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Abstract 12 

Leaf phenology is key for regulating total growing season mass and energy fluxes. Long-term 13 

temporal trends towards earlier leaf unfolding are observed across Northern Hemisphere 14 

forests. Phenological dates also vary between years, whereby end-of-season (EOS) dates 15 

correlate positively with start-of-season (SOS) dates and negatively with growing season total 16 

net CO2 assimilation (Anet). These associations have been interpreted as the effect of a 17 

constrained leaf longevity or of premature carbon (C) sink saturation - with far-reaching 18 

consequences for long-term phenology projections under climate change and rising CO2. Here, 19 

we use multi-decadal ground and remote-sensing observations to show that the relationships 20 

between Anet and EOS are opposite at the interannual and the decadal time scales. A decadal 21 

trend towards later EOS persists in parallel with a trend towards increasing Anet ‐ in spite of the 22 

negative Anet‐EOS relationship at the interannual scale. This indicates that acclimation of 23 

phenology has enabled plants to transcend a constrained leaf longevity or premature C sink 24 

saturation over the course of several decades, leading to a more effective use of available light 25 

and a sustained extension of the vegetation CO2 uptake season over time.  26 
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Main Text 27 

For deciduous tree species in temperate and boreal forests, the timing of leaf unfolding in spring 28 

and leaf senescence in autumn determines the length of the season during which sunlight is 29 

intercepted by leaves, CO2 is taken up, and water is transpired. SOS and EOS dates fluctuate 30 

at multiple scales, driven by numerous interacting mechanisms that will collectively determine 31 

the long-term response to climate change. Dates of leaf phenology vary across climatic1 and 32 

elevational gradients2. Long-term temporal trends towards earlier leaf unfolding have been 33 

observed across the Northern Hemisphere in remote sensing data and documented in long-term 34 

tree-level observations3–5. Such phenological shifts in response to global climate change are 35 

altering carbon, water, and nutrient cycling and induce feedbacks within the Earth system6, 7. 36 

Relatively reliable models exist to predict SOS based on accumulated temperature and 37 

photoperiod8–11. In contrast, long-term trends in autumn senescence are less clear3, 12–14, depend 38 

on EOS definitions based on senescence start, leaf discolouration stages, or dormancy15, 16, and 39 

drivers are not well understood6. Although experimental evidence exists demonstrating that 40 

warm autumn temperatures delay leaf senescence17, long-term observations often do not show 41 

corresponding phenology trends in spite of persistent autumn warming18, 19, but see20. This has 42 

compromised the development of accurate predictive models and undermines phenology 43 

projections under future climate conditions21–23. However, a positive correlation between 44 

annual SOS and EOS dates has been found in observational24, 25 and experimental studies17, 26, 45 

potentially providing useful information for improving EOS predictions. A recent study27 46 

found an even stronger relationship between observed EOS and simulated Anet, such that greater 47 

productivity was associated with earlier leaf senescence. This negative relationship between 48 

Anet and EOS was interpreted as an expression of plant C sink saturation26, 28, 29, whereby an 49 

early replenishment of non-structural carbon reserves induces an early cessation of the 50 

photosynthetically active season. An EOS advancement over the second half of the 21st century 51 

was thus predicted as a consequence of accelerated C sink saturation due to continued SOS 52 

advances and enhanced photosynthesis under rising CO2 levels27. However, in the past, a 53 

sustained SOS advance3 and a widely observed CO2-driven increase in photosynthesis30–33 did 54 

not lead to a corresponding EOS advance3. With these interacting mechanisms operating over 55 

different spatio-temporal scales34, and the influence of their associated environmental controls, 56 

it has been challenging to identify general trends in the changes in autumn leaf senescence. 57 

Here, we investigated this apparent conflict by decomposing long-term trends, interannual, and 58 

spatial variations using linear mixed-effects models (LMMs). We hypothesized that the 59 

relationships between Anet and EOS are driven by multiple processes and are non-stationary 60 

over decadal time scales. We complemented the analysis of multi-year ground observations 61 

(1948-2015) from the PEP725 dataset5 of 434,226 European tree-level phenology observations 62 

with an analysis of remotely sensed phenological dates to expand the extent of data coverage 63 

in spatial and climatic space. Remotely sensed estimates of phenology (2001-2018) were 64 

obtained from MODIS MCD12Q2 Collection 635, 36 for 4,879 randomly sampled points of 65 

deciduous tree species in temperate and boreal forests in the northern hemisphere. We explored 66 

the robustness of Anet estimates and respective statistical models by using Anet estimates as 67 

previously used by Zani et al.27 and performed all analyses also with estimates generated here 68 

using an alternative, comprehensively evaluated photosynthesis model37. See Methods for a 69 

detailed account of the analysis, data, and modelling. 70 

We found opposing Anet‐EOS relationships at different temporal scales. When controlling for 71 

the effect of Anet, we found a clear decadal-scale trend component towards later EOS (0.253 ± 72 

