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Abstract 

Hepatosplenic T-cell lymphoma (HSTCL), mostly derived from γδ T cells, is a rare 
but very aggressive lymphoma with poor outcomes. The molecular pathogenesis 
driving HSTCL is largely unknown while only limited treatment options are available. 
In this study, by performing paired single cell RNA-seq and T cell receptor (TCR) 
sequencing on biopsies from a HSTCL patient pre- and post- chemotherapy 
treatments, we characterized unique gene expressing signatures of malignant γδ T 
cells, with a set of marker genes were newly identified in HSTCL (AREG, PLEKHA5, 
VCAM1 etc.). Although the malignant γδ T cells were expanded from a single TCR 
clonotype according to their TCR identities, they evolved into two transcriptional 
distinct tumor subtypes during the disease progression. The Tumor_1 subtype was 
dominant in pre-treatment samples with highly aggressive phenotypes. While the 
Tumor_2 had relative mild cancer hallmark signatures but expressed genes associated 
with tumor survival signal and drug resistance (IL32, TOX2, AIF1, AKAP12 etc.), 
and finally became the main tumor subtype post-treatment. We further dissected the 
tumor microenvironment of the HSTCL and noticed that CD8 memory T cells were 
clonal expanded post-treatment. In addition, we discovered dynamically rewiring cell-
cell interaction networks during the treatment. The tumor cells had reduced 
communications with the microenvironment post-treatment. Our study reveals 
heterogenous and dynamic tumor and microenvironment underlying pathogenesis of 
HSTCL and may contribute to identify novel targets for diagnosis and cure of HSTCL 
in the future.  
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Introduction 

Hepatosplenic T-cell lymphoma (HSTCL) is a rare subtype of peripheral T-cell 
lymphoma (PTCL), mostly derived from γδ T cells. In a recent report, HSTCL 
accounts for 2% of all T-cell lymphoma subtypes worldwide1. In earlier surveys, it 
accounts 3% in the United States, 2.3% in Europe, and 0.2% in Asia2. The clinical 
presentations of HSTCL is highly aggressive and usually with a fatal outcome. The 
median overall survival time is only 1-2 years3-6 after diagnosis. Because it is rare, no 
treatments have become established as internationally recognized standards of 
care. Clinical trials are also unusual. Different combinations of chemotherapies have 
been used to treat HSTCL. In the earliest patient series, CHOP or CHOP-like 
regimens were reported as the most frequently used for induction treatment. More 
intensive chemotherapy regimens have been used as well, such as Hyper-CVAD or 
Hyper-CVAD-like regimens, and ICE or IVAC regiments3. However, no single 
regimen is clearly superior3-6. In addition, relapses occur often and early. In one series, 
the median time to relapse among patients achieving a complete response to induction 
therapy with CHOP or CHOP-like regimens was 3–16 months3. The efficient 
treatment modalities for HSTCL remain to be defined. 

Given the aggressive, fatal nature of HSTCL, there is a critical need to identify 
putative molecular targets and develop novel therapeutic approaches. However, the 
pathogenesis of HSTCL remains largely unknown. Only a few molecular studies were 
conducted for this disease. Travert et al reported a distinct gene-expression profile of 
HSTCL, differentiating it from other T-cell lymphomas, and provided rationale for 
exploring new therapeutic options such as Syk inhibitors and demethylating agents7. 
Ferreiro et al integrated transcriptomic and genomic analysis to demonstrate that 
chromosome 7 imbalances were the driver events in HSTCL and identified a set of 
genes, marking HSTCL from other malignancies8. 

To overcome the knowledge gap, in this study, we presented the first single cell 
analysis for HSTCL. We collected bone marrow and PBMC biopsies pre- and post-
treatment from a 17-year-old female patient, and performed paired single cell RNA-
seq (scRNA-seq) and T cell receptor sequencing (scTCR-seq). We established a cell 
types landscape for HSTCL and characterized the molecular signature of malignant γδ 
T cells from this rare lymphoma. We further revealed heterogeneities among the 
tumor cells and identified a tumor subset might be associated with disease progression 
and drug resistance. We also reconstructed the tumor microenvironment (TME) of 
HSTCL, and investigated how the TME were interacting with tumor cells and 
reforming under therapeutic conditions. 

Methods 

Patient recruitment and ethics statement 
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This study was approved by the Ethics Committee of The First People's Hospital of 
Yunnan Province, China. The recruited patient gave informed consent at 
hospitalization. 

