrence,	 1	 received	 adjuvant	
therapy	 that	 may	 have	 eliminated	 residual	 disease,	
which	 has	 been	 demonstrated	 in	 other	 liquid	 biopsy	
settings23.	One	patient	had	short	overall	 survival	at	18	
months	 (unrelated	 death),	 below	 the	 median	 time	 to	
recurrence	 in	CRC47,	 and	 the	 remaining	2	patients	had	
microsatellite	unstable	tumors	that	have	been	shown	to	
be	 associated	 with	 prolonged	 time	 to	 relapse	 and	
occasional	spontaneous	regression48,49.		

Tracking	 of	 plasma	 tumor	 burden	 throughout	
neoadjuvant	therapy	with	MRD-EDGE	

We	next	sought	to	apply	our	MRD-EDGE	SNV	classifier	to	
the	challenging	case	of	tracking	plasma	tumor	burden	in	
response	 to	 neoadjuvant	 immunotherapy.	 Tracking	
tumor	 burden	 in	 this	 setting	 could	 help	 optimize	 care	
during	 the	 crucial	 period	 between	 early-stage	 lung	
cancer	 detection	 and	 definitive	 surgery,	 with	 clinical	
implications	 such	 as	 extent	 of	 surgery	 planning	 for	
responders	 or	 moving	 to	 early	 surgery	 for	 non-
responders.	We	 evaluated	 plasma	 from	 three	 patients	
with	 early-stage	 NSCLC	 on	 a	 neoadjuvant	
immunotherapy	 protocol50	 that	 randomized	 patients	
with	 early	 NSCLC	 to	 treatment	 with	 the	 ICI	 agent	
durvalumab	with	or	without	stereotactic	body	radiation	
therapy	 (SBRT)	 followed	by	 surgical	 resection.	Plasma	
was	collected	prior	to	the	first	ICI	treatment	or	following	
day	 3	 SBRT	 (if	 applicable),	 at	 cycle	 2	 of	 ICI,	 prior	 to	
surgical	resection,	and	after	surgery	(Fig	3d).		

To	 determine	 an	 appropriate	 specificity	 threshold	 for	
use	in	neoadjuvant	lung	cancer	monitoring,	we	applied	
MRD-EDGE	 to	 a	 cohort	 of	 early-stage	 LUAD	 patients	
evaluated	 previously28.	 MRD-EDGE	 maintained	
performance	 in	 this	 cohort	 compared	 to	 MRDetect	
(Extended	 Data	 4c-d)	 and	 allowed	 us	 to	 identify	 a	 Z	
score	detection	threshold	in	a	larger,	orthogonal	cohort.	

We	detected	preoperative	ctDNA	in	each	of	these	three	
neoadjuvant	 treatment	 patients	 using	 the	 detection	
threshold	 prespecified	 from	 our	 early-stage	 LUAD	
cohort.	 One	 patient,	 Neo-01	 (LUAD	 histology),	 had	 a	
marked	 decrease	 in	 plasma	 TF	 following	 SBRT,	 but	
ultimately	 plasma	 TF	 rose	 prior	 to	 surgery	
demonstrating	 a	 lack	 of	 response	 to	 ICI	 (Fig	 3f).	 This	
patient	had	detectable	 ctDNA	postoperatively	and	was	
found	to	have	disease	recurrence	at	18	months	following	
surgery.	Two	patients	who	did	not	receive	SBRT	showed	
minimally	 changed	 tumor	 burden	 throughout	 ICI	
treatment	and	no	evidence	of	pathological	 response	at	
the	 time	 of	 surgery.	 The	 first,	 Neo-02	 (non-specific	
histology),	had	undetectable	ctDNA	postoperatively	and	
remains	free	of	disease	at	29	months.	The	second,	Neo-
03	 (squamous	 histology),	 was	 found	 to	 have	
postoperative	 MRD	 and	 recurred	 at	 12	 months	 after	
surgery	 (Fig	3e).	 These	data	highlight	 the	potential	 of	
serial	 ctDNA	 monitoring	 during	 multi-pronged	
therapeutic	 regimens	 to	 define	 response	 to	 treatment	
and	 create	 opportunities	 for	 real-time	 therapeutic	
optimization.	

MRD-EDGE	detects	ctDNA	shedding	in	precancerous	
adenomas	and	minimally	invasive	pT1	carcinomas	

Whether	 noninvasive	 (precancerous)	 lesions	 shed	
ctDNA	remains	unresolved.	The	issue	carries	important	
implications	for	emerging	early	detection	efforts	where	
the	presence	of	ctDNA	from	precancerous	lesions	may	be	
advantageous	in	some	settings,	or	alternatively	diminish	
the	 precision	 of	 liquid	 biopsy	 screening	 tests.	 While	
MRD-EDGE	requires	a	tumor	prior	and	therefore	cannot	
be	 used	 for	 screening,	we	 reasoned	 that	 the	 exquisite	
sensitivity	 of	 our	 approach	 could	 nonetheless	 address	
whether	 ctDNA	 is	 shed	 from	 adenomas	 and	 polyp	
cancers	 (pT1pN0),	 where	 ctDNA	 detection	 through	
existing	 methods	 such	 as	 droplet	 digital	 PCR	 and	
targeted	sequencing	has	been	limited51,52.	

We	 evaluated	 pre-resection	 plasma	 from	 28	 patients	
with	 malignant	 and	 premalignant	 lesions	 detected	
through	 screening	 at	 the	 Danish	 National	 Colorectal	
Screening	 Program53.	 Nine	 patients	 had	 pT1	 lesions	
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(defined	 as	 invasion	 of	 the	 submucosa	 but	 not	 the	
muscular	 layer,	 the	 earliest	 form	 of	 clinically	 relevant	
CRC54),	 and	 19	 patients	 had	 screen-detected	
precancerous	 adenomas	 (including	 one	 adenoma	with	
microsatellite	instability).	As	a	positive	control,	we	also	
evaluated	plasma	from	5	patients	with	metastatic	CRC.	
We	compared	these	samples	to	healthy	control	plasma	
that	was	 sequenced	at	 the	 same	 location	and	with	 the	
same	platform	as	our	adenoma	and	pT1	 lesion	plasma	
(‘Control	 Cohort	 B’,	 Supplementary	 Table	 1	 and	
Methods).	 Consistent	with	prior	 reports55–57,	we	 found	
decreased	 aneuploidy	 in	 adenomas	 (median	235Mb	of	

genomewide	 aneuploidy)	 compared	 to	 our	 early-stage	
CRC	samples	(median	594Mb	aneuploidy,	P=0.02).	

We	 next	 assessed	 performance	 of	 MRD-EDGE	 in	 this	
cohort.	 To	 ensure	 generalizability	 of	 detection,	 we	
applied	the	prespecified	Z	score	threshold	values		from	
our	 preoperative	 early-stage	 CRC	 cohort	 (Fig	 	 3a-b).	
These	thresholds	yielded	similar	specificity	for	adenoma	
and	pT1	detections	for	both	SNVs	and	CNVs	(89%	and	
93%,	 respectively)	 in	 this	 separate	 cohort	 of	 control	
plasma	samples	sequenced	with	Illumina	NovaSeq	v1.5	
rather	than	Illumina	HiSeq	X	(Supplementary	Table	1).	
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Figure	4:	MRD-EDGE	tumor-informed	detection	of	ctDNA	from	screen-detected	adenomas	and	pT1	lesions.	a)	Detection	
status	of	the	cohort	of	Stage	IV	colorectal	(CRC,	n=5),	screen-detected	pT1	lesions	(n=9)	and	screen-detected	adenoma	plasma	
samples	(n=19)	according	to	MRD-EDGE	SNV	and	CNV	classifiers.	Samples	with	a	Z	score	in	excess	of	the	detection	threshold	as	
prespecified	 in	 the	 early-stage	 CRC	 cohort	 (Fig	 3a-b)	 are	 highlighted.	b)	 ROC	 analysis	 for	MRD-EDGE	 SNV	 (top)	 and	 CNV	
(bottom)	classifiers	in	screen-detected	adenomas	(left)	and	pT1	lesions	(right).	Preoperative	plasma	samples	were	used	as	the	
true	label,	and	the	panel	of	control	plasma	samples	(Control	Cohort	B)	against	all	patient	mutational	compendia	were	used	as	
the	false	label.	For	SNVs,	4	of	15	control	samples	were	used	in	SNV	model	training	and	thus	excluded	from	this	analysis,	yielding	
11	control	samples	as	a	comparator.	For	CNVs,	5	of	15	control	samples	were	used	in	a	panel	of	normal	samples	(PON)	for	our	
read	depth	classifier	(Fig	2a)	and	thus	excluded	from	this	analysis,	yielding	10	control	samples	as	a	comparator.	c)	Plasma	TF	
inference	using	genome-wide	SNV	integration	for	Stage	IV	CRC	(n=5),	early-stage	preoperative	CRC	(n=19),	SNV	detected	pT1	
lesions	(n=6),	and	SNV	detected	adenomas	(n=6)	shows	decreasing	estimated	TF	by	CRC	stage.	Lines	indicate	median	estimated	
TF.	d)	(left)	histology	image	of	the	pT1	lesion	Aar-14	(top)	demonstrates	invasion	of	the	submusoca	by	dysplastic	cancer	cells,	
while	an	image	of	the	adenoma	Aar-17	(bottom)	demonstrates	the	presence	of	dysplasia	and	absence	of	submucosal	invasion.	
(right)	barplots	demonstrate	number	of	plasma	samples	with	detected	ctDNA	in	patients	with	pT1	lesions	(top)	and	adenomas	
(bottom).	Detections	are	shaded	by	dark	blue	(MRD-EDGE	SNV	detections),	light	blue	(MRD-EDGE	CNV	detections),	light	purple	
(SNV	and	CNV	detections),	and	white	(non-detected).	ROC,	receiver	operating	curve.		
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MRD-EDGE	detected	ctDNA	shedding	in	8	/	9	(89%)	pT1	
lesions	and	8	/	19	(42%)	precancerous	adenomas	(Fig	
4a).	 Detection	 AUCs	were	 higher	 for	 pT1	 lesions	 than	
adenomas	 for	 both	 our	 SNV	 and	 CNV	 platforms,	
demonstrating	decreased	ctDNA	signal	 in	adenomas	as	
expected	(Fig	4b).	As	in	our	early-stage	CRC	cohort,	we	
also	 analyzed	 performance	 in	 a	 cross-patient	 analysis	
(Extended	 Data	 5b-c)	 and	 found	 similar	 detection	
ability.	 We	 further	 note	 that	 our	 patient-specific	
mutational	compendium	in	this	setting	was	drawn	from	
formalin-fixed	 paraffin-embedded	 (FFPE)	 tissue	
samples,	which	are	prone	to	more	SNV	artifacts58	 than	
fresh	frozen	tissue	samples	used	in	our	CRC	and	LUAD	
cohorts,	 further	 supporting	 the	 generalizability	 of	
classifiers	 among	 diverse	 tissue	 preparations.	 Using	
SNV-based	 TF	 estimations	 (Methods),	we	 found	 lower	
TFs	 in	 detected	 lesions	 (median	 2.88*10-6,	 range	
1.02*10-6–1.45*10-5	in	pT1	lesions	and	3.78*10-6,	range	
1.17*10-6–1.21*10-5	 in	adenomas)	than	early-stage	and	
metastatic	CRC	samples	(Fig	4c).	Detections	for	pT1	and	
adenoma	lesions	were	significantly	above	our	expected	
false	 positive	 rate	 of	 10%	 (binomial	 P=2.1*10-5	 and	
2.1*10-2,	respectively).	

These	data	demonstrate	that	even	without	a	significant	
invasive	component,	dysplastic	tissue	may	shed	ctDNA.	
The	contribution	of	precancerous	lesions	or	even	benign	
clonal	outgrowths	to	the	cfDNA	pool	may	thus	form	an	
important	 consideration	 as	 advanced	 non-tumor	
informed	 methods	 are	 deployed	 clinically,	 both	 for	
detection	 of	 adenomas	 and	 for	 early	 cancer	 detection	
efforts.		

MRD-EDGE	enables	ctDNA	monitoring	in	melanoma	
plasma	WGS	without	matched	tumor	

Across	solid	tumors,	tumor	tissue	may	be	scarce	due	to	
considerations	ranging	from	scant	biopsy	material	(e.g.,	
stage	II	melanoma),	lack	of	primary	biopsies	at	tertiary	
care	centers,	or	restrictions	on	access	to	primary	tissue.	
For	 example,	 in	 prior	 bespoke	 panel	 studies	 the	
requirement	for	matched	tissue	led	to	the	exclusion	of	a	
substantive	 proportion	 of	 eligible	 patients	 due	 to	 low	
tumor	 DNA	 purity	 or	 quality20,59.	 Further,	 in	 several	
cancers,	 non-surgical	 treatment	 modalities	 like	
radiation	are	given	with	 curative	 intent,	 again	 limiting	
opportunities	 for	 tumor-informed	 approaches.	 This	
introduces	 the	 need	 for	 tumor-agnostic	 (de	 novo)	
mutation	calling	platforms	for	clinical	surveillance.	Our	
improved	 signal	 to	 noise	 enrichment	 in	 the	 tumor-
informed	setting	 (Extended	Data	1d)	motivated	us	 to	

consider	de	novo	mutation	calling	using	our	MRD-EDGE	
platform.	In	this	setting,	there	is	no	a	priori	knowledge	of	
high	 likelihood	 mutated	 loci,	 and	 ctDNA	 signal	 is	
therefore	 far	 more	 challenging	 to	 distinguish	 from	
sequencing	error.		

De	novo	mutation	calling	with	MRD-EDGE	requires	 the	
evaluation	 of	 all	 plasma	 fragments	 that	 harbor	 SNVs,	
which	range	from	1*107–1*108	per	plasma	sample	in	our	
WGS	 cohorts	 (Methods,	 Supplementary	 Table	 1).	 As	
these	SNVs	harbor	 far	greater	cfDNA	sequencing	noise	
compared	 to	 ctDNA	 signal,	 we	 reasoned	 that	 higher	
specificity	 thresholds	would	 need	 to	 be	 applied	 to	 the	
output	of	 the	deep	 learning	classifier.	To	determine	an	
appropriate	de	novo	specificity	threshold	for	our	MRD-
EDGE	deep	learning	SNV	classifier	(Fig	1d)	we	used	the	
same	 in	 silico	 admixtures	 as	 in	 the	 tumor-informed	
setting	 (validation	melanoma	sample	MEL-01	admixed	
with	a	held-out	healthy	control	plasma	sample,	Fig	1e).	
We	compared	signal	to	noise	enrichment	with	detection	
AUC	at	 different	 specificity	 thresholds	 imposed	on	 the	
MRD-EDGE	ensemble	model	output	(Extended	Data	6a-
b,	 Methods)	 to	 find	 an	 optimal	 threshold	 for	
classification	 of	 ultrasensitive	 TFs	 (TF	 5*10-5).	 As	
expected,	 our	 empirically	 chosen	 threshold	 in	 the	 de	
novo	classification	context	(0.995)	was	higher	than	the	
balanced	 threshold	 (0.5)	 used	 in	 the	 tumor-informed	
setting.	 At	 this	 threshold,	 AUC	 for	 ultrasensitive	
detection	 (5*10-5)	 was	 0.77	 (Fig	 5a).	 Signal	 to	 noise	
enrichment	for	MRD-EDGE	was	2,518	fold	(range	1,817-	
3,058	 fold)	 compared	 to	 the	MRDetect	SVM	(mean	8.3	
fold,	 range	 8-9	 fold)	 in	 a	matched	 analysis	 performed	
with	 the	 same	 samples	 used	 in	 the	 tumor-informed	
setting	 (Extended	Data	 1d).	 This	 equates	 to	 301-fold	
(range	 211–357	 fold,	 Fig	 5b)	 higher	 enrichment	 for	
MRD-EDGE	compared	to	MRDetect.		