0.001 d yr-1, Fig. 1A). After separating the long-term trend, the remaining Anet‐EOS relationship 73 

reflects interannual variations (Fig. 1B). At this scale, Anet is negatively correlated with EOS, 74 
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as reported by Zani et al.27 based on a univariate model (Fig. 1C). The net effect of these 75 

opposing relationships is a relatively small delay in EOS over time (0.046 ± 0.001 d yr-1, fig. 76 

S1A) - in spite of the steadily increasing (simulated) Anet since the mid-20th century (fig. S1B). 77 

These results are robust against the use of alternative Anet estimates37, 38 in LMMs (figs. S1C, 78 

S2A and S2B). The parallel gradual Anet increase and long-term trend towards delayed autumn 79 

senescence indicate a positive Anet‐EOS relationship - opposite to the negative relationship at 80 

the interannual time scale. 81 

Scale-dependent relationship reversals were found also when decomposing interannual from 82 

spatial variations, i.e. when separating annual anomalies from multi-year means by site in 83 

LMMs. Due to relatively limited temporal coverage of the remote sensing data (2001-2018), 84 

we did not separate a long-term trend. Across space, higher mean Anet is associated with later 85 

mean EOS (Fig. 2A), while the opposite relationship prevails when considering interannual 86 

variations at a given location (Fig. 2B). The positive mean EOS‐mean Anet relationship is also 87 

evident when considering the spatial distribution of observations across the Northern 88 

Hemisphere (Figs. 2C and 2D). 89 

These relationships yield several insights into potential processes underlying phenology shifts 90 

under global environmental change. A link between interannual variations of Anet and EOS 91 

emerges from both the ground-based and remote sensing-based analyses. Since Anet represents 92 

the cumulative net CO2 assimilation since SOS, the Anet‐EOS relationship is closely related to 93 

the previously reported relationship between SOS and EOS17, 24–26. Early leaf unfolding leading 94 

to early senescence has been hypothesized to be the result of a relatively constant length of leaf 95 

phenological stages39, or of a leaf aging effect40–42, whereby a tightly constrained leaf longevity 96 

implies direct control of SOS on EOS24. Given the well-documented gradual SOS 97 

advancement43–47 (fig. S1D), this process should induce an advancement also of EOS. Our 98 

analysis reveals that this has not been the case (figs. S3 and S4). Similarly, also the strong 99 

relationship between Anet‐EOS, apparent at the interannual scale, has not been stationary over 100 

several decades. This indicates that the interplay between multiple drivers and processes has 101 

resulted in a gradual relief of tight constraints relevant at the interannual time scale, potentially 102 

arising from premature leaf aging or C sink saturation. We interpret this non-stationarity of the 103 

Anet‐EOS and the SOS‐EOS relationships as being reflective of acclimation. 104 

What are the drivers of observed phenological relationships and their acclimation? If the 105 

negative interannual Anet‐EOS relationship was due to C sink saturation, it should prevail also 106 

in the long-term, as photosynthetic CO2 assimilation is enhanced under rising atmospheric 107 

CO2
30–33. However, it appears that the tight constraints, apparent at the interannual scale, are 108 

relieved over the course of several decades. The opposing relationships at different scales found 109 

here question the prediction that gradual increases in photosynthesis cause a progressive 110 

advancement of EOS by earlier C sink saturation. Previous studies have generally demonstrated 111 

a thermal control delaying EOS across spatial gradients and years48. Rising autumn 112 

temperatures, causing a slow-down of chlorophyll degradation and leaf discoloration15, have 113 

been suggested to underlie trends and are considered in autumn senescence models49. Most 114 

warming experiments have also shown later EOS for various deciduous tree species50. Further 115 

insights into the importance of a potential C sink saturation mechanism causing a reversal of 116 

effects by warming autumn temperatures will be gained by linking observations of non-117 

structural C dynamics with autumn phenology. Our results indicate that different mechanisms 118 

and environmental controls are at play at different temporal scales, potentially undermining 119 

long-term projections, informed by short-term observations of autumn phenology.  120 