Clinical examinations 

Computed tomography (CT) scanning was performed to assess the potential 
pulmonary infection and status of lymph nodes, liver and spleen. The scanning was 
ranged from the foramen magnum to the inferior margin of the symphysis pubis. Raw 
CT data was reconstructed with 1mm thickness to estimate liver and spleen volumes 
using the Post-processing workstation (Syngo via, Siemens, Germany). 

In each hospitalization, peripheral blood and bone marrow samples were collected for 
smear cytology using Wright staining. The staining was performed with following 
steps: 1) Add Wright-Giemsa Solution A (~ 0.5~0.8ml) to the smear and stain for 1 
min. 2) Add Wright-Giemsa Solution B (2~3 volumes of Solution A) onto Solution A 
and mix thoroughly then stain for 5~10mins. 3) Rinse with water gently, dry and 
examine the slide using a microscope. 

The antibodies used in the flow cytometry analysis were CD10, CD16, CD138, CD45, 
CD56, CD2, CD3, HLA-DR, CD34, CD4, CD8, CD19, CD5, CD117, CD7, TCRαβ, 
TCRγδ, CD38, CD57, CD64 (BD Bioscience, US). The cells were washed in 
phosphate-buffered saline (PBS) and stained with a cocktail of cell surface antibodies 
for 20 min. Lysing solution (BD Bioscience, US) was then added to remove red blood 
cells. The cells were then washed and resuspended in PBS and analyzed by flow 
cytometry (FACS Canto, Bioscience, US). 

TCR rearrangements were detected by IdentiClone® TCRB + TCRG Gene Clonality 
Assay following the manufacturer's instructions (Invivoscribe, San Diego, US) 

Single cells RNA and TCR sequencing 

Mononuclear cells were isolated from whole blood and bone marrow by 
centrifugation and resuspended with freezing medium. The cells were then frozen in a 
freezing container in a −80°C freezer. On the date of experiment, the cells were 
thawed using a water bath at 37°C and loaded into Chromium microfluidic chips and 
barcoded within a 10X Chromium Controller (10X Genomics, US). For transcriptome, 
procedures were performed with reagents: Chromium Next GEM Single Cell 5' 
Library & Gel Bead Kit v1.1 (10X Genomics, Cat. No. 1000165). TCR enrichment 
was carried out using the Chromium Single Cell V(D)J Enrichment Kit, Human T 
Cell (10X Genomics, Cat. No. 1000005) for αβ transcripts, or customer primers for γδ 
TCR transcripts9. All the libraries were sequenced in a PE150 mode (Pair-End for 
150bp read) on the NovaSeq 6000 platform (Illumina, US).  

Single cell data analysis 
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Raw sequencing data were processed by Cell Ranger version 6.0.2 (10X Genomics) to 
generate gene expression matrix and assemble TCR sequences with human GRCh38 
reference genome. scRNA-seq data analysis were performed using Scanpy10. In 
quality control step, cells were filtered by the following criteria: 1) mitochondrial 
abundance < 10%, 2) minimum gene detected > 400, 3) Maximum UMI < 35000. 
Potential doublets were detected and removed by Scrublet11 and manual inspections. 
Principal component analysis (PCA) was applied on the highly variable genes and 
cells were projected and visualized in 2D dimensions using uniform manifold 
approximation and projection (UMAP) on the first 30 PCs. Cells were clustered by 
Leiden algorithm implemented in Scanpy. Differentially expressed genes were 
identified using a cut-off of |Fold Change| > 2, adjusted p value < 0.05 and gene 
expressed > 10% in the higher expression group. Gene enrichment analysis was 
performed using R package clusterProfiler12. TCR data was analyzed with Scirpy13. R 
package InferCNV was used to infer copy number variation 
(https://github.com/broadinstitute/infercnv) with following parameters (cut-off=0.1, 
cluster_by_groups=TRUE, denoise=TRUE, 
HMM=TRUE,analysis_mode='subclusters'). CellChat R package14 was applied to 
identify cell-cell interactions. 

Data sharing statement 

The sequencing data was deposited at Gene Expression Omnibus (GEO) under 
accession no. GSE193220. 