After	benchmarking	fragment-level	performance	for	de	
novo	 mutation	 calling	 with	 MRD-EDGE,	 we	 evaluated	
performance	at	the	sample	level	in	a	cohort	of	patients	
with	 advanced	 cutaneous	 melanoma	 treated	 with	
combination	 ICI	 on	 The	 Adaptively	 Dosed	
Immunotherapy	Trial60	 (‘adaptive	dosing	cohort’,	n=26	
patients,	 2-4	 timepoints	 per	 patient,	 Fig	 5c).	 In	 this	
cohort,	plasma	was	sampled	at	baseline	(pretreatment)	
and	 prior	 to	 the	 second	 (Week	 3)	 and	 third	 (Week	 6)	
infusion	 of	 the	 ICI	 agents	 nivolumab	 and	 ipilimumab.	
The	 protocol	 aimed	 to	 spare	 excess	 combination	 ICI	
treatment	 by	 identifying	 responders	 through	 early	
imaging	 at	Week	 6	 and	 transitioning	 these	 patients	 to	
monotherapy	with	nivolumab.		
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We	compared	 ctDNA	detection	 rates	 in	our	melanoma	
cohort	 to	 a	 cohort	 of	 controls	 (n=30	 patients	 without	
known	 cancer,	 ‘Control	 Cohort	 C’)	 sequenced	 under	
similar	conditions	(Illumina	NovaSeq	v1.0	for	melanoma	
and	control	groups)	to	avoid	inter-platform	bias.	MRD-
EDGE	 identified	 ctDNA	 in	 pretreatment	 plasma	 from	
cutaneous	melanoma	 samples	 (n=25	 after	 holding	 out	
one	 melanoma	 plasma	 sample	 with	 high	 TF	 used	 in	
neural	network	training),	yielding	an	AUC	of	0.94	(95%	
CI:	 0.86–1.0,	 Fig	 5d).	 In	 keeping	 with	 our	 tumor-
informed	 analyses,	 we	 chose	 the	 first	 detection	
threshold	at	a	specificity	of	90%	or	greater	(sensitivity	
of	92%,	specificity	of	96.7%).	As	a	negative	control,	we	
included	pre-	and	posttreatment	plasma	samples	from	a	
patient	with	acral	melanoma	(n=3	total	plasma	samples)	
within	 the	 same	 sequencing	 batch.	 As	 expected,	 we	

observed	 no	 ctDNA	 detection	 in	 these	 samples	
(Extended	 Data	 6c),	 confirming	 that	 our	 classifier	 is	
specific	 for	 the	 distinct	 mutational	 signatures	 of	
cutaneous	melanoma.		

To	 benchmark	 MRD-EDGE	 ctDNA	 detection	 in	
pretreatment	 plasma	 against	 alternative	 methods,	 we	
compared	 results	 to	 a	 state-of-the-art	 targeted	 panel8	
with	 tumor-informed	 mutation	 calling	 covering	 129	
common	 cancer	 genes	 (‘tumor-informed	 panel’)	 in	 a	
subset	 of	 14	 patients.	 Tumor-informed	 detection	 was	
based	 on	 an	 average	 of	 9.4	 panel-covered	 SNVs	 per	
sample	 (range	 2-29,	 Supplementary	 Table	 4).	 Four	
patients	 had	 14	 or	 more	 SNVs	 (highlighted	 in	 Fig	 5f,	
Extended	 Data	 7),	 a	 range	 comparable	 to	 leading	
bespoke	 panels19,20,59.	 In	 parallel,	 results	 were	 also	
compared	 to	 the	 same	 targeted	 panel	 with	 de	 novo	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.17.476508doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.17.476508


 
13	 	 Widman	et	al.	(2022).	BioRxiv.	

mutation	calling	(‘de	novo	panel’)	and	to	iChorCNA10,	an	
established	 WGS	 CNV	 TF	 estimator.	 In	 cutaneous	
melanoma	pretreatment	plasma	samples	profiled	across	
methods,	 sensitivity	 for	 MRD-EDGE	 ctDNA	 detection	
was	100%	(binomial	95%	CI	83.8%–100%),	compared	
to	93%	 (71.2%–99.2%)	 for	 the	 tumor-informed	panel,	
79%	(53.1%–93.6%)	for	the	de	novo	panel	and	43%	for	
iChorCNA	(20.2%–68.0%)	(Fig	5e).		

We	 next	 assessed	 MRD-EDGE’s	 ability	 to	 monitor	
changes	in	ctDNA	TF	following	ICI	treatment	compared	
to	alternative	methods.	Given	the	unknown	variable	of	
tumor	 mutational	 burden	 in	 these	 samples	 and	 the	
influence	of	mutation	load	on	detection	rate,	MRD-EDGE	
trends	 in	 TF	 were	 measured	 as	 a	 detection	 rate	
normalized	 to	 pretreatment	TF	 (‘normalized	 detection	
rate’,	nDR).	For	comparison	in	targeted	panels,	VAF	was	
normalized	to	the	pretreatment	timepoint	(‘normalized	
VAF’,	 nVAF).	 Side-by	 side	 comparisons	 demonstrate	

broadly	 similar	 trends	 in	 tumor	 burden	 following	 ICI	
treatment	(Fig	5f,	Extended	Data	7).		

We	 considered	 a	 sample	 detected	 by	 the	 tumor-
informed	 panel	 if	 estimated	 VAF	 across	 all	 surveyed	
genes	was	greater	 than	zero,	while	detection	 in	 the	de	
novo	 panel	was	measured	 as	 variant	 allele	 	 frequency	
(VAF)	>	0.005	per	published	methods8.	Among	samples	
evaluated	across	platforms	(n=43	total,	14	pretreatment	
and	 29	 posttreatment	 samples),	 detection	 consistency	
(measured	 as	 the	 agreement	 between	 platforms	 of	
detected	 ctDNA	 and	 undetectable	 ctDNA)	 was	 highest	
between	MRD-EDGE	 and	 the	 tumor-informed	 panel	 at	
38	of	43	samples	(88%,	Fig	5g	left).	MRD-EDGE	detected	
the	 lowest	VAF	detected	by	 the	 tumor-informed	panel,	
estimated	 at	 1*10-4,	 validating	 our	 in	 silico	
benchmarking	 of	 detection	 sensitivity	 in	 clinical	
practice.	 Detection	 consistency	was	 lower	 at	 26	 of	 43	
samples	 (60%)	 between	 MRD-EDGE	 and	 the	 de	 novo	

Figure	5:	MRD-EDGE	accurately	monitors	ctDNA	in	melanoma	plasma	WGS	without	matched	tumor.	a)	In	silico	studies	of	
cfDNA	from	the	metastatic	melanoma	sample	MEL-01	(pretreatment	TF	of	3.5%)	mixed	in	n=20	replicates	against	cfDNA	from	
a	healthy	plasma	sample	(TF=0)	at	mix	fractions	10-6–10-3	at	16X	coverage	depth.	MRD-EDGE	enables	sensitive	TF	detection	as	
measured	by	Z	score	against	healthy	controls	at	TF=5*10-5	(AUC	0.77)	without	matched	tumor	tissue	to	guide	SNV	identification.	
Box	plots	represent	median,	bottom	and	upper	quartiles;	whiskers	correspond	to	1.5	x	IQR.	An	AUC	heatmap	measures	detection	
vs.	TF=0	at	different	mixed	TFs.	b)	Signal	to	noise	enrichment	analysis	for	MRDetect	SVM	and	for	each	step	of	the	MRD-EDGE	de	
novo	mutation	calling	pipeline.	Final	pipeline	enrichment	is	2,518-fold	for	MRD-EDGE	vs.	8.3-fold	for	the	MRDetect	SVM	in	the	
same	 plasma	 samples.	 MRD-EDGE	 provides	 for	 a	 cumulative	 301-fold	 enrichment	 over	 MRDetect.	 c)	 Study	 schematic	 for	
adaptive	dosing	melanoma	cohort	(n=26	patients	with	advanced	melanoma).	All	patients	began	treatment	with	combination	
ipilimumab	(3	mg/kg)	and	nivolumab	(1	mg/kg).	Plasma	was	collected	at	pretreatment	timepoint	at	week	0,	at	second	dose	of	
combination	ICI	at	Week	3,	and	at	Week	6.	Beginning	at	Week	6	patients	received	either	combination	ICI	or	ICI	monotherapy	
based	on	imaging	response:	patients	with	stable	or	shrinking	disease	on	Week	6	CT	received	nivolumab	monotherapy	and	those	
with	tumor	growth	received	additional	combination	therapy.	Further	CT	imaging	was	performed	at	Week	12.	d)	ROC	analysis	
for	 the	detection	of	 pretreatment	melanoma	using	MRD-EDGE	 for	 healthy	 individuals	 (n=30,	 false	 label)	 and	patients	with	
melanoma	(n=25,	true	label).	One	pretreatment	melanoma	plasma	sample	with	high	TF	used	in	model	training	was	withheld	
from	this	analysis.	Detection	rate	cutoff	was	selected	as	the	first	operational	point	with	specificity	of	90%	or	greater.	e)	Fourteen	
of	26	patients	from	the	adaptive	dosing	cohort	underwent	sequencing	with	a	tumor-informed	targeted	panel8	(‘tumor-informed	
panel’).	Vertical	bars	demonstrate	pretreatment	detection	sensitivity	for	MRD-EDGE,	the	tumor-informed	panel,	a	de	novo	panel	
based	on	the	de	novo	calling	thresholds8	used	for	the	tumor-informed	panel,	and	ichorCNA.	Error	bars	represent	95%	binomial	
confidence	interval	for	empiric	sensitivity	within	14	trials.	f)	Serial	tumor	burden	monitoring	on	ICI	with	MRD-EDGE,	tumor-
informed	panel,	and	de	novo	panel	for	3	patients	with	melanoma.	Tumor	burden	estimates	are	measured	as	a	detection	rate	
normalized	to	the	pretreatment	sample	(normalized	detection	rate,	nDR)	for	MRD-EDGE	and	as	variant	allele	fraction	(VAF)	
normalized	 to	 the	 pretreatment	 VAF	 (normalized	 VAF,	 nVAF)	 in	 the	 tumor-informed	 panel	 and	 de	 novo	 panel.	 MRDetect	
accurately	captures	trends	in	TF,	while	the	de	novo	panel	faces	sensitivity	barriers	in	low	TF	settings	where	plasma	VAF	<	0.005.	
Blue	highlights	surrounding	sample	name	 indicate	samples	with	14	or	more	SNVs	covered	 in	 the	 tumor-informed	panel.	g)	
Forty-three	pre-	and	posttreatment	samples	from	the	adaptive	dosing	melanoma	cohort	underwent	sequencing	with	MRD-EDGE	
and	the	tumor-informed	panel.	(top)	Heatmap	demonstrating	detection	overlap	(measured	as	the	agreement	between	platforms	
of	detected	ctDNA	and	undetectable	ctDNA)	between	MRD-EDGE	and	the	tumor-informed	panel	shows	high	concordance	(88%)	
between	the	two	platforms.	(bottom)	Lower	detection	overlap	(60%)	is	present	between	MRD-EDGE	and	the	de	novo	targeted	
panel	due	to	sensitivity	 floors	 in	the	de	novo	panel.	h)	Barplot	of	Cohen’s	kappa	agreement	metric	 for	Week	6	ctDNA	trend	
(increase	or	decrease)	compared	to	pretreatment	baseline	between	3	mutation	callers	and	the	tumor-informed	panel:	MRD-
EDGE,	de	novo	panel,	and	iChorCNA.	MRD-EDGE	demonstrates	most	agreement	with	the	tumor-informed	panel	(Cohen’s	Kappa	
0.75).	ROC,	Receiver	operating	curve.	IQR,	interquartile	range.	IQR,	interquartile	range.	CT,	computed	tomography.	
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panel,	 likely	due	to	 the	sensitivity	 floor	of	0.005	 in	the	
latter	 method	 (Fig	 5g,	 right).	 To	 benchmark	 MRD-
EDGE’s	 utility	 in	 clinical	 surveillance,	 we	 compared	
changes	in	ctDNA	TF	at	Week	6	following	ICI	treatment.	
Changes	 in	 nDR	 or	 nVAF	 showed	 higher	 agreement	
between	 MRD-EDGE	 and	 the	 tumor-informed	 panel,	
compared	to	the	agreement	with	the	de	novo	panel	and	
iChorCNA	 	 (Fig	 5h).	 In	 summary,	 MRD-EDGE	 enables	
ultrasensitive	 melanoma	 ctDNA	 detection	 and	 TF	
monitoring	on	par	with	an	established	tumor-informed	
panel.	

MRD-EDGE	 sensitively	 tracks	 response	 to	
immunotherapy	in	metastatic	melanoma.		

In	advanced	melanoma,	radiographic	response	may	not	
be	 apparent	 for	 months	 after	 ICI	 initiation	 due	 to	
pseudo-progression	 or	 residual	 fibrous	 tissue61,62,	
limiting	the	sensitivity	of	 imaging	to	detect	meaningful	
changes	 in	 tumor	 burden.	 Further,	 the	 absence	 of	
biomarkers	that	predict	which	patients	will	respond	to	
therapy	 can	 lead	 to	 excess	 or	 futile	 treatment	 in	
unselected	populations63.	Liquid	biopsy	can	improve	ICI	
care	 by	 providing	 faster	 readouts	 of	 response,	
orthogonal	measurement	of	TF	trends,	and	longitudinal	
noninvasive	TF	 surveillance.	 Several	panel	 approaches	
have	 demonstrated	 that	 changes	 in	 plasma	 TF	 as	
measured	 through	 increasing	 or	 decreasing	 ctDNA	 TF	
can	 complement	 imaging	 to	 predict	 response	 to	 ICI	
therapy20,21,59,64,65.	

We	sought	to	explore	the	clinical	utility	of	de	novo	(i.e.,	
non	tumor-informed)	MRD-EDGE	in	ICI-treated	patients	
with	metastatic	melanoma.	We	 expanded	 the	 adaptive	
dosing	 melanoma60	 cohort	 described	 above	 (n=26	
patients,	 Fig	 6a	 right	 panel)	 to	 include	 additional	
patients	 treated	with	standard	of	care	 immunotherapy	
(‘conventional	 immunotherapy’,	 n=11	 patients,	 Fig	 6a	
left	 panel,	 Supplemental	 Table	 4).	 As	 further	
demonstration	 of	 applicability	 across	 platforms,	 the	
adaptive	 dosing	 cohort	 was	 sequenced	 on	 Illumina	
NovaSeq	v1.0	while	the	standard	of	care	immunotherapy	
cohort	 was	 sequenced	 on	 Illumina	 HiSeq	 X	
(Supplemental	Table	3).	No	 tumor	or	matched	normal	
tissue	was	used	in	this	de	novo	plasma	WGS	analysis.		

Trends	in	MRD-EDGE	nDR	tracked	radiographic	imaging	
results.	 For	 example,	 in	 a	 patient	 who	 progressed	 on	
treatment,	 progressive	 disease	was	 seen	 on	 computed	
tomography	 (CT)	 at	Week	 6	 and	Week	 12	 while	 nDR	
concomitantly	 increased	 (Fig	 6b,	 top).	 Similarly,	
radiographic	 imaging	 demonstrated	 ongoing	 tumor	

shrinkage	 in	 a	 patient	 who	 responded	 to	 treatment,	
matched	by	a	rapid	and	persistent	decrease	in	nDR	that	
occurred	by	Week	3	(Fig	6b,	bottom).		

We	next	evaluated	MRD-EDGE’s	ability	to	prognosticate	
clinical	outcomes	at	serial	plasma	timepoints	(122	pre-	
and	posttreatment	plasma	samples	from	n=37	patients,	
Supplementary	 Table	 4).	 Patients	 with	 undetectable	
pretreatment	ctDNA	(n=3)	were	excluded	from	further	
clinical	analyses.	We	found	that	change	in	ctDNA	nDR	as	
measured	 by	 increased	 or	 decreased	 plasma	 TF	
following	 treatment	 to	 be	 predictive	 of	 both	 PFS	
(P=0.01)	 and	 	OS	 (P=0.03,	Fig	6d)	 as	 early	 as	Week	3	
after	 the	 first	 ICI	 infusion.	 This	 prognostic	 role	 for	
plasma	TF	 changes	after	 first	 ICI	 infusion	and	prior	 to	
any	 conventional	 imaging	 has	 also	 been	 noted	 in	
response	 to	 single-agent	 ICI	 in	 NSCLC21,	 and	
demonstrate	a	role	for	 liquid	biopsy	TF	surveillance	in	
the	 earliest	 days	 of	 ICI	 treatment.	 We	 also	 found	
significant	PFS	and	OS	relationships	for	change	in	ctDNA	
nDR	 at	 Week	 6	 (Extended	 Data	 8a).	 In	 contrast,	 CT	
imaging	was	available	for	our	adaptive	dosing	cohort	at	
Week	6,	 and	here	we	 found	no	significant	 relationship	
between	 RECIST	 response	 and	 OS	 (P=0.40,	 Extended	
Data	8b).		