Why does a negative relationship between Anet and EOS emerge when the long-term trend and 121 

the spatial variation are not separated in LMMs? A possible explanation is that relatively large 122 
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interannual phenology variations dominate over the smaller long-term temporal pattern in the 123 

data we analysed, and mask their effect in univariate models. Indeed, separating the opposing 124 

long-term and spatial trends from the remaining component of interannual variations improves 125 

model performance significantly (ANOVA p < 0.001 and lower AIC) and increases the strength 126 

of their interannual links in all models (see estimates for bivariate and univariate models in 127 

table S1). This provides further support for an important mechanism underlying the apparent 128 

link at the interannual scale. However, it also indicates that this does not preclude the existence 129 

of other mechanisms, enabling an acclimating response, and leading to a relief of phenology 130 

relationships apparent at the interannual scale and to a sustained delay of EOS. The net effect 131 

of opposing mechanisms, apparent in the univariate models, is subject to the data and their 132 

relative magnitudes of variations across multiple scales. 133 

The long-term and spatial relationships between Anet and EOS (and between SOS and EOS) are 134 

qualitatively consistent. This indicates that the phenology of individual trees has acclimated 135 

over the course of decades in the same direction as evident from the spatial analysis (high Anet 136 

occurs in places with late EOS, Figs. 2C and D). Note that the long-term temporal trends 137 

derived from tree-level observations in the PEP data emerge within individual species observed 138 

at different locations, while spatial variations may arise also as a result of varying species 139 

composition across space and of adaptation within populations of a given species. Our results 140 

suggest a clear plasticity of autumn phenology over time, mirroring effects by species 141 

distribution and long-term adaptation of individuals and plant communities growing along a 142 

large climatic gradient. This indicates a trend towards optimal, climate-adapted functioning. 143 

Opposing relationships at different time scales and across the Northern Hemisphere reconcile 144 

apparent conflicts by the reported negative Anet-EOS relationship but absent shifts towards 145 

earlier EOS as Anet has increased over past decades. We conclude that a gradual acclimation of 146 

plant physiology and adaptation of phenology has enabled plants to transcend a constrained 147 

leaf longevity or a stationary C sink saturation effect, evident from the clear short-term SOS‐148 

EOS and Anet‐EOS relationships. Thus, in the long run, plants may assimilate more CO2 without 149 

a direct and inescapable penalty by earlier leaf senescence and without thus foregoing late-150 

season carbon assimilation. This apparent plasticity in phenology appears to have driven plants 151 

towards optimal functioning in a changing climate.  152 
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Methods 153 

Pan European observational data 154 

Spring and autumn phenology dates were collected from the Pan European Phenology Project5, 155 

which provides in-situ observations for Europe. Phenology dates were defined following the 156 

BBCH (Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie) codes and the 157 

data selection made by Zani et al.27. Leaf-out was defined as the date when the first (BBCH11) 158 

or 50% of leaf stalks are visible (BBCH13) for the deciduous angiosperms, and as the date 159 

when the first leaves separated (BBCH10) for the deciduous conifers. Leaf senescence was 160 

defined as the date when 50% of leaves had lost their green color (BBCH94) or had fallen 161 

(BCCH95). Following Zani et al.27 data cleaning, the dataset resulted in 3,855 sites across 162 

Central Europe with 14,626 individual time series and 434,226 phenological observations 163 

between 1948 and 2015. 164 

MODIS phenology data 165 

We used the MODIS C6 MCD12Q2 Land Surface Dynamics Product35 which provides land 166 

surface phenological data at 500-meter spatial resolution from 2001 to 2018, derived from time 167 

series of the 2-band Enhanced Vegetation Index (EVI2) calculated from MODIS Nadir Bi-168 

directional Reflectance Distribution Function (BRDF) adjusted surface reflectance (NBAR-169 

EVI2)36, 51. From this product, leaf-out (start-of-season, SOS) was taken as the MidGreenup 170 

point, i.e., the date when EVI2 first crossed 50% of the segment EVI2 amplitude. Leaf 171 

senescence (end-of-season, EOS) was taken as the MidGreendown point, i.e., the date when 172 

EVI2 last crossed 50% of the segment EVI2 amplitude. We selected the MidGreenup and 173 

MidGreendown to define SOS and EOS instead of the Greenup and Dormancy following the 174 

advice from the MCD12Q2 Product user guide to capture the season start and end in high-175 

latitude regions. Data were downloaded using the MODISTools R package52. We randomly 176 

sampled 5,000 pixels spread evenly between temperate deciduous needle and broadleaf IGBP 177 

classes and selected the points corresponding to the Northern Hemisphere (4,879). 178 