Results 

Clinical characteristics of the studied patient with HSTCL 

The detailed clinical characteristics of the recruited patient with HSTCL were 
summarized in Table. 1. This 17-years old female patient was diagnosed γδ HSTCL 
on May 18 2021 (Fig. 1A), initially presented with fever and fatigue, and 
subsequently developed severe hemorrhage due to thrombocytopenia (Table. 1). CT 
scanning revealed splenomegaly and hepatomegaly (estimated spleen volume: 910.56 
cm3 and liver volume: 1617.21 cm3 Fig. 1B left), while lymphadenopathy was absent 
(Fig. S1). Neoplastic lymphocytes were identified from bone marrow aspirate (Fig. 
1C), which were large, round or irregular cells, with abundant cytoplasm but no or 
few particles in cytoplasm. The nuclei were round or irregular, depressed and 
distorted, with dense chromatin and 1-3 inconspicuous nucleoli, PAS glycogen 
staining was positive. The abnormal cells accounted for ~50% of lymphocytes. By 
flow cytometry, the neoplastic lymphocytes were found to be CD2+, CD3+, CD16+, 
CD45+, TCRγ/δ+, CD7P+, CD4-, CD8- and TCR α/β-, which were the typical 
immunophenotypes of γδ HSTCL4,6 Fig. 1D).  TCR rearrangement assay further 
confirmed clonal rearrangement of TCR β (TCRB) and γ (TCRG) genes.  

After diagnosis, the patient began to receive chemotherapy hyper-CVAD-A regimen 
as induction treatment (Fig. 1A, Table. 2). During the first course of chemotherapy, 
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the patient’s body temperature returned to the normal and the overall conditions was 
relatively stable. Just 17 days after the first chemotherapy completed, the patient was 
hospitalized again due to fever and thrombocytopenia. The patient was then received 
ICE regimen (Fig. 1A Table. 2), which achieved similar therapeutic outcomes as 
hyper-CVAD-A. Separated by 32 days, another course of ICE regimen was 
administrated to the patient (Fig. 1A Table. 2). During each chemotherapy period, the 
indexes of routine blood examinations such as red blood cell count, white blood cell 
count, platelet count could gradually return to the normal range. However, the 
symptoms relapsed soon after the treatments were completed. During the second 
course of chemotherapy, CT examination revealed significantly reduced spleen 
volume (524.05 cm3) while liver volume stayed similar size (1613.09 cm3, Fig. 1B 
third column), but after the third course of treatment, the spleen and liver enlarged 
again to 1001.58 cm3 and 1645.19 cm3 (Fig. 1B. right). These results suggested 
HSTCL was very aggressive and refractory.  

Establish a single cell atlas for HSTCL 

To understand the cellular and molecular characteristics HSTCL and how they can be 
changed during chemotherapies, we performed paired scRNA-seq and scTCR-seq for 
4 samples collected from the patient. 2 pre-treatment samples were collected from 
bone marrow (BM1) and PBMC (PBMC1), respectively, and 2 were collected post-
treatment (BM2, PBMC2) (Fig. 1A). After quality control and data pre-processing, 
36,092 cells (8,295 BM1, 9,189 PBMC1, 5,730 BM2 and 12,878 PBMC2) were 
retained for downstream analysis. Followed by dimension reduction and Leiden 
clustering, the cells were visualized by uniform manifold approximation (UMAP) 
(Fig. 2A). 7 major clusters were identified from the cell population, cell type 
identities were assigned to each cluster by canonical markers from previous 
publication (Fig. 2B): T and NK cells (T_NK, marked by CD3D, CD3E, NKG7 and 
GNLY), B cells (B, marked by CD79A and MS4A1), Plasma cells (Plasma, marked 
by MZB1 and IGKC), Monocytes (Monocyte1 and Monocyte2, marked by CD14, 
LYZ and CST3), Erythroid and progenitor cells (Ery_Pro, marked by HBD and CA2) 
and malignant γδ T cells (GD_Tumor, marked by TRCD, TRDV1 and CD3D). We 
didn’t observe strong batch effect among different samples (Fig. S2). To further 
confirm the identity of the tumor cluster, we evaluated the expression of HSTCL 
markers previously identified by immunohistochemistry and flow cytometry. We 
confirmed that these GD_Tumor cells were CD2+, CD3+, CD4-, CD5-, CD7+ and 
CD8, CD38, CD56 (NCAM1) partial positive, aligned with the diagnostic guidelines 
(Fig. S3)4,6. 

We observed unique cell type