Notably,	 the	 first	OS	event	 in	our	Week	3	and	Week	6	
ctDNA	 survival	 analysis	 occurred	 in	 a	 patient	 with	
decreasing	nDR	at	Week	3	and	Week	6	who	enrolled	on	
protocol	following	prior	treatment	of	brain	metastases.	
CT	imaging	(partial	response)	and	ctDNA	trends	for	both	
MRD-EDGE	and	the	tumor-informed	panel	identified	an	
extracranial	response	to	therapy.	This	patient,	however,	
had	intracranial	progression	at	5	months	and	was	taken	
off	 protocol.	 Such	 findings	 are	 consistent	 with	 the	
melanoma	 ctDNA	 literature,	 where	 ctDNA	 trends	 are	
known	 to	 reflect	 extracranial	 rather	 than	 intracranial	
tumor	 burden66,	 and	 suggest	 that	 ctDNA	 monitoring	
should	be	used	with	caution	 in	patients	at	high	risk	of	
intracranial	progression.	

Despite	significant	PFS	and	OS	relationships	 for	ctDNA	
trends	at	Week	3,	we	noted	several	 instances	 in	which	
decreasing	Week	3	nDR	was	not	indicative	of	durable	ICI	
response.	We	reasoned	that	the	high	toxicity	rate	from	
combination	ICI,	where	nearly	40%	of	patients	will	stop	
treatment	 early	 because	 of	 	 immune-related	 adverse	
events	(irAEs)67,	may	have	confounded	classification	at	
Week	3.	 Clinically,	 severe	 irAEs	 are	often	 treated	with	
corticosteroids,	and	early	steroid	use	(within	8	weeks	of	
ICI	treatment)	is	associated	with	shorter	PFS	and	OS	in	
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melanoma68.	 	 We	 therefore	 stratified	 our	 melanoma	
patients	into	3	groups,	patients	with	primary	refractory	
disease	(initial	increase	in	ctDNA	nDR,	n=7),	and	patients	
with	 an	 initial	 ctDNA	 response	 either	 treated	 or	
untreated	 with	 early	 steroids	 (n=9	 and	 n=18,	
respectively).	 This	 classification	 proved	 strongly	
predictive	of	both	PFS		(P=1.3*10-7)	and	OS	(P=1.7*10-4,	
Fig	 5f),	 and	 suggests	 that	 early	 treatment	 responses,	
measured	 via	 ctDNA,	may	 be	 inhibited	 by	 steroids.	 In	
summary,	 with	 no	 need	 for	 matched	 tumor	 and	 a	
standard	WGS	workflow,	MRD-EDGE	offers	the	potential	
for	 real-time	 serial	 monitoring	 of	 plasma	 ctDNA	 in	
conjunction	 with	 imaging	 to	 assess	 immunotherapy	
response.	

DISCUSSION	

The	use	of	noninvasive	liquid	biopsy	to	detect	MRD	and	
track	 response	 to	 therapy	 heralds	 the	 next	 frontier	 in	
precision	 oncology.	 We	 previously	 observed	 that	 the	
sensitivity	of	deep	targeted	sequencing	approaches	may	
be	limited	in	the	context	of	low	plasma	TF	(e.g.,	MRD	or	
the	nadir	of	response	to	immunotherapy),	and	used	WGS	
of	plasma	to	expand	the	number	of	informative	sites	and	
therefore	increase	sensitivity	in	this	setting.	Herein,	we	
introduced	 a	 machine	 learning-based	 classifier	 MRD-
EDGE	that	is	designed	to	integrate	an	expanded	feature	
set	 for	SNVs	and	CNVs	 to	substantially	enhance	ctDNA	
signal	enrichment.	
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Broadly,	MRD-EDGE	can	leverage	both	prior	knowledge	
of	 tumor-specific	 mutational	 compendia	 and	 a	
biologically-informed	 feature	 space	 to	 enrich	 ctDNA	
signal.	 Our	 MRD-EDGE	 SNV	 deep	 learning	 	 strategy	
differs	 markedly	 from	 other	 deep	 learning	 	 variant	
callers69,70	through	our	use	of	disease-specific	biology	to	
inform	 somatic	 mutation	 identification.	 Our	 focus	 on	
classifying	 fragments	 rather	 than	 loci	 allowed	 us	 to	
overcome	 the	 inability	 to	 apply	 consensus	 mutation	
calling,	 the	 cornerstone	 of	 most	 variant	 calling	
strategies,	 in	 extremely	 low	 TF	 settings.	 Moreover,	
fragment-based	classification	enabled	an	increase	in	the	
size	of	our	training	corpuses	to	hundreds	of	thousands	
of	 observations,	 which	 is	 critical	 to	 comprehensive	
pattern	 recognition	 with	 neural	 networks71.	 The	 deep	
learning	 SNV	 architecture	 in	 MRD-EDGE	 provides	 a	
flexible	 platform	 for	 integrating	 disease-specific	
molecular	features,	outperforms	other	machine	learning	
approaches,	 and	 demonstrates	 generalizability	 across	
cancer	types	and	sequencing	preparations.		

For	 CNVs,	 machine-learning	 guided	 signal	 denoising	
enables	accurate	inference	of	plasma	read	depth	skews,	
while	 fragmentomics	 and	 BAF	 provide	 orthogonal	
metrics	 for	CNV	assessment.	Our	use	of	 tumor-specific	
copy	 number	 profiles	 combined	 with	 powerful	
denoising	 enables	 increased	 sensitivity	 compared	 to	
established	 read	 depth	 approaches10,11.	 The	 use	 of	
neutral	 segments	 as	 a	 sample	 level	 internal	 control	
offers	 an	 additional	 specificity	 advantage	 compared	 to	
tumor-agnostic	 fragment-based	methods9,23.	The	 lower	

degree	of	aneuploidy	needed	for	ultrasensitive	detection	
(Fig	2e)	and	ability	to	capture	signal	from	copy-neutral	
LOH	 will	 enable	 application	 to	 a	 diverse	 set	 of	 solid	
tumors	even	in	the	absence	of	high	somatic	SNV	burden	
(Extended	Data	3).		

We	 expect	 that	 the	 simple	 WGS	 workflow,	 which	
obviates	 the	 need	 for	 custom	 panel	 generation	 and	
molecular	 barcodes,	 and	 ability	 to	 work	 with	 limited	
input	material	(1	mL	of	plasma)	will	enhance	MRD-EDGE	
translational	 impact	 in	 diverse	 clinical	 settings,	
especially	 given	 the	 rapid	 decline	 in	 raw	 sequencing	
costs.	MRD-EDGE	enabled	the	detection	of	postoperative	
CRC	 and	LUAD	MRD,	 as	well	 as	 tracking	 of	 plasma	TF	
dynamics	 in	 response	 to	 neoadjuvant	 ICI.	 Our	 data	
highlight	 the	 potential	 for	 real-time	 therapeutic	
optimization	 in	 the	 neoadjuvant	 setting,	 which	 could	
potentially	inform	early	surgery	or	treatment	change	for	
non-responders	 in	 order	 to	 maximize	 curative	
opportunity.	

The	 distinct	 sensitivity	 of	 MRD-EDGE	 allowed	 us	 to	
examine	 the	 detection	 of	 ctDNA	 shedding	 from	
precancerous	 colorectal	 adenomas.	 While	 this	 tumor-
informed	 approach	 cannot	 be	 used	 for	 screening,	 the	
detection	of	ctDNA	in	a	substantial	proportion	of	cased	
argues	 that	 ctDNA	 may	 be	 present	 without	 invasive	
disease.	This	carries	important	implications	for	ongoing	
efforts	 to	 develop	 liquid	biopsy	 approaches	 for	 cancer	
screening9,13,72,73.	Considering	the	value	of	precancerous	
lesion	 detection	 in	 CRC	 screening74,	 these	 data	
demonstrate	 that	 ctDNA-guided	 detection	 of	

Figure	6:	Serial	monitoring	of	clinical	response	to	immunotherapy	with	MRD-EDGE.	a)	Study	schematics	of	two	advanced	
melanoma	cohorts.	(left)	conventional	 immunotherapy	cohort	received	nivolumab	monotherapy	or	combination	ICI.	Plasma	
was	collected	at	pretreatment	timepoint	and	weeks	3,	6,	and	12.	Cross	sectional	imaging	to	evaluate	response	to	treatment	was	
performed	at	12	weeks.	(right)	adaptive	dosing	cohort	received	combination	immunotherapy	as	described	in	Fig	5c.	b)	Serial	
plasma	TF	monitoring	with	MRD-EDGE	corresponds	to	changes	seen	on	imaging.	TF	estimates	are	measured	as	a	detection	rate	
normalized	to	the	pretreatment	sample	(normalized	detection	rate,	nDR)	for	MRD-EDGE.	(top)	ctDNA	nDR	grossly	increases	
over	time	in	a	patient	with	disease	refractory	to	ICI.	The	patient	had	progressive	disease	at	Week	6	and	Week	12	CT	assessment.	
(bottom)	ctDNA	nDR	decreased	at	Week	3	 in	a	patient	with	a	partial	 response	 to	 therapy.	CT	 imaging	demonstrates	 tumor	
shrinkage	at	Week	6	and	Week	12.	c)	Kaplan–Meier	progression-free	and	overall	survival	analysis	for	Week	3	ctDNA	trend	in	
patients	with	decreased	(n=27)	or	increased	(n=7)	nDR	as	measured	by	MRD-EDGE.	Patients	with	undetectable	pretreatment	
ctDNA	(n=3)	were	excluded	from	the	analysis.	Increased	nDR	at	Week	3	shows	association	with	shorter	progression-free	and	
overall	survival	(two-sided	log-rank	test).	d)	(top	left)	pretreatment	CT	imaging	of	a	patient	with	decreased	ctDNA	in	response	
to	ICI	at	Week	3	on	both	MRD-EDGE	(nDR,	blue)	and	a	tumor-informed	panel	(normalized	variant	allele	frequency,	nVAF,	red).	
Following	the	administration	of	methylprednisone	at	Week	3,	estimated	TF	on	both	ctDNA	detection	platforms	increased.	At	
Week	6,	progressive	disease	is	seen	on	CT	imaging	(top	right).	e)	Early	steroids	for	irAEs	within	the	combination	ICI	dosing	
period	(prior	to	Week	8)	further	stratify	Week	3	survival	analyses.	Kaplan–Meier	progression-free	and	overall	survival	analysis	
was	performed	on	patients	with	primary	refractory	disease	(‘primary	refractory’,	blue,	n=7),	defined	as	rising	nDR	seen	at	Week	
3	following	first	dose	of	treatment,	decreasing	ctDNA	who	did	not	receive	steroids	(“no	steroids”,	red,	n=18),	and	patients	who	
received	steroids	for	immune-related	adverse	events	within	the	combination	ICI	dosing	period	(‘steroids’,	green,	n=9).	P	value	
reflects	multivariate	logrank	test.		ICI,	immune	checkpoint	inhibition.	CT,	computed	tomography.		
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premalignant	lesions	is	a	viable	goal,	provided	that	tools	
with	 sufficient	 sensitivity	 can	 be	 developed	 for	 this	
setting.	On	the	other	hand,	the	demonstration	of	ctDNA	
shedding	without	an	invasive	component	suggests	that	
clonal	mosaicisms	in	normal	tissues	may	impact	cancer	
screening	efforts	in	a	manner	similar	to	the	observation	
of	 confounding	 clonal	 hematopoiesis	 mutations	 in	
targeted	 sequencing73,75–77.	 This	 may	 be	 particularly	
important	 for	 hotspot	 mutations	 given	 the	 pervasive	
nature	of	clonal	outgrowths78–80	and	the	potential	of	the	
plasma	to	aggerate	signal	across	potentially	 thousands	
of	 separate	 clones.	 Similarly,	 it	 is	 unknown	 to	 what	
degree	normal	solid	tissue	clonal	outgrowths	differ	from	
malignant	 counterparts	 in	 fragment	 length	 or	
methylation	profiles,	which	may	impact	non-mutational	
ctDNA	screening	methods.	

We	 further	 leveraged	 the	 enhanced	 signal	 to	 noise	
enrichment	 of	 MRD-EDGE	 to	 perform	 de	 novo	 (non-
tumor	 informed)	 SNV	mutation	 detection	 in	 advanced	
melanoma.	The	emerging	role	of	early	ctDNA	trends	in	
monitoring	ICI	response,	seen	here	and	elsewhere20,21,59,	
is	reflected	in	the	recent	Center	for	Medicare	&	Medicaid	
Services	approval	of	tumor-informed	bespoke	assays	to	
prognosticate	 response	 to	 immunotherapy	 after	 6	
weeks.	In	the	phase	2	trial20	that	led	to	this	approval,	the	
requirement	 for	 a	matched	 tumor	 sample	 for	 bespoke	
panel	design	led	to	the	exclusion	of	one-third	of	patients	
due	 to	 low	 tumor	 DNA	 purity	 or	 quality.	 In	 contrast,	
MRD-EDGE	 required	 only	 plasma,	 and	 produced	
performance	on	par	with	a	comparable	tumor-informed	
panel.	 MRD-EDGE	 allowed	 for	 early	 and	 accurate	
assessment	 of	 response	 to	 ICI,	 a	 challenging	 clinical	
setting	 for	 prognostication63,64.	 Future	 large-scale	
interventional	studies	will	be	critical	to	demonstrate	the	
value	 of	 rapid	 and	 quantitative	 estimation	 of	 ICI	
response	to	inform	real-time	clinical	decision	making.			

Collectively,	our	data	support	the	use	of	plasma	WGS	as	
a	complementary	strategy	to	the	prevailing	paradigm	of	
ctDNA	 mutation	 detection	 via	 deep	 targeted	 panel	
sequencing.	 Our	 approach	 can	 complement	 targeted	
panels,	 as	 well	 as	 other	 liquid	 biopsy	 tools	 such	 as	
methylation-based	 assays,	 to	 create	 a	 comprehensive	
liquid	biopsy	toolkit	that	tailors	sequencing	approach	to	
clinical	 application.	 For	 example,	 we	 envision	 that	
improved	 cancer	 screening	 through	 early	 detection	
efforts	 will	 allow	 the	 diagnosis	 of	 cancers	 at	 less	
advanced	 stages9,12,13,73.	 Low	 tumor-burden	 disease	
treated	 with	 surgical	 and/or	 non-surgical	 means	 will	
benefit	 from	 ultra-sensitive	 TF	 monitoring	 via	 MRD-

EDGE.	In	the	event	of	high	burden	disease	relapse,	deep	
targeted	 panels5,6,8,19,21,	 better	 suited	 to	 provide	
mutational	profiling	through	exhaustive	coverage	depth,	
can	nominate	gene	targets	for	systemic	targeted	therapy.	
While	the	value	of	therapy	optimization	based	on	MRD-
EGDE	monitoring	requires	investigation	in	large	clinical	
cohorts,	our	findings	highlight	the	potential	of	ctDNA	as	
a	 quantitative	 tumor	 burden	 biomarker	 that	 provides	
real-time	 feedback	 in	 response	 to	 therapy	 and	 early	
insight	into	relapsed	disease.		
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METHODS		

Human	 subjects	 and	 sample	 processing.	 This	 study	
was	 approved	
by	 the	 local	 ethics	 committee	 and	 by	 the	 institutional	
review	 board	 (IRB)	 and	
was	 conducted	 in	 accordance	 with	 the	 Declaration	 of	

Helsinki	 protocol.	 Blood	 samples	 were	 collected	 from	
patient	and	healthy	adult	volunteers	enrolled	in	clinical	
research	 protocols	 at	 NewYork-Presbyterian/Weill	
Cornell	 Medical	 Center,	 Memorial	 Sloan	 Kettering	
Cancer	 Center,	 Massachusetts	 General	 Hospital,	 the	
Royal	 Marsden	 NHS	 Foundation	 Trust	 in	 the	 United	
Kingdom,	 or	 Aarhus	 University	 Hospital,	 Bispebjerg	
Hospital,	Randers	Hospital,	Herning	Hospital,	Hvidovre	
Hospital,	 and	 Viborg	 Hospital	 in	 Denmark.	 Melanoma	
tumor,	 normal	 and	 plasma	 samples	 from	 the	 Royal	
Marsden	NHS	Foundation	Trust	were	obtained	under	an	
ethically	 approved	 protocol	 (Melanoma	
TRACERx,	Research	 Ethics	 Committee	 Reference	
11/LO/0003).	 Tumor	 tissues	 were	 collected	 from	
resected	 lung,	 melanoma,	 colorectal	 cancer,	 and	
adenoma	 specimens.	 The	 diagnosis	 of	 cutaneous	
melanoma,	NSCLC,	CRC,	 and	 adenoma	was	 established	
according	 to	 World	 Health	 Organization	 criteria	 and	
confirmed	 in	 all	 cases	 by	 an	 independent	 pathology	
review.	Informed	consent	on	IRB-approved	protocols	for	
genomic	sequencing	of	patients’	samples	was	obtained	
before	the	initiation	of	sequencing	studies.		