Photosynthesis estimation 179 

For locations where tree-level phenology observations were available from the PEP data, we 180 

used two alternative estimates of Anet. Results shown in Fig. 1 are based on Anet as estimated by 181 

Zani et al.27 using their implementation of the LPJ model38 and represents gross assimilation 182 

minus daytime dark respiration. The cumulative growing season net photosynthesis (Anet) was 183 

then obtained by summing the daily Anet for all days of the growing season, starting at the date 184 

of observed SOS as given by the PEP data and ending on the date when daylength falls below 185 

11.2 hours. A detailed explanation of the seasonal photosynthesis estimation is provided in 186 

Zani et al.27. Results shown in figs. S1C and S2 are based on estimates of Anet using the P-187 

model37 as implemented by the rsofun R package53, and represent gross assimilation minus 188 

dark respiration. Cumulative Anet was calculated from days starting at the observed SOS and 189 

ending at the summer solstice (21st of June in the Northern Hemisphere). The same P-model 190 

based approach was applied for estimating cumulative Anet at locations where phenology data 191 

was extracted from the MODIS remote sensing product. The P-model predicts leaf-level 192 

acclimation of photosynthesis to its environment and simulates CO2 assimilation as a linear 193 

function of absorbed photosynthetically active radiation (APAR). Here, APAR is based on 194 

shortwave radiation from WATCH-WFDEI54 and downscaled using WorldClim255, assuming 195 

a fraction of APAR of 1.0 for all sites and dates between their respectively observed SOS and 196 

EOS dates. Hence, Anet represents a leaf-level quantity, representative for conditions in full 197 

light. Also other meteorological forcing data for P-model simulations were taken from 198 

WATCH-WFDEI54, downscaled using WorldClim255 as implemented by the ingestr R 199 

package56. Details of the theory underlying the P-model are described in Stocker et al.37) and 200 

Wang et al.57. 201 
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Data analysis 202 

We fitted linear mixed-effects models to investigate the relationships between autumn 203 

phenology (EOS), net photosynthesis (Anet) and spring leaf-out (SOS). We were particularly 204 

interested in separating the interannual, the long-term, and the spatial components of variation. 205 

The general structure of the models can be summarized as: 206 

 207 

𝑌 = 𝑋𝑎 + 𝑍𝑏 + 𝜀𝑡 208 

where 𝑌 represents the dependent variable (i.e., EOS, expressed as day-of-year), 𝑎 is the vector 209 

of fixed effects, 𝑏 is the vector of random intercepts, 𝑋 and 𝑍 are regression matrices of fixed 210 

and random effects, respectively, and 𝜀𝑡 is the within-group error vector. For performing the 211 

temporal analyses, the predictor variables (Anet, SOS, year) were standardized and site and 212 

species were treated as grouping variables of random intercepts. For performing the spatial 213 

analysis, we calculated the mean and standard deviation values of the predictors (Anet and SOS) 214 

and evaluated their effects on EOS. Site and year were treated as grouping variables of random 215 

intercepts for spatial analyses with MODIS data. Residuals of the models were checked for 216 

normality and homoscedasticity. Linear mixed-effects models were fitted using the lme4 R 217 

package58. The analyses were performed using the R statistical software version 4.0.559. 218 
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 417 

Fig. 1. Relationship of CO2 assimilation and autumn phenology from local observations 418 

(PEP725 data). (A, B) Partial relationships of a multiple LMM, where end-of-season (EOS, 419 

expressed as day-of-year, DOY) is the response variable and (A) the long-term trend (year) and 420 

(B) Anet (simulated using the LPJ model) are treated as fixed effects. (C) EOS versus Anet based 421 

on an LMM with Anet as a single fixed effect. Blue lines represent the expected values from 422 

LMMs and grey ranges their 95% confidence intervals. In both bivariate and univariate models, 423 

site and species are treated as grouping variables of random intercepts.   424 
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 425 

Fig. 2. Relationships of CO2 assimilation and autumn phenology from remote-sensing 426 

observations (MODIS C6 MCD12Q2 data). (A, B) Partial relationships of a multiple LMM, 427 

with Anet simulated using the P-model, and where both (A) Anet mean and (B) anomalies relative 428 

to the mean value from 2001 to 2018 are treated as fixed effects, and site and year are treated 429 

as grouping variables of random intercepts. Blue lines represent the expected values from 430 

LMMs and grey ranges their 95% confidence intervals. (C, D) Mean values of (C) EOS and 431 

(D) Anet simulated by the P-model for grid cells distributed along the Northern Hemisphere.  432 
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