Germline	 and	 tumor	DNA	 processing.	 Tumor	 tissue	
and	 matched	 germline	 DNA	 from	 peripheral	 blood	
mononuclear	 cells	 (PBMCs)	 or	 adjacent	 normal	 tissue	
were	 collected	 and	 stored	 at	 −80	 °C	 until	 they	 were	
processed	 for	 extraction.	 Genomic	 DNA	was	 extracted	
from	 tumor	 tissue	 using	 the	 QIAamp	 DNA	 Mini	 Kit	
(Qiagen).	 Genomic	 DNA	 was	 extracted	 from	 PBMCs	
using	 the	 QIAamp	 DNA	 Blood	 Kit	 (Qiagen).	 Libraries	
were	prepared	using	the	TruSeq	DNA	PCR-Free	Library	
Preparation	Kit	(Illumina)	with	1	μg	of	DNA	input	after	
the	recommended	protocol84,	with	minor	modifications	
as	 described	 below.	 Intact	 genomic	 DNA	 was	
concentration	normalized	and	sheared	using	the	Covaris	
LE220	sonicator	to	a	target	size	of	450	bp.	After	cleanup	
and	end	repair,	an	additional	double-sided	bead-based	
size	selection	was	added	to	produce	sequencing	libraries	
with	highly	consistent	insert	sizes.	This	was	followed	by	
A-tailing,	 ligation	 of	 Illumina	 DNA	 Adapter	 Plate	
adapters	 and	 two	 post-ligation	 bead-based	 library	
cleanups.	These	stringent	cleanups	resulted	in	a	narrow	
library	 size	 distribution	 and	 the	 removal	 of	 remaining	
unligated	 adapters.	 Final	 libraries	 were	 run	 on	 a	
Fragment	 Analyzer	 (Agilent)	 to	 assess	 their	 size	
distribution	 and	 quantified	 by	 qPCR	 with	 adapter-
specific	 primers	 (Kapa	 Biosystems).	 Libraries	 were	
pooled	 together	 based	 on	 expected	 final	 coverage	 and	
sequenced	across	multiple	flow	cell	lanes	to	reduce	the	
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effect	 of	 lane-to-lane	 variations	 in	 yield.	 WGS	 was	
performed	on	the	HiSeq	X	(HCS	HD	3.5.0.7;	RTA	v2.7.7)	
or	NovaSeq	 v1.0	 (Illumina)	 at	 2	 x	 150-bp	 read	 length,	
using	SBS	v3	(Supplementary	Table	1).	

Plasma	 DNA	 processing.	 At	 the	 same	 day	 of	 blood	
collection,	 blood	 collection	 tubes	 (Streck	 or	 K2-EDTA,	
Supplementary	 Table	 1)	 were	 centrifuged	 at	 2,000	
r.p.m.	 for	 10	min	 to	 separate	 plasma.	 cfDNA	was	 then	
extracted	from	human	blood	plasma	by	using	the	Mag-
Bind	 cfDNA	 Kit	 (Omega	 Bio-Tek).	 The	 protocol	 was	
optimized	and	modified	to	optimize	yield28.	Elution	time	
was	 increased	 to	 20	 min	 on	 a	 thermomixer	 at	 1,600	
r.p.m.	at	room	temperature	and	eluted	 in	35-μl	elution	
buffer.	The	concentration	of	the	samples	was	quantified	
by	a	Qubit	Fluorometer	 (Thermo	Fisher),	 and	 samples	
were	 run	 on	 a	 fragment	 analyzer	 by	 using	 the	 High	
Sensitivity	 NGS	 Fragment	 Analysis	 Kit	 (Agilent)	 to	
define	the	size	of	cfDNA	extracted	and	genomic	DNA	
contamination.	For	plasma	samples	that	were	found	to	
have	significant	genomic	DNA	contamination	(fragment	
size	>	240	base	pairs	for	more	than	20%	of	fragments	at	
library	preparation)	we	performed	a	0.4x	cleanup	using	
SPRIselect	 magnetic	 beads	 (Beckman	 Coulter)	 on	 the	
extracted	cfDNA.		

A	 subset	 of	 plasma	 samples	was	 sequenced	 at	 Aarhus	
University	 in	Denmark	(Supplementary	Table	1).	For	
these	samples,	blood	samples	were	collected	in	K2-EDTA	
10	mL	 tubes	 (Becton	Dickinson).	Within	 two	 hours	 of	
blood	 collection,	 the	 tubes	 were	 centrifuged	 at	 2,000	
r.p.m.	for	10	minutes	to	separate	plasma.	Isolated	plasma	
was	 centrifuged	 again	 at	 2,000	 r.p.m.	 for	 10	 minutes.	
cfDNA	 was	 then	 extracted	 from	 human	 blood	 plasma	
using	the	QIAmp	Circulating	Nucleic	Acids	kit	(Qiagen),	
eluted	 in	60-μl	 elution	buffer	 (10	mM	Tris-Cl,	 pH	8.5).	
The	 concentration	 of	 the	 samples	 was	 quantified	 by	
droplet	digital	PCR	(ddPCR,	Bio-Rad	Laboratories),	using	
assays	specific	to	two	highly	conserved	regions	on	Chr3	
and	 Chr7,	 as	 previously	 described85.	 In	 addition,	 all	
samples	 were	 screened	 for	 contamination	 of	 genomic	
DNA	from	leucocytes	using	a	ddPCR	assay	targeting	the	
VDJ	 rearranged	 IGH	 locus	 specific	 for	 B	 cells,	 as	
previously	described85.	No	samples	were	contaminated	
by	genomic	DNA	from	leucocytes.	

Plasma	cfDNA	 library	preparation	and	 sequencing.		
Samples	 sequenced	 at	 the	 New	 York	 genome	 Center	
were	processed	using	KAPA	Hyper	Library	Preparation.	
Cohorts	 	 included	 in	 Zviran	 et	 al.	 were	 processed	 as	
previously	described28.		Samples	with	a	mass	above	5	ng	

were	 prepared	 for	 next-generation	 sequencing	 on	
Illumina’s	 HiSeq	 X	 or	 NovaSeq	 by	 using	 a	 modified	
manufacturer’s	protocol.	The	protocol	was	scaled	down	
to	half	reaction	by	using	25μl	of	extracted	cfDNA.	IDT	for	
Illumina	 TruSeq	 Unique	 Dual	 Indexes84	 was	 used	 by	
diluting	 1:15	 with	 EB	 (elution	 buffer),	 and	 ligation	
reaction	 was	 adjusted	 to	 30	 minutes.	 Additional	 0.8x	
SPRIselect	magnetic	 beads	 (Beckman	Coulter)	 cleanup	
was	 included	 after	 post-ligation	 cleanup	 to	 remove	
excess	adapters	and	adapter	dimers.	cfDNA	from	1	mL	of	
plasma	was	 used	 for	 all	 of	 the	 plasma	 samples	 in	 this	
study.	For	samples	with	low	concentration,	an	additional	
1	ml	of	plasma	was	extracted,	and	the	DNA	aliquot	with	
the	highest	mass	was	used	for	library	preparation.	The	
number	of	PCR	 cycles	was	dependent	on	 initial	 cfDNA	
total	 mass.	 For	 samples	 with	 more	 than	 5	 ng	 of	 total	
cfDNA,	5-7	PCR	cycles	were	performed.	For	samples	with	
less	 than	 5	 ng	 of	 total	 cfDNA,	 7–10	 PCR	 cycles	 were	
performed	 (Supplementary	Table	1).	Quality	metrics	
were	performed	on	the	libraries	by	Qubit	Fluorometer,	
High	Sensitivity	DNA	Analysis	Kit	and	KAPA	SYBR	FAST	
qPCR	Kit	 (Roche).	WGS	was	performed	on	the	HiSeq	X	
(HCS	HD	3.5.0.7;	RTA	v2.7.7)	at	2	×	150-bp	read	length	
or	 NovaSeq	 v1.0	 at	 2	 x	 150-bp	 read	 length	
(Supplementary	Table	1)	to	a	target	depth	of	30x.	

Plasma	 samples	 sequenced	 at	 Aarhus	 University	 also	
used	KAPA	Hyper	Library	Preparation.	cfDNA	from	2mL	
plasma	 (see	 Supplementary	 Table	 1	 for	 DNA	 mass)	
was	 used	 as	 input	 for	 library	 preparation	 using	 a	
modified	 manufacturer’s	 protocol.	 xGen	 UDI-UMI	
Adapters	 were	 used	 and	 the	 ligation	 reaction	 was	
adjusted	 to	 30	 minutes.	 Agencourt	 AMPure	 XP	 beads	
(Beckman	 Coulter)	 were	 used	 for	 both	 cleanup	 steps	
with	 a	 bead:DNA	 ratio	 of	 1.2x	 and	 1.0x	 for	 the	 post-
ligation	and	post-PCR	cleanup,	respectively.	The	number	
of	 PCR	 cycles	 was	 7	 for	 all	 cfDNA	 samples.	 Qubit	
Fluorometer	 and	 TapeStation	 D1000	 were	 used	 for	
library	quality	control.	WGS	was	performed	on	NovaSeq	
v1.5	at	2	x	150-bp	read	length	to	a	target	depth	of	30x.	

Preprocessing,	quality	control	analysis	and	sample	
identification	 and	 concordance.	 WGS	 reads	 for	
primary	tumor,	matched	germline	and	plasma	samples	
were	 demultiplexed	 using	 Illumina’s	 bcl2fastq	
(v2.17.1.14)	to	generate	FASTQ	files.	The	primary	tumor	
and	matched	germline	WGS	were	submitted	to	the	New	
York	 Genome	 Center	 somatic	 preprocessing	 pipeline,	
which	 includes	 alignment	 to	 the	 GRCh38	 reference	
(1000	 Genomes	 version)	 with	 BWA-MEM	 (v0.7.15)86.	
For	 plasma	 cfDNA,	 we	 used	 a	 modified	 alignment	
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pipeline	 to	 accommodate	 adapter	 trimming	 after	
observing	 increased	 adapter	 contaminated	 reads	 in	
cfDNA	samples	 as	 compared	 to	 tumor	 samples,	 due	 to	
the	fact	that	cfDNA	has	shorter	fragment	size,	which	can	
lead	to	R1	and	R2	overhang.	We	therefore	used	Skewer87	
for	 adapter	 trimming	 (default	 settings)	 and	
subsequently	aligned	samples	using	BWA-MEM	(default	
settings)	 to	 the	 GRCh38	 reference	 (1000	 Genomes	
version).	For	all	samples,	duplicate	marking	and	sorting	
was	done	using	NovoSort	MarkDuplicates	(v3.08.02),	a	
multi-threaded	 bam	 sort/merge	 tool	 by	 Novocraft	
Technologies;	http://www.novocraft.com),	 followed	by	
indel	 realignment	 (done	 jointly	 for	 the	 tumor	 and	
matched	germline)	and	base	quality	score	recalibration	
using	 GATK	 (v4.1.8;	
https://software.broadinstitute.org/gatk),	resulting	in	a	
final	coordinate	sorted	bam	file	per	sample.	Alignment	
quality	 metrics	 were	 computed	 using	 Picard	 (v2.23.6;	
QualityScoreDistribution,	 MeanQualityByCycle,	
CollectBaseDistributionByCycle,	
CollectAlignmentSummaryMetrics,	
CollectInsertSizeMetrics,	 CollectGcBiasMetrics)	 and	
GATK	 (average	 coverage,	 percentage	 of	 mapped	 and	
duplicate	 reads).	 To	 specifically	 assess	 for	 sample	
contamination,	 we	 applied	 Conpair88,	 which	 validated	
genetic	 concordance	 among	 the	 matched	 germline,	
tumor	 and	 plasma	 samples,	 as	 well	 as	 evaluated	 any	
inter-individual	contamination	in	the	samples.	Samples	
that	 showed	 low	 concordance	 (<0.99)	 were	 excluded	
from	 further	 analysis.	 Specifically,	 three	 preoperative	
plasma	 samples	 from	 LUAD	 patients	 37,	 38	 and	 39	
(described	 previously	 in	 MRDetect28)	 and	 one	 set	 of	
serially	monitored	 cutaneous	melanoma	 samples	 from	
the	 melanoma	 patient	 MSK-55	 were	 rejected	 from	
analysis	 due	 to	 low	 concordance	 score.	 We	 also	 used	
read	 depth	 skews	 in	 copy	 number	 neutral	 plasma	
regions	where	available	as	an	additional	quality	metric	
(see	 Plasma	 read	 depth	 denoising).	 Here,	 we	
computed	sample	level	Z	scores	in	CNV	neutral	regions	
(Supplementary	 Table	 1)	 using	 our	 read	 depth	
classifier	 and	 samples	with	 a	 Z	 score	 value	 >	 10	were	
excluded.	 One	 adenoma	 plasma	 sample,	 Aar-35,	 was	
excluded	 under	 these	 criteria.	 An	 additional	 tumor	
sample,	Aar-15,	was	excluded	due	to	 low	tumor	purity	
(<30%	 as	 assessed	 by	 Sequenza89,	 Supplementary	
Table	1),	which	precluded	accurate	SNV	 identification	
(number	of	somatic	mutations	<	1,000,	Supplementary	
Table	 1)	 in	 FFPE	 tumor	 tissue	 (see	 Tumor	 /	 Normal	
somatic	mutation	calling).	

Tumor	 /	 Normal	 somatic	 mutation	 calling.	 The	
primary	 tumor	 and	 matched	 germline	 bam	 files	 were	
processed	 through	 the	 NYGC	 somatic	 variant	 calling	
pipeline90.	To	achieve	stringent	somatic	variant	calling,	
we	enforced	high-confidence	calls.	We	further	excluded	
variants	that	were	present	at	any	allelic	fraction	in	the	
matched	normal	sample.	We	note	that	in	the	case	of	our	
LUAD	 cohort,	 where	 tumor	 purity	 was	 lower	
(Supplementary	 Table	 1),	 fewer	 overlapping	 reads	
between	 plasma	 and	 tumor	mutations	 were	 available,	
and	 adjacent	 normal	 with	 potential	 tumor	
contamination	was	used	rather	than	PBMC,	we	used	the	
union	of	 calls	among	mutation	callers	 to	broaden	read	
availability.	To	further	broaden	read	availability	in	this	
cohort,	 we	 did	 not	 enforce	 paired-read	 concordance	
(Supplementary	Table	3).	To	maintain	consistency	these	
standards	were	also	applied	 to	our	neoadjuvant	 (Neo)	
lung	 cancer	 cohort.	 Small	 deletions	 and	 insertions	
(indels)	were	excluded.		

CNVs,	 including	 deletions,	 amplifications	 and	 copy-
neutral	LOH,	were	called	using	Sequenza	(v3.0.0)89.	We	
only	considered	CNVs	in	autosomal	regions	(chr1-22)	of	
the	genome	where	the	size	of	the	CNV	was	greater	than	
1.5Mb.	 Segments	 with	 Depth	 Ratio	 of	 1	 were	
characterized	as	neutral	while	those	with	Depth	Ratio	in	
excess	 of	 1	 (Depth	 Ratio	 >1.2)	 were	 selected	 as	
amplifications,	and	Depth	Ratios	less	than	1	(Depth	Ratio	
<	 0.8)	 were	 selected	 as	 deletions.	 LOH	 segments,	
including	 copy	 neutral	 LOH	 segments,	 were	 selected	
when	Minor	Copy-number	was	assigned	0	by	Sequenza.		

To	 filter	noise	 in	FFPE	 tumors58,	we	generated	a	FFPE	
tumor	blacklist	to	remove	any	variant	site	present	in	2	
or	more	tumors	in	our	Aarhus	University	cohort	(n=35,	
Supplementary	 Table	 1).	 Only	 variants	 with	 a	 VAF	
greater	 than	 0.2	were	 selected	 for	 analysis	 to	 exclude	
variants	with	minimal	supporting	reads	in	FFPE	tissue.	

Tumor-informed	 plasma	 cfDNA	 SNV	 identification.	
Detection	 of	 patient-specific	 compendia	 of	 SNVs	 was	
performed	 by	 searching	 the	 plasma	 WGS	 for	 all	 sites	
from	 the	 matched	 patient–tumor	 compendium	 with	
corresponding	mutations	in	the	same	genomic	site	and	
the	 same	 substitution.	 To	 efficiently	 identify	 variants	
present	in	the	sequencing	data,	we	used	a	custom	Python	
script	 (Python	 version	 3.6.8),	 which	 uses	 the	 pysam	
module	 to	 efficiently	 extract	 alignments	 harboring	
variants	and	extracted	any	read	that	both	uniquely	maps	
to	a	variant	of	interest	and	was	in	an	aligned	portion	of	
the	read	(no	clipping	or	soft	masking	at	the	position	of	
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the	variant).		In	all	plasma	samples	we	removed	a	subset	
of	variants	through	the	use	of	a	local	recurrent	artifact	
plasma	‘blacklist’	filter	generated	by	aggregating	pileup	
SNVs	 within	 our	 plasma	 WGS	 database	 (n=239	 WGS	
plasma	samples	included	in	the	analysis).	Variants	with	
a	population	allele	frequency	>	4	or	more	appearances	
across	patients	within	our	plasma	sample	database	were	
excluded.	 We	 generated	 a	 similar	 blacklist	 across	 all	
plasma	 sequenced	 at	 Aarhus	 University	 (n=50,	
Supplementary	 Table	 1)	 to	 account	 for	 local	 artifact	
bias91	 and	excluded	any	variants	present	 in	2	or	more	
plasma	samples	due	to	the	smaller	number	of	samples	in	
this	 cohort.	 To	 further	 exclude	 potential	 germline	
variants,	 we	 used	 the	 gnomAD	 database	 (version	 3.0)	
which	 contains	 genetic	 variants	 from	 >70,000	 whole	
genomes92.	 We	 downloaded	 the	 gnomAD	 version	 3.0	
variant	call	format	(VCF)	file	that	was	available	in	hg38	
coordinates	 from	 the	 gnomAD	browser.	We	 annotated	
single	 base	 changes	 that	 we	 identified	 with	 their	
population	allele	frequency	and	removed	any	candidate	
variants	 if	 the	variant	was	present	 in	gnomAD	with	an	
allele	frequency	>	1/100.	Finally,	we	excluded	variants	
from	 simple	 repeat	 regions	 and	 centromeres	 from	 a	
problematic	region	blacklist93.	

Construction	of	ctDNA	SNV	training	sets	and	feature	
space.	 All	 training	 sets	 were	 derived	 from	 plasma	
enriched	 for	 ctDNA	 SNV	 fragments	 (true	 label)	 from	
specific	 tumor	 types	 and	 cfDNA	 SNV	 fragments	 (false	
label)	 from	 healthy	 controls	 without	 known	 cancer	
processed	in	the	same	location	and	sequenced	under	the	
same	 settings.	 Supplementary	 Table	 2	 lists	 samples	
used	 in	 training	 for	 LUAD,	 CRC,	 and	 melanoma.	 To	
identify	 informative	 features,	 we	 first	 implemented	
quality	filters	to	filter	low-quality	noise,	germline	SNPs,	
and	genomic	DNA	contamination	(see	Supplementary	
Table	3	for	quality	filters	by	model	type).	Broadly,	filters	
focused	 on	 removing	 SNV	 fragments	 with	 low	 base	
quality	(<25	on	Phred	scale),	low	depth	(<10	supporting	
reads),	 and	 fragment	 size	 within	 40	 bp	 –	 240	 bp	 to	
reduce	genomic	DNA	contamination.	Germline	variants	
were	excluded	through	filtering	high	VAF	variants	(VAF	
<0.2)	except	in	cases	where	estimated	iChorCNA	TF	was	
>	0.2.	We	further	enforced	that	candidate	variants	were	
present	on	overlapping	paired	reads.	

To	maximize	 the	accuracy	of	 true	 (positive)	 labels,	we	
devised	 the	 following	 strategies	 to	 limit	 noise	
contamination	 in	our	ctDNA	(true	 label)	SNV	fragment	
sets.	In	all	true	label	settings,	we	used	training	samples	
from	patients	with	high	burden	metastatic	disease	(TF	9-

24%	as	called	by	iChorCNA10,	Supplementary	Table	2).	
In	samples	where	we	obtained	matched	tumor	tissue,	we	
nominated	 ctDNA	 SNVs	 by	 intersecting	 tumor	 high	
confidence	 somatic	 calls	 from	 the	 NYGC	 Somatic	
Pipeline90	with	 SNVs	 in	 plasma.	When	matched	 tumor	
tissue	was	not	available,	we	called	mutations	directly	in	
the	 plasma	 against	 normal	 germline	 sample	 using	
Mutect294,	 leveraging	 the	 high	 TF	 in	 these	 samples	 to	
identify	consensus	somatic	mutations	(Supplementary	
Table	2).	To	further	filter	noise,	when	possible	we	used	
the	intersection	of	ctDNA	SNV	fragments	from	two	high	
TF	timepoints	 from	the	same	patient	(Supplementary	
Table	2).		

Candidate	 feature	 evaluation	 was	 performed	 on	 SNV	
fragments	 after	 applying	 quality	 prefiltering	
(Supplementary	Table	3)	in	both	true	and	false	labels.	
Features	 and	 corresponding	 single	 variant	AUC	 scores	
are	 reported	 in	 Supplementary	 Table	 2.	 Several	
strategies	 were	 employed	 to	 create	 tissue-specific	
regional	 features	 that	 could	 inform	 the	 regional	
likelihood	of	somatic	mutagenesis.	Quantitative	features	
were	min	/	max	normalized	to	values	between	0	and	1.	
To	 evaluate	 local	 tumor	 mutational	 density,	 we	
aggregated	WGS	 SNV	mutation	 calls	 from	 the	 PCAWG	
database81	 and	 counted	 the	 aggregate	 number	 of	 SNV	
mutations	 across	 all	 available	 tumor	 samples	 in	 a	
specific	 primary	 disease	 (e.g.	 melanoma).	 Local	
transcription	factor	and	histone	CHiP-Seq	marks	as	well	
as	 tissue	 specific	 bulk	 RNA	 expression	 values	 were	
calculated	 as	 reads	 per	 kilo	 base	 per	 million	 mapped	
reads	 (RPKM)	 and	 were	 drawn	 from	 primary	 tissue	
alignments	in	ENCODE95.	For	each	feature	category	(e.g.	
H3K4me3	ChIP-Seq	marks),	we	assessed	all	alignments	
in	 ENCODE	 and	 selected	 alignments	 with	 the	 highest	
Pearson	correlation	between	training	set	true	and	false	
label	 SNVs	 on	 Chromosome	 1.	 In	 certain	 cases	 where	
strong	(>0.15)	positive	and	negative	correlations	were	
observed,	we	included	alignments	for	both	positive	and	
negative	 correlations	 as	 separate	 model	 features.	
Regional	DNase	peaks	were	downloaded	as	narrowpeak	
files	 from	 ENCODE95,96	 and	 lifted	 to	 GRCh38.	 Disease-
specific	ATAC	peak	calls	were	downloaded	from	TCGA82.	
Plasma	WGS	sequencing	error	density	was	calculated	by	
aggregating	 all	 SNV	 pileup	 variants	 from	 non-cancer	
control	 plasma	 sequenced	 at	 the	 New	 York	 Genome	
Center	(Control	Cohorts	A	and	C,	Supplementary	Table	
4).	For	each	of	these	features,	quantitative	values	were	
calculated	in	a	sliding	interval	window	around	candidate	
SNV	fragments.	The	length	of	this	window	was	optimized	
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by	comparing	the	correlation	between	feature	and	label	
between	 our	 training	 set	 true	 and	 false	 label	 SNVs	 on	
Chromosome	 1	 alone.	 Interval	 lengths	 are	 reported	 in	
Supplementary	 Table	 3.	 ChromHMM83	 chromatin	
annotation	tracks	were	downloaded	from	ENCODE	and	
lifted	 to	 GRCh38.	 HI-C	 compartment	 information	 was	
drawn	from	Hi-C	SNIPER97	bed	files.	Replication	timing	
and	 mean	 expression	 values	 were	 drawn	 from	 prior	
work37	 and	 lifted	 to	GRCh38.	Other	 features,	 including	
distance	 to	 bound	 transcription	 factor98	 and	 SNV	
distance	to	nearest	nucleosomal	dyad	in	lymphocytes99,	
were	 drawn	 from	 prior	 work	 and	 lifted	 to	 GRCh38.	
Supplementary	 Table	 3	 lists	 features	 used	 in	 each	
model	type.	

SNV	 deep	 learning	 model	 architecture	 and	 model	
training.	To	evaluate	SNV	fragments	with	our	machine	
learning	 architecture,	 candidate	 SNV	 fragments	 were	
pulled	 from	alignment	 files	using	pysam	 (v0.15.2)	 and	
salient	 features	 were	 encoded	 as	 input	 to	 our	 deep	
learning	 model	 architecture	 (Fig	 1d)	 with	 a	 custom	
python	(v3.6.8)	script.	There	are	two	main	components	
of	our	deep	learning	SNV	model	architecture:	a	regional	
MLP,	 and	 a	 fragment	 CNN.	The	 MLP	 takes	 a	 tabular	
feature	representation	as	input	and	consists	of	five	fully-
connected	 layers	 with	 ReLU	 activation	 functions	 of	
decreasing	 size.	 Each	 layer	 is	 preceded	 by	 a	 batch	
normalization	 layer	 and	 followed	 by	 a	 dropout	 layer	
(with	the	exception	of	dropout	following	the	final	layer).		

We	represent	cfDNA	fragments	as	an	18x240	tensor	(Fig	
1d).	Within	the	rows	of	the	tensor	we	compare	the	one-
hot	 encoded	 reference	 sequence	 to	 the	 R1	 and	 R2	
sequence	 of	 a	 cfDNA	 fragment	 containing	 a	 variant	
(either	 true	 somatic	 mutation	 or	 sequencing	 artifact).	
We	also	encode	the	length	and	position	of	R1	and	R2,	and	
we	mark	the	position	of	the	SNV	to	be	classified	as	ctDNA	
or	 noise.	 The	 columns	 of	 the	 matrix	 mark	 individual	
nucleotides	along	the	length	of	the	fragment.	The	R1	and	
R2	regions	are	padded	with	neutral	values	(0.2	in	each	
of	the	5	possible	nucleotides	N,	A,	C,	T,	G)	where	the	read	
does	 not	 overlap	 the	 reference	 sequence.	 This	 tensor	
serves	 as	 input	 to	 a	 CNN	 which	 consists	 of	 4	 one	
dimensional	 convolution	 layers	 (convolving	 over	 the	
base	 pair	 width	 dimension),	 each	 followed	 by	 a	 max	
pooling	operation.	This	 is	then	followed	by	three	fully-
connected	 layers	 (with	 ReLU	 activation)	 and	 a	
subsequent	 dropout	 layer,	 and	 ends	 with	 a	 single	
sigmoid-activated	fully-connected	layer	(parallel	 to	the	
MLP).	 Model	 architectures	 are	 built	 in	 Keras	 (v.2.3.0)	
with	 a	 Tensorflow	 base	 (1.14.0).	 The	 fragment	 tensor	

has	 potential	 access	 to	 features	 including	 fragment	
length,	 key	 genomic	 features	 including	mutation	 type,	
trinucleotide	context,	and	leading	or	lagging	strand,	and	
quality	metrics	such	as	PIR	and	edit	distance	(how	many	
variants	against	the	reference	sequence	are	present	in	a	
fragment).	The	tensor	structure	is	coded	to	account	for	
all	 possible	 CIGAR	 outputs,	 including	 insertions,	
deletions,	 skips,	 and	 soft	masks,	 by	 inserting	 ‘N’	 (base	
undetermined)	values	in	reads	(deletions,	soft	skips,	soft	
masks)	or	the	reference	sequence	and	as	needed	in	the	
alternate	read	(insertions).		

Finally,	to	integrate	fragment	and	regional	information,	
an	 ensemble	 classifier	 with	 sigmoid	 activation	 jointly	
evaluates	 the	 latent	 space	 outputs	 from	 both	 the	
fragment	 CNN	 and	 regional	 MLP	 to	 generate	 a	 score	
between	0	and	1,	reflecting	the	model-based	likelihood	
that	 a	 candidate	 variant	 containing	 cfDNA	 fragment	
harbors	 a	 true	 somatic	 mutation	 (1)	 vs.	 a	 sequencing	
artifact	(0).		

We	 trained	 our	 deep	 learning	 classifiers	 (melanoma,	
CRC,	LUAD)	using	Keras	with	tensorflow	background	on	
fragments	from	our	disease	specific	training	sets	(LUAD,	
CRC,	and	melanoma,	Supplementary	Table	2)	chosen	at	
the	 sample	 level.	 Validation	 sets	 were	 held	 out	 from	
training	and	drawn	 from	separate	patient	 samples.	All	
performance	 metrics,	 including	 F1,	 AUC	 and	 accuracy	
within	balanced	sets,	are	reported	for	training	sets	and	
validation	sets	(Supplementary	Table	2).	

Comparison	 of	 MRD-EDGE	 SNV	 deep	 learning	
classifier	 performance	 to	 other	 machine	 learning	
models.	 The	 MRD-EDGE	 ensemble	 classifier	 (Fig	 1d)	
was	 compared	 to	 its	 individual	 components	 (fragment	
CNN	 and	 regional	 MLP)	 and	 other	 machine	 learning	
architectures	 (MLP	 and	 random	 forest	 model)	 by	
randomly	subsampling	without	replacement	in	ten	parts	
ctDNA	 and	 cfDNA	 SNV	 fragments	 from	 the	 held-out	
melanoma	validation	set	(Supplementary	Table	2)	and	
assessing	 F1	 performance	 on	 each	 subsampling	 set	
(Extended	Data	1b).	To	assess	fragment-level	features	
in	the	Random	Forest	and	MLP	models,	salient	features	
were	 encoded	 as	 tabular	 values,	 including	 one-hot	
categorical	 encodings	 for	 trinucleotide	 context	 and	
mutation	type	of	the	candidate	SNV	as	well	as	numerical	
representation	 of	 fragment-length,	 position	 of	 the	
variant	within	the	read	(PIR),	read	1	length,	and	read	2	
length.	The	MLP	for	Fragment	+	Regional	Features	has	
the	 same	 architecture	 as	 the	 Regional	 MLP	 (see	 SNV	
deep	 learning	 model	 architecture	 and	 model	
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training).	 The	 Random	 Forest	 Fragment	 +	 Regional	
Features	 model	 was	 constructed	 using	 the	 Python	
(version	 3.6.8)	 module	 sklearn	
sklearn.ensemble.RandomForestClassifier	 with	 default	
settings.	

Generation	of	synthetic-plasma	DNA	admixtures.	For	
MRD-EDGE	SNV	performance	evaluations,	we	generated	
in	 silico	 admixtures	 (range,	 10-7–10-3)	 from	 MEL-01	
plasma	 and	 plasma	 from	 a	 healthy	 control	 patient	
without	 known	 cancer	 (patient	 C-16).	 For	 MRD-EDGE	
CNV	 performance	 evaluations,	 given	 the	 challenges	 of	
applying	 LOH-based	 classification	 on	 samples	 with	
different	germline	SNPs,	we	generated	in	silico	dilutions,	
with	varying	fractions	(range	10-6–10-3),	of	reads	from	a	
pretreatment	 high	 burden	 melanoma	 plasma	 sample	
(AD-12	pretreatment	timepoint,	TF	17%	with	1.6	GB	of	
total	 aneuploidy)	 into	 a	 posttreatment	 plasma	 sample	
from	 the	 same	 patient	 following	 a	 major	 response	 to	
immunotherapy	 (AD-12	 Week	 6	 Timepoint,	 TF	 <5%	
without	observable	aneuploidy).	We	similarly	admixed	a	
pre-	 and	 postoperative	 plasma	 sample	 from	 a	 patient	
with	NSCLC	(Neo-03,	TF	3.6%	with	aneuploidy	matching	
tumor	 CNVs	 preoperatively,	 no	 aneuploidy	
postoperatively,	 Supplementary	 Table	 2).	 SAMtools	
(v1.1,	 view	 -s	 and	 merge	 commands)	 was	 used	 to	
downsample	 and	 admix	 high	 burden	 cancer	 plasma	
cfDNA	 reads	 into	 low	 burden	 (for	 CNV	 performance	
evaluation)	 or	 healthy	 control	 (for	 SNV	 performance	
evaluation)	plasma	cfDNA	reads	accounting	for	TF	and	
tumor	ploidy.		

The	 downsampling	 ratio	 S	 to	 generate	 dilutions	 at	
various	TFs	was	described	previously28	and	is	as	follows:		

𝐸𝑞. 1					𝑆 =
𝑇𝐹!"#$%!"&

𝐻'(

= 𝑇𝐹!"#$%!"& ∗
𝐻'( ∗ 𝑃) + (1 − 𝐻'() ∗ 2

𝐻'( ∗ 𝑃)
	

Where	HTF	denotes	ctDNA	TF	in	the	high	burden	cfDNA	
sample,	 PL	 denotes	 ploidy	 in	 the	 tumor	 sample.	 High	
burden	 and	 control	 coverage	 is	 scaled	 followed	 by	
merging	of	reads:		
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Where	covreq	is	the	required	read	depth	coverage	for	the	
admixture	 sample	 and	 covH,	 covC	 are	 the	 read	 depth	

coverage	 of	 the	 high	 burden	 and	 control	 samples,	
respectively.	

Plasma	 SNV-based	 ctDNA	 detection	 and	
quantification	 in	 the	 tumor-informed	 approach.	 As	
described	 previously28,	 we	 modeled	 the	 relationship	
between	coverage,	mutation	load	(SNV/tumor),	number	
of	 detected	 variants	 in	 cfDNA	 WGS,	 and	 the	 tumor	
fraction	according	to	the	following	equation:		

𝐸𝑞. 3					𝑀 = 𝑁(1 − (1 − 𝑇𝐹)*+,) + 𝜇 ∗ 𝑅	

Where	M	 denotes	 the	number	of	 SNVs	detected	 in	 the	
plasma	sample,	N	denotes	the	number	of	SNVs	(mutation	
load)	in	the	patient-specific	mutational	compendium,	TF	
denotes	 the	 tumor	 fraction,	 cov	 denotes	 the	 local	
coverage	 in	 sites	with	a	 tumor-specific	SNV,	μ	denotes	
the	mean	noise	rate	(number	of_errors/number	of	reads	
evaluated)	that	corresponds	to	the	patient-specific	SNV	
compendium	evaluated	in	control	plasma	WGS	data	(see	
below),	 and	 R	 denotes	 the	 total	 number	 of	 reads	
covering	 the	 patient-specific	 mutational	 compendium.	
This	relationship	allows	the	calculation	of	the	plasma	TF	
from	the	mutation	detection	rate,	even	in	extremely	low	
allele	fraction	where	the	mutation	allele	fraction	itself	is	
not	 informative	 (random	 sampling	 between	 0	 and	 1	
supporting	read	at	best).	

To	 address	 variation	 in	 sequencing	 artifact	 noise	 (μ)	
across	patients	with	different	mutational	compendia,	we	
apply	 the	 patient-specific	 mutational	 compendium	 to	
calculate	 the	 expected	 noise	 distribution	 across	 the	
cohort	of	control	plasma	samples.	The	process	described	
above	is	performed	to	detect	the	patient-specific	SNVs	in	
control	plasma	samples	or	other	patients	(cross-patient	
analysis).	 These	 detections	 represent	 the	 background	
noise	 model	 for	 which	 we	 calculate	 the	 mean	 and	
standard-deviation	 (μ,σ)	 of	 artifactual	 mutation	
detection	 rate.	 Confident	 ctDNA	detection	 can	 then	 be	
defined	by	converting	the	patient-specific	detection	rate	
(det_rate	=	number	of	SNVs	detected	in	cfDNA/number	
of	reads	checked	=	M/R)	to	a	Z-score	=	 	&"._!0."12

3
,	and	

define	 a	 threshold	 that	will	 keep	 the	 specificity	 above	
90%.	 Specificity	 and	 sensitivity	 performance	 values	
were	 further	 validated	 using	 receiver	 operating	
characteristic	 (ROC)	 curve	 using	 the	 Python	 (version	
3.6.8)	module	sklearn	sklearn.metrics.roc_curve.	

Calculating	the	patient	TF	from	point	mutation	detection	
was	then	carried	out	by	the	following	equation	(which	is	
an	inversion	of	Eq.3)	as	described	previously28:		

𝐸𝑞. 4					𝑇𝐹 = 1 − (1 − [𝑀 − 𝜇 ∗ 𝑅]/𝑁)4/*+,	
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Where	M	 denotes	 the	number	of	 SNVs	detected	 in	 the	
plasma	sample,	N	denotes	the	number	of	SNVs	(mutation	
load)	in	the	patient-specific	mutational	compendium,	TF	
denotes	 the	 tumor	 fraction,	 cov	 denotes	 the	 local	
coverage	 in	 sites	with	a	 tumor-specific	SNV,	μ	denotes	
the	 noise	 rate	 (number	 of	 errors/number	 of	 reads	
evaluated)	that	corresponds	to	the	patient-specific	SNV	
compendium,	and	R	denotes	the	total	number	of	reads	
covering	the	patient-specific	mutational	compendium.	

Selection	 of	 control	 plasma	 samples	 for	 tumor-
informed	approaches.	 In	 the	 tumor-informed	setting,	
patient-specific	 mutational	 compendia	 are	 applied	 to	
both	 matched	 plasma	 and	 control	 plasma.	 To	 exclude	
batch	 specific	 biases,	 we	 employed	 control	 plasma	
samples	 obtained	 from	 the	 same	 collection	 site,	
sequencing	 platform	 and	 sequencing	 location	 as	 our	
cancer	 plasma	 samples.	 For	 example,	 our	 early-stage	
CRC	plasma,	sequenced	at	the	New	York	Genome	Center	
on	 Illumina	 HiSeq	 X,	 was	 compared	 to	 similarly	
sequenced	 healthy	 control	 plasma	 (Control	 Cohort	 A),	
while	 our	 adenomas	 and	 pT1	 lesions,	 sequenced	with	
Illumina	NovaSeq	1.5	at	Aarhus	University	in	Denmark,	
was	 compared	 to	 healthy	 control	 plasma	 sourced	 and	
sequenced	 from	 that	 institution	 (Control	 Cohort	 B).	
Control	 plasma	 samples	 used	 in	 model	 training	 or	 to	
construct	a	read	depth	classifier	PON	were	not	used	in	
downstream	analyses	(e.g.,	ROC	analyses).	

Plasma	read	depth	denoising.	We	recently	introduced	
a	read	depth	denoising	approach	for	reducing	recurrent	
noise	 and	 bias	 for	WGS-based	 tumor	 CNV	 detection40.	
Our	 read	 depth	 pipeline	 separates	 foreground	 (CNV	
signal)	from	background	(technical	and	biological	bias)	
in	 read	 depth	 data	 by	 learning	 a	 low	 rank	 subspace	
across	 a	 panel	 of	 normal	 samples	 (PON)	 using	 robust	
Principal	 Component	 Analysis	 (rPCA)	 and	 applies	 this	
subspace	 to	 a	 tumor	 sample	 to	 infer	 CNV	 events.	 To	
optimize	our	approach	for	plasma,	we	first	created	PONs	
from	healthy	controls	plasma	generated	with	the	same	
sequencing	 preparation	 (see	 Selection	 of	 control	
plasma	 for	 tumor-informed	 approaches,	
Supplementary	 Table	 3).	 We	 then	 created	 log	
transformed,	zero	centered	read	depths	across	the	PON	
for	 each	 sample	 within	 1Kb	 genomic	 windows.	 We	
performed	a	window-based	rPCA	decomposition	on	our	
PON	 to	 yield	 a	 subspace	 of	 biases	 that	 define	
“background”	 noise.	 Cancer	 plasma	 samples	 were	
subsequently	projected	on	this	background	subspace	to	
produce	two	vectors:	a	background	bias	projection	and	
a	 residual	 corresponding	 to	 plasma	 CNV	 read	 depth	

skews.	We	further	filtered	genomic	windows	in	plasma	
where	 read	 depth	 was	 ‘NA’	 or	 was	 outside	 of	 2.5	
standard	deviations	away	from	the	sample	mean.		

To	generate	sample	read	depth	scores	for	our	read	depth	
classifier,	 we	 median-normalized	 window-level	 read	
depth	values	either	to	sample	or	chromosome	based	on	
mean	plasma	cohort	autocorrelation	(to	sample	<	0.06	<	
to	 chromosome,	 Supplementary	 Table	 1).	 We	 then	
aggregated	this	signal	based	on	the	direction	of	the	CNV	
change	in	tumor	(-1	*	deletion	and	+1	*	amplification)	to	
produce	 a	 mean	 per-window	 read	 depth	 score	 as	
described	 previously28.	 This	 sample	 level	 read	 depth	
score	was	compared	to	read	depth	scores	from	held-out	
control	plasma	samples	in	matched	genomic	regions	to	
generate	a	final	sample-level	Z	score.	

Plasma	 CNV-based	 TF	 estimation	 for	 use	 in	 read	
depth	 skews.	 Estimated	 TFs	 for	 our	 read	 depth	
classifier	and	MRDetect-CNV	at	different	TF	admixtures	
were	calculated	as:	

𝐸𝑞. 5					𝑇𝐹"6. =
𝑅𝐷𝑆7%8"& − 	𝜇
𝑅𝐷𝑆%9%.%0: − 	𝜇

∗ 𝑇𝐹%9%.%0: 	

Where	 RDSmixed	 is	 the	 aggregated	 median-normalized	
read	depth	signal	for	a	specific	mixing	replicate,	RDSinitial	
is	the	aggregated	median-normalized	read	depth	signal	
for	the	initial	high	burden	sample,	𝜇	(noise	rate)	is	the	
average	 of	 aggregated	 median-normalized	 read	 depth	
signal	across	held-out	plasma	controls,	and	TFinitial	is	the	
tumor	fraction	of	the	initial	high	burden	sample.	

Evaluation	 of	 B-allele	 frequency	 in	 plasma.	 We	
applied	 GATK	 (v3.5.0,	
https://software.broadinstitute.org/gatk)	
HaplotyeCaller	to	identify	genome-wide	germline	SNPs	
in	PBMC	WGS	data.	We	then	identified	major	alleles	 in	
matched	tumor	tissue	by	selecting	SNPs	with	BAF	>	0.6	
in	 tumor	 regions	 with	 LOH	 (see	 Tumor	 /	 Normal	
somatic	mutation	 calling).	 To	 enrich	 for	 local	 signal,	
we	 grouped	 SNPs	 into	 non-overlapping	 1Mb	 genomic	
windows.	 To	 ensure	we	 evaluated	 only	 true	 SNPs	 and	
that	 our	 signal	 was	 not	 biased	 by	 coverage	 or	 subtle	
clonal	mosaicism	in	PBMCs,	we	 implemented	stringent	
quality	 filters,	 including	 minimal	 coverage	 thresholds	
(plasma	and	PBMC	read	depth	≥	20	reads)	and	outlier	
criteria	(0.3	<	plasma	BAF	<	0.7,	0.4	<	PBMC	BAF	<	0.6)	
at	the	individual	SNP	level.	At	the	1Mb	window	level,	we	
further	filtered	bins	with	few	SNPs	(≤	50	SNPs/bin)	and	
outlier	bins	in	which	the	mean	plasma	or	PBMC	BAF	was	
outside	of	2.5	standard	deviations	from	mean	window-
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level	 plasma	 and	 PBMC	 BAF	 from	 samples	 sequenced	
within	 the	 same	 sequencing	 platform	 (HiSeq	 X	 or	
NovaSeq).	 Because	 1Mb	 window-level	 mean	 BAF	
variance	 is	 a	 function	 of	 number	 of	 SNPs	 (higher	 BAF	
variance	with	fewer	SNPs),	we	converted	window-level	
BAF	 values	 to	 Z	 scores	 normalized	 for	 number	 of	
window-level	 SNPs	 in	 intervals	 of	 50	 SNPs	 for	 both	
plasma	and	PBMC	BAFs,	using	the	range	of	BAF	values	
for	all	windows	seen	in	that	sequencing	platform	(HiSeq	
X	or	NovaSeq).		

Short-read	genome	sequencing	of	plasma	cannot	place	
SNP	variants	in	phase	due	to	read	length	limits	and	the	
distance	 between	 successive	 SNPs100.	 We	 faced	 the	
technical	 obstacle	 of	 comparing	 phased	 variants	 in	
cancer	plasma	samples	(identified	only	through	LOH	in	
tumor)	 to	 unphased	 variants	 in	 control	 plasma.	 To	
remove	 the	 underlying	 contribution	 of	 phasing	 to	
aggregate	 BAF	 signal,	 we	 subtracted	 window-level	
PBMC	BAF	values,	where	deviations	from	0.5	may	be	due	
to	 chance	or	 subtle	underlying	 clonal	mosaicism,	 from	
window-level	plasma	BAF	values	to	produce	a	window-
level	 BAF	 score	 that	 reflects	 the	 BAF	 signal	 from	 the	
contribution	of	ctDNA	in	cancer	plasma	in	excess	of	BAF	
signal	 from	 phased	 variants	 alone.	 In	 control	 plasma,	
where	variants	cannot	be	phased,	we	choose	the	major	
allele	randomly	and	aggregate	 individual	SNPs	to	 form	
window-level	BAF	noise	distributions.		

At	 the	 sample	 level,	 window-level	 BAF	 scores	 are	
aggregated	to	produce	a	mean	per-window	sample-level	
BAF	score.	Sample-level	BAF	scores	in	cancer	plasma	are	
compared	 to	 controls	 in	matching	 genomic	 regions	 to	
produce	a	final	sample-level	Z	score	that	reflects	the	BAF	
contribution	 of	 ctDNA	 in	 cancer	 plasma	 compared	 to	
matched	noise.		

Evaluation	 of	 tumor-informed	 fragment	 size	
entropy.	 We	 calculated	 fragment	 length	 entropy	 to	
capture	 the	 heterogeneity	 of	 fragment	 insert	 size	 for	
cfDNA	 fragments	 within	 consecutive	 non-overlapping	
100kb	 genomic	 windows.	 We	 restricted	 analyses	 to	
fragments	with	insert	size	between	100–240bp.	First,	we	
calculated	in	each	window	the	fraction	of	fragment	sizes	
in	 each	 5bp	 interval	 from	 100	 –	 240bp.	 We	 then	
calculated	 Shannon’s	 entropy	 on	 the	 set	 of	 these	
fractional	 inputs.	 At	 the	 sample	 level,	 we	 converted	
window	 entropy	 values	 from	 all	 100kb	 windows	
(neutral	 and	 CNV)	 to	 median-normalized	 robust	 Z	
scores.	 By	 normalizing	 to	 the	 distribution	 of	 entropy	
values	 in	 each	 sample,	 neutral	 regions	 serve	 as	 an	

internal	control	that	accounts	for	the	baseline	fragment	
length	 heterogeneity	 within	 each	 sample	 inclusive	 of	
entropy	 noise	 from	different	 sample	 preparations	 and	
pre-analytic	 biases.	 Following	 normalization,	 we	
multiplied	window-level	Z	scores	based	on	the	direction	
of	 the	CNV	 change	using	our	underlying	 knowledge	of	
tumor	events.	We	expect	more	 fragment	entropy	 from	
the	contribution	of	additional	ctDNA	fragments	in	tumor	
amplifications	 and	 thus	 multiply	 these	 values	 by	 +1,	
versus	 less	 fragment	 entropy	 from	 the	 contribution	 of	
fewer	ctDNA	fragments	in	tumor	deletions	and	therefore	
multiply	 these	 values	 by	 -1.	 Regions	 surrounding	
transcription	 start	 sites	 (TSS)	 are	 known	 to	 harbor	
altered	 fragmentation	profiles	 including	an	 increase	 in	
short	fragments14,44,101,	and	this	is	particularly	impactful	
for	regions	with	deletions	in	matched	tumors,	where	the	
shorter	 TSS	 fragment	 signal	 would	 confound	 the	
anticipated	 signal	 of	 less	 entropy	 due	 to	 lower	
contribution	 of	 short	 ctDNA	 fragments.	 We	 therefore	
excluded	 bins	 containing	 and	 flanking	 TSS	 sites	
identified	 in	 tissue	 specific	 ChromHMM83	 annotations	
(eg.	primary	colon	TSS	for	CRC	samples)	in	deletions.	We	
further	excluded	outlier	regions	where	window-level	Z	
score	 was	 greater	 than	 5	 median	 absolute	 deviations	
(MADs)	from	the	sample	median.	We	note	that	recurrent	
amplifications	 in	 chromosome	 1p	 and	 22q	 were	
uniformly	present	in	control	plasma	samples	in	Control	
Cohort	A	(n=34	plasma	samples)	and	Control	Cohort	C	
(n=30	 plasma	 samples),	 and	 these	 regions	 were	
excluded	 from	 analysis	 as	 likely	 cfDNA	 WGS-specific	
artifacts.		

At	the	sample	level,	we	aggregated	signed	window-level	
CNV	Z	scores	(after	multiplication	by	expected	direction	
based	 on	 matched	 tumor	 amplification	 /	 deletions)	
across	 windows	 to	 generate	 a	 sample-level	 fragment	
entropy	score.	Sample	level	fragment	entropy	scores	in	
cancer	 plasma	 are	 compared	 to	 controls	 in	 matching	
genomic	regions	to	produce	a	final	sample-level	Z	score	
that	reflects	the	contribution	of	ctDNA	in	cancer	plasma	
compared	to	noise	in	non-cancerous	control	plasma.		

Removing	 artifactual	 CNV	 events.	 To	 reduce	 CNV	
artifacts	 we	 filtered	 out	 genomic	 bins	 overlapping	
centromere	 and	 telomere	 regions	 (as	 defined	 in	
https://genome.ucsc.edu/	for	GRCh38)	+/-	5	Mb	around	
each	 region.	 Somatic	 CNV	 events	 originating	 from	
possible	clonal	hematopoiesis	can	also	create	biases	 in	
plasma	 cfDNA	CNV	 analysis,	 as	most	 cfDNA	 is	 derived	
from	blood	cells.	To	 identify	such	events	we	evaluated	
the	genome-wide	distribution	of	BAF	in	PBMC	samples	
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as	 assessed	 by	 ascatNgs	 (v4.2.1)	 and	 excluded	 any	
regions	 (variable	 segment	 sizes)	where	 the	mean	BAF	
was	 above	 0.6.	 Three	 patients	 had	 detectable	 somatic	
PBMC	events	 as	described	previously28:	 LUAD10	 (amp	
Chr12:60138-133841502),	 LUAD26	 (CN-LOH	
Chr4:50400000-191044164)	 and	 CRC03	 (del	
Chr3:234305-	 80851349;	 del	 Chr5:75605307-
180877637;	 del	 Chr7:95649215-125071428	 ;	 del	
Chr7:144889607-159128563;	 del	 Chr10:50003039-
108417985;	 del	 Chr15:36365636-63901029;	 del	
Chr17:7602691-13317308	 ;	 del	 Chr17:17598183	 -
20374289;	del	Chr18:24227106-78017148).		

Aggregation	of	CNV	scores.	Our	3	CNV	features	(read	
depth,	 fragment	 entropy,	 and	 BAF)	 independently	
inform	 our	 estimation	 of	 ctDNA	 signal.	 We	 therefore	
aggregated	 our	 features	 by	 combining	 Z	 scores	 using	

Stouffer’s	method	;<∑ ;%&
%'(
√?

.		

The	MRD-EDGE	 CNV	 platform	was	 not	 applied	 to	 our	
early-stage	 LUAD	 cohort	 due	 to	 low	 tumor	 purity	
(median	0.23,	range	0.05	–	0.53,	12	/	39	samples	with	
tumor	 purity	 ≤	 15%,	 Supplementary	 Table	 1)	 which	
prevented	 Sequenza	 from	 assigning	 tumor	 ploidy	 and	
total	 and	 minor	 copy	 number	 calls	 in	 over	 30%	 of	
samples.	Further,	in	our	LUAD	cohort,	we	used	adjacent	
normal	tissue	rather	than	PBMC,	and	therefore	we	could	
not	 assess	 the	 underlying	 PBMC	 tissue	 for	 clonal	
hematopoiesis	 events	 that	 could	 serve	 as	 a	 major	
confounder	 to	 our	 BAF	 analyses.	 To	 assess	 our	
neoadjuvant	 (‘Neo’)	 NSCLC	 cohort,	 we	 used	 the	 same	
standards	 as	 were	 applied	 to	 our	 LUAD	 cohort	 to	
demonstrate	generalizability	of	our	SNV-only	approach	
across	sequencing	platforms	(Illumina	HiSeq	X	in	LUAD	
cohort	and	Illumina	NovaSeq	v1.0	in	Neo	cohort).		

For	our	 cohort	of	 adenomas	and	pT1	 lesions,	we	used	
our	MRD-EDGE	SNV	classifier	to	first	estimate	the	TF	of	
detected	 samples.	We	 found	 that	 the	 estimated	TFs	 of	
detected	 lesions	 by	 SNV	 was	 median	 2.88*10-6	 (range	
1.02*10-6–1.45*10-5	)	in	pT1	lesions	and	3.78*10-6	(range	
1.17*10-6–1.21*10-5)	in	adenomas	(Fig	4c).	We	therefore	
reasoned	that	the	LLOD	demonstrated	in	benchmarking	
for	our	BAF	and	fragment	entropy	CNV	features	(5*10-5)	
would	preclude	use	 in	 these	 extremely	 low	TF	 lesions	
(Fig	2c-d),	and	indeed	our	BAF	classifier	and	fragment	
entropy	classifier	in	these	cohorts	failed	to	detect	signal	
in	 these	 lesions	 (AUC	0.51	 and	0.48,	 respectively).	We	
therefore	proceeded	solely	with	use	of	our	 read	depth	
classifier,	which	demonstrated	sensitivity	down	to	5*10-
6	in	in	silico	admixtures	(Fig	2b).		

Integration	 of	 SNV	 and	 CNV	 scores.	 SNV	 and	 CNV	
classifiers	 provide	 orthogonal	 sources	 of	 information	
and	 are	 used	 to	 independently	 quantify	 ctDNA.	 We	
evaluated	 MRD	 and	 pT1	 /	 adenoma	 detection	 as	 a	
sample	level	Z	score	in	excess	of	either	the	CNV	or	SNV	Z	
score	threshold	as	obtained	through	calculating	the	90%	
specificity	boundary	compared	to	plasma	from	healthy	
controls	in	preoperative	early-stage	cancer	samples.	For	
example,	in	CRC,	we	defined	a	positive	detection	as	a	Z	
score	 threshold	 in	 excess	 of	 90%	 specificity	 against	
healthy	control	plasma	 in	our	preoperative	early-stage	
CRC	cohort.	We	applied	these	same,	prespecified	Z	score	
thresholds	 to	 identify	postoperative	MRD	(Fig	3c)	and	
our	pT1	and	adenoma	 lesions	 (Fig	4a).	The	 same	was	
done	 in	 lung	 cancer	 for	 our	 early-stage	 LUAD	 and	
neoadjuvant	therapy	(‘Neo’)	cohorts	(Fig	3d,	Extended	
Data	4c).	

Evaluating	 SNVs	 for	 de	 novo	 mutation	 calling.	 We	
collected	all	variants	against	the	hg38	reference	genome	
through	 samtools	 (v.3.1)	 mpileup	 with	 no	 exclusion	
filters.	Only	SNVs	mapping	to	chromosomes	1	-	22	were	
included	in	our	analysis.	Indels	were	excluded.	We	ran	a	
custom	 python	 (v3.6.8)	 script	 to	 collect	 all	 fragments	
containing	SNVs	that	matched	pileup	variants	from	the	
bam	 alignment.	 Fragments	 were	 then	 subjected	 to	
quality	 filters	 and	 the	 recurrent	 artifact	 blacklist	 and	
encoded	as	 inputs	 to	our	model	 architecture	 (see	SNV	
deep	 learning	 model	 architecture	 and	 model	
training).	We	defined	SNV	detection	rate,	a	function	of	
the	 two	 unknown	 variables	 plasma	 TF	 and	 tumor	
mutational	burden	(TMB),	as	 the	number	of	 fragments	
classified	 as	 ctDNA	 over	 the	 number	 of	 post-filter	
fragments	evaluated.	

Determination	 of	 de	 novo	 mutation	 calling	
specificity	 threshold.	 In	 a	 tumor	 agnostic	 setting	 (de	
novo	 mutation	 calling),	 our	 datasets	 are	 more	 heavily	
imbalanced	between	signal	and	noise	than	in	the	tumor-
informed	 setting,	 where	 knowledge	 of	 tumor	 SNVs	 is	
used	to	 inform	candidate	variants.		We	determined	the	
specificity	threshold	for	de	novo	mutation	calling	within	
our	 MRD-EDGE	 SNV	 deep	 learning	 classifier	 by	
optimizing	 the	 trade-off	at	 the	 fragment	 level	between	
increasing	 signal	 enrichment	 at	 higher	 specificity	
thresholds	 (Extended	 Data	 6a)	 vs.	 decreasing	 signal	
availability	 from	 overly	 stringent	 filtering	 (Extended	
Data	6b).	We	 therefore	 evaluated	 performance	 of	 our	
classifier	at	high	specificity	thresholds	within	in	silico	TF	
admixtures	 of	 MEL-01	 and	 a	 healthy	 control	 plasma	
sample	 (C-16,	 Supplementary	 Table	 2).	 We	 evaluated	
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detection	 sensitivity	 vs	 TF=0	 in	 admixtures	 TF=5*10-5	
and	found	AUC	to	be	highest	at	a	specificity	threshold	of	
0.995	 (Extended	 Data	 6b),	 with	 decreasing	 AUC	 at	
0.9975	 and	 0.9925.	 We	 used	 this	 empirically	 chosen	
specificity	 threshold	 for	 evaluation	 of	 plasma	 TF	 in	
subsequent	de	novo	mutation	calling	analyses.	We	note	
that	 the	 MEL-01	 plasma	 sample	 used	 in	 threshold	
determination	 was	 excluded	 from	 all	 downstream	
analysis.		

ichorCNA.	 ichorCNA10	 (version	 2.0)	 was	 used	 as	 an	
orthogonal	CNA-based	method	for	cfDNA	detection	and	
the	 estimation	 of	 plasma	 TF	 in	 high	 burden	 plasma	
samples.	 We	 optimized	 the	 input	 setting	 for	 more	
sensitive	detection	 in	 low-tumor-burden	disease	using	
the	modified	flags	-altFracThreshold	0.001,	-normal	.99	
along	 with	 a	 GRCh38	 panel	 of	 normal	
(https://gatk.broadinstitute.org/).	 All	 other	 settings	
were	set	to	default	values.	

Tumor-informed	and	de	novo	 targeted	panel.	MSK-
ACCESS8	was	used	as	an	orthogonal	SNV-based	method	
for	evaluation	of	plasma	TF	in	melanoma	samples.	MSK-
ACCESS	was	run	independently	on	a	subset	of	pre-	and	
posttreatment	 plasma	 samples	 for	 14	 patients	 with	
cutaneous	melanoma	 with	 available	 material	 allowing	
concurrent	 analysis.	 Application	 of	MSK-ACCESS	 panel	
and	 data	 analysis	 was	 performed	 by	 the	MSK-ACCESS	
team.	 Results	 for	 the	 tumor-informed	 panel	 were	
informed	by	somatic	mutations	found	in	matched	tumor	
samples	through	MSK-IMPACT102	and	were	reported	as	
average	adjusted	VAF	across	evaluated	genes.		

VAF	 was	 adjusted	 to	 account	 for	 copy	 number	
alterations	 at	 the	 locus	 of	 interest.	 Copy	 number	
alterations	are	inferred	by	applying	FACETS103	to	Whole	
Exome	 or	 Whole	 Genome	 tumor	 tissue	 used	 in	 MSK-
IMPACT	analysis.	The	ACCESS	team	assumes	that	there	
are	 no	 changes	 to	 copy	 numbers	 of	 these	 segments	
between	the	IMPACT	and	ACCESS	samples.	Adjusted	VAF	
is	calculated	as	follows	

𝐸𝑞. 6					𝑉𝐴𝐹 =
𝑇@)' ∗ 𝑇𝐹

𝑇-A ∗ 𝑇𝐹 + 𝑁-A ∗ (1 − 𝑇𝐹)
	

Where	𝑉𝐴𝐹	is	the	expected	variant	allele	fraction,	𝑇𝐹	is	
tumor	 fraction,	𝑇@)' 	=	alternate	copies	 in	 tumor,	𝑇-A	=	
total	copies	in	tumor,	𝑁-A	=	total	copies	in	normal.	

Solving	the	equation	for	TF	yields:	

𝐸𝑞	7					𝑇𝐹 =
𝑁-A ∗ 𝑉𝐴𝐹

𝑇@)' + (𝑁-A −	𝑇-A) ∗ 𝑉𝐴𝐹
	

For	 ACCESS	 samples,	 this	 TF	 value	 is	 computed	 and	
named	 adjusted	𝑉𝐴𝐹	 (𝑉𝐴𝐹0&B).	 For	 the	de	 novo	 panel,	
only	adjusted	VAFs	above	0.005	contributed	to	average	
VAF.	

Statistical	 analysis.	 Statistical	 analyses	 were	
performed	 with	 Python	 3.6.8	 and	 R	 version	 3.6.1.	
Continuous	variables	were	compared	using	Student’s	t-
test,	 the	Wilcoxon	rank-sum	test	or	 the	nonparametric	
permutation	test,	as	appropriate.	All	P	values	were	two	
sided	and	considered	significant	at	the	0.05	level,	unless	
otherwise	noted.	Cox	proportional	hazards	models	were	
fit	using	lifelines104	and	forest	plots	(Extended	Data	8a)	
were	plotted	using	EffectMeasurePlot	from	zEpid	(0.9.0,	
https://zepid.readthedocs.io/).	
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EXTENDED	DATA	
	

Extended	Data	1:	MRD-EDGE	SNV	feature	selection,	model	architecture	and	performance.	a)	Feature	density	plots	 for	
post-quality	 filtered	ctDNA	and	cfDNA	SNV	artifacts	used	 in	the	LUAD	model.	 In	this	comparison,	ctDNA	SNV	fragments	are	
identified	 from	consensus	mutation	 calls	 in	high	burden	LUAD	plasma	 samples	 (Supplementary	Table	2)	 and	 cfDNA	SNV	
artifacts	are	drawn	from	within	the	same	plasma	sample	to	remove	potential	inter-sample	biases	when	establishing	predictive	
ability	of	individual	features.	b)	SNV	classification	performance	for	different	machine	learning	models.	F1	score	was	assessed	
on	tumor-confirmed	melanoma	ctDNA	SNV	fragments	vs.	cfDNA	artifacts	from	healthy	controls.	Random	subsamplings	were	
drawn	from	the	held-out	melanoma	validation	set	(Supplementary	Table	2),	which	was	split	into	tenths	for	this	analysis.	We	
compared	performance	between	MRD-EDGE	and	its	separate	components	(left),	as	well	as	to	other	ML	architectures	(right)	c)	
Fragment-level	ROC	analysis	for	MRD-EDGE	SNV	classifier	for	different	cancer	types.	Performance	is	assessed	on	post-quality	
filtered	 fragments	 (~90%	 of	 low-quality	 cfDNA	 artifacts	 are	 excluded	 by	 quality	 filters)	 in	 held-out	 validation	 sets	
(Supplementary	Table	2)	for	melanoma,	LUAD,	and	CRC.	d)	Signal	to	noise	enrichment	analysis	for	MRDetect	and	for	each	step	
of	the	MRD-EDGE	tumor-informed	pipeline.	Final	pipeline	enrichment	is	118-fold	for	MRD-EDGE	vs.	8.3-fold	for	the	MRDetect	
in	the	same	datasets.	
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Extended	Data	2:	MRD-EDGE	CNV	detection	in	neutral	regions	and	non-small	cell	lung	cancer.	a-e)	In	silico	mixing	studies	
in	which	high	TF	plasma	samples	were	admixed	into	low	TF	samples	from	the	melanoma	patient	AD-12	and	the	NSCLC	patient	
Neo-03.	 For	 melanoma,	 pretreatment	 plasma	 was	 mixed	 into	 posttreatment	 plasma	 as	 described	 in	 Fig	 2b.	 For	 NSCLC,	
preoperative	 plasma	was	mixed	 into	 postoperative	 plasma	 in	 20	 technical	 replicates	 (each	 subsampling	 seed	 represents	 a	
technical	replicate).	Admixtures	model	tumor	fractions	of	10-6–10-3	(see	Methods	for	detailed	description	of	in	silico	admixture	
process).	 Box	 plots	 represent	 median,	 lower	 and	 upper	 quartiles;	 whiskers	 correspond	 to	 1.5	 x	 IQR.	 An	 AUC	 heatmap	
demonstrates	 detection	performance	 vs.	 TF=0	 at	 different	mixed	TFs	 as	measured	by	 a	 sample	 Z	 score	 compared	 to	TF=0	
distribution	 for	 each	 replicate.	 The	 read	 depth	 (a),	 fragment	 entropy	 (b),	 and	 SNP	BAF	 (c)	 classifiers	 demonstrate	 similar	
performance	in	preoperative	NSCLC	admixtures	compared	to	melanoma	admixtures	(Fig	2b-d).	d-e,	Z	scores	for	the	read-depth	
classifier	in	neutral	regions	(no	copy	number	gain	or	loss	in	the	matched	tumor	WGS	data)	for	melanoma	(d)	and	NSCLC	(e)	
demonstrates	 the	expected	absence	of	 ctDNA	detection	at	different	TF	admixtures,	 consistent	with	no	expected	 read	depth	
changes	in	copy	neutral	regions.	f)	Assessment	of	preoperative	plasma,	postoperative	plasma,	and	PBMC	BAF	in	SNPs	before	
(left)	 and	after	 (right)	 SNP	quality	 filters	 in	CRC	 (patient	CRC-16).	 Filters	 include	minimum	coverage	 and	outlier	 exclusion	
criteria	(Methods).	BAF	signal	is	calculated	as	the	mean	window-level	(1Mb)	deviation	from	the	0.5	SNP	reference	in	LOH	events	
identified	on	matched	tumor	WGS	(Methods),	and	these	values	are	summed	across	genome-wide	LOH	events	to	calculate	sample	
level	signal.	To	demonstrate	the	relationship	between	signal	and	phased	SNPs,	the	major	allele	in	plasma	is	randomly	permuted	
to	be	in	phase	or	out	of	phase	at	the	percentage	specified	along	the	x	axis.	Following	quality	filtering,	signal	can	be	appropriately	
inferred	 and	 demonstrates	 the	 expected	 relationship	 between	 preoperative	 plasma	 (highest	 signal),	 postoperative	 MRD	
(intermediate	signal),	and	PBMC	BAF	(minimal	signal).	
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Extended	Data	3:	CNV	load	across	tumor	types.	CNV	load	in	WGS	samples	across	cancer	types	from	the	TCGA	cohort	measured	
as	a	function	of	the	size	of	genome	altered	by	CNV	(in	log10Mb).	Dashed	lines	represent	the	percentage	of	samples	that	have	
CNV	 load	 of	 over	 200	Mb,	 the	 lower	 limit	 of	 detection	 for	 the	MRD-EDGE	CNV	 classifier.	 Cancer	 types	 include	 LUSC:	 Lung	
squamous	 cell	 carcinoma	 (n=50),	 HNSC:	 Head	 and	 Neck	 squamous	 cell	 carcinoma	 (n=50),	 CESC:	 Cervical	 squamous	 cell	
carcinoma	 and	 endocervical	 adenocarcinoma	 (n=18),	 OV:	 Ovarian	 serous	 cystadenocarcinoma	 (n=50),	 KICH:	 Kidney	
Chromophobe	(n=50),	COAD:	Colon	adenocarcinoma	(n	=	53),	THCA:	Thyroid	carcinoma	(n=50),	LUAD:	Lung	adenocarcinoma	
(n=152),	ESCA:	Esophageal	carcinoma	(n=19).		
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Extended	Data	4:	Clinical	performance	of	MRD-EDGE	 in	perioperative	CRC	and	LUAD	 tumor	burden	monitoring.	 a)	
Cross-patient	 ROC	 analysis	 on	 preoperative	 colorectal	 SNV	 mutational	 compendia	 for	 MRD-EDGE	 demonstrates	 similar	
performance	to	control	(non-cancer)	plasma	ROC	analysis	(Fig	3a).	Preoperative	plasma	samples	(n=19)	were	used	as	the	true	
label,	 and	 SNVs	 identified	 from	 the	 patient-specific	 mutational	 compendia	 in	 other	 preoperative	 CRC	 patients	 (n=342;	 19	
mutational	compendia	assessed	across	18	cross-patient	samples)	was	used	as	the	false	label.	b)	Cross-patient	ROC	analysis	on	
preoperative	colorectal	CNV	mutational	compendia	for	MRD-EDGE.	Preoperative	plasma	samples	(n=18)	were	used	as	the	true	
label,	and	cross	patient	plasma	was	used	as	the	false	label	(n=306;	18	mutational	compendia	assessed	across	17	cross-patient	
samples)	was	used	as	the	false	label.	One	sample	was	excluded	due	to	insufficient	aneuploidy.	c)	ROC	analysis	on	preoperative	
LUAD	 SNV	 mutational	 compendia	 for	 MRD-EDGE	 (blue)	 and	 MRDetect	 SNV	 +	 CNV	 mutational	 compendia	 (published	
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previously28,	red).	Preoperative	plasma	samples	(n=36)	were	used	as	the	true	label,	and	the	panel	of	control	plasma	samples	
against	all	patient	mutational	compendia	(n=1,224;	36	mutational	compendia	assessed	across	34	control	samples	from	Control	
Cohort	A)	was	used	as	the	 false	 label.	d)	Kaplan–Meier	disease-free	survival	analysis	was	done	over	all	LUAD	patients	with	
detected	(n=12)	and	non-detected	(n=10)	postoperative	ctDNA.	Postoperative	ctDNA	detection	shows	association	with	shorter	
recurrence-free	survival	(two-sided	log-rank	test).	e)	Cross-patient	ROC	analysis	on	LUAD	colorectal	SNV	mutational	compendia	
for	MRD-EDGE	demonstrates	similar	performance	to	control	(non-cancer)	plasma	ROC	analysis.	Preoperative	plasma	samples	
(n=36)	were	used	as	the	true	label,	and	SNVs	identified	from	the	patient-specific	mutational	compendia	in	other	preoperative	
LUAD	patients	(n=1,260;	36	mutational	compendia	assessed	across	35	cross-patient	samples)	were	used	as	the	false	label.	
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Extended	Data	5:	MRD-EDGE	detection	of	ctDNA	from	colorectal	pT1	carcinomas	and	adenomas.	a)	MRD-EDGE	SNV	Z	
score	discrimination	between	signal	detected	in	patient	plasma	(blue	dots,	n	=	33	patients)	and	healthy	control	plasma	from	
Control	Cohort	B	(white	boxes,	n=11).	Four	additional	samples	from	Control	Cohort	B	were	used	in	model	training	and	were	
therefore	excluded	from	downstream	SNV	analysis.	Signal	is	measured	on	patient	plasma	and	the	control	plasma	samples	using	
the	 same	patient-specific	 SNV	compendium.	The	SNV	ctDNA	detection	 threshold	 (dashed	horizontal	 line)	was	prespecified,	
reflecting	90%	specificity	defined	in	an	independent	cohort	of	preoperative	patients	with	early-stage	CRC	(Fig	3a).	b)	Cross	
patient	 SNV	evaluation.	 SNV	Z-score	discrimination	 is	 calculated	as	 in	 (a)	using	 cross-patient	 evaluation	 instead	of	healthy	
control	plasma.	 	Cross-patient	signal	 is	calculated	via	application	of	the	patient-specific	mutational	compendium	to	all	other	
patient	plasma	(white	boxes,	n=32).	The	ctDNA	detection	threshold	(dashed	horizontal	line)	was	prespecified,	reflecting	90%	
specificity	defined	in	an	independent	cohort	of	preoperative	patients	with	early-stage	CRC	(Fig	3a).	c)	Z-score	discrimination	
between	MRD-EDGE	CNV	on	patient	plasma	(blue,	n	=	19	patients)	compared	to	signal	detected	in	neutral	regions	(as	a	negative	
control,	 red),	and	cross-patient	cohort	 (n	=	18,	white).	Z-score	was	calculated	using	 the	noise	parameters	estimated	by	 the	
control	plasma	cohort.	Samples	not	evaluated	due	to	insufficient	aneuploidy	(n=9)	and	samples	from	Stage	IV	patients	(n=5)	
were	excluded	from	analysis,	the	latter	due	to	a	sparsity	of	neutral	regions	in	these	advanced	cancer	samples.	The	CNV	ctDNA	
detection	threshold	(dashed	horizontal	line)	was	prespecified,	reflecting	90%	specificity	defined	in	an	independent	cohort	of	
preoperative	patients	with	early-stage	CRC	(Fig	3b).			
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Extended	Data	6:	Determination	of	MRD-EDGE	de	novo	mutation	calling	classification	threshold.	a)	Fragment-level	signal	
to	noise	enrichment,	defined	as	the	fraction	of	remaining	ctDNA	fragments	(signal)	over	remaining	cfDNA	SNV	artifacts	(noise),	
for	different	MRD-EDGE	classification	thresholds	in	the	melanoma	held-out	validation	set	derived	from	tumor-confirmed	ctDNA	
SNVs	 from	 the	 melanoma	 patient	 MEL-01	 and	 post-quality	 filtered	 cfDNA	 artifacts	 from	 healthy	 control	 plasma	
(Supplementary	Table	2).	The	MRD-EDGE	SNV	deep	learning	classifier	uses	a	sigmoid	activation	function	that	outputs	the	
likelihood	between	0	and	1	that	a	candidate	SNV	fragment	is	a	mutated	ctDNA	fragment	or	cfDNA	harboring	a	sequencing	error,	
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and	the	classification	threshold	is	used	as	a	decision	boundary	for	these	two	classes.	Signal	to	noise	enrichment	increases	at	
higher	classification	thresholds,	as	expected.	b)	As	increased	specificity	will	ultimately	eliminate	most	of	the	signal,	to	choose	
an	optimal	 threshold	 for	 classification,	we	compared	sensitivity	vs.	TF=0	 in	an	 in	 silico	 study	of	 cfDNA	 from	 the	metastatic	
melanoma	sample	MEL-01	mixed	 in	n=20	replicates	against	cfDNA	from	a	healthy	plasma	sample	(TF=0)	at	5	*	10-5	at	16X	
coverage	depth.	We	found	optimal	performance	at	a	classifier	threshold	of	0.995	as	measured	by	AUC	of	mixed	replicates	against	
TF=0.	 This	 threshold	 was	 subsequently	 applied	 in	 de	 novo	 mutation	 calling	 analyses.	 c)	 (left)	 ctDNA	 detection	 rates	 for	
pretreatment	 cutaneous	melanoma	 samples	 from	 the	 adaptive	 dosing	 cohort	 (n=26,	 orange,	 detection	 rate	was	 capped	 at	
0.0005)	 compared	 to	 acral	 melanoma	 samples	 (n=3,	 blue,	 pre-	 and	 posttreatment	 timepoints	 from	 1	 patient	 with	 acral	
melanoma)	sequenced	within	the	same	batch	and	flow	cell.	(right)	ctDNA	detection	rates	for	healthy	control	plasma	(n=30,	gray).	
ctDNA	is	not	detected	from	acral	melanoma	plasma,	demonstrating	absence	of	batch	effect	and	the	specificity	of	MRD-EDGE	for	
the	UV	signatures	associated	specifically	with	cutaneous	melanoma.	
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Extended	Data	7:	Trends	 in	plasma	TF	using	MRD-EDGE,	a	 tumor-informed	panel,	and	a	de	novo	panel.	Serial	 tumor	
burden	monitoring	on	ICI	with	MRD-EDGE,	tumor-informed	panel,	and	de	novo	panel	for	11	patients	with	melanoma	(see	Fig	5f	
for	 remaining	 3	 patients	 with	 matched	WGS	 and	 panel	 data).	 Tumor	 burden	 estimates	 are	 measured	 as	 a	 detection	 rate	
normalized	to	the	pretreatment	sample	(normalized	detection	rate,	nDR)	for	MRD-EDGE	and	as	variant	allele	fraction	(VAF)	
normalized	 to	 the	 pretreatment	 VAF	 (normalized	VAF,	 nVAF)	 in	 the	 tumor-informed	 panel	 and	de	 novo	 panel.	 Outcome	 is	
reported	as	RECIST	response	on	Week	12	CT	 imaging	 including	partial	response	(‘PR’),	stable	disease	(‘SD’),	or	progressive	
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disease	(‘PD’).	Blue	highlights	surrounding	sample	names	indicate	samples	with	14	or	more	mutations	covered	in	the	tumor-
informed	panel.	
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Extended	Data	8:	Monitoring	 response	 to	 immunotherapy	with	MRD-EDGE.	 a)	Forest	 plot	 demonstrating	 relationship	
between	 ctDNA	 TF	 trend	 (increase	 or	 decrease)	 and	 progression-free	 survival	 (PFS)	 and	 overall	 survival	 (OS)	 at	 serial	
posttreatment	timepoints.	MRD-EDGE	TF	estimates	are	measured	as	a	detection	rate	normalized	to	the	pretreatment	sample	
(normalized	detection	rate,	nDR).	Each	posttreatment	timepoint	is	prognostic	of	PFS	outcomes.	b)	(left)	Kaplan–Meier	overall	
survival	analysis	for	Week	6	RECIST	response	(n=10	partial	response,	 ‘PR’,	n=8	stable	disease,	 ’SD’,	n=6	progressive	disease,	
‘PD’)	in	the	adaptive	dosing	melanoma	cohort	(n=26	patients)	where	CT	imaging	was	available	at	Week	6	shows	no	significant	
relationship	with	OS	(multivariate	logrank	test).	c)	Kaplan–Meier	OS	analysis	for	Week	6	
ctDNA	trend	in	adaptive	dosing	melanoma	patients	with	decreased	(n=17)	or	increased	(n=5)	nDR	compared	to	pretreatment	
timepoint	as	measured	by	MRD-EDGE.	Patients	with	undetectable	pretreatment	ctDNA	(n=2)	were	excluded	from	the	analysis	
as	were	2	patients	where	Week	6	plasma	was	not	available	for	analysis.	Increased	nDR	at	Week	6	shows	association	with	
shorter	overall	survival	(two-sided	log-rank	test).	TF,	tumor	fraction;	CT,	computed	tomography.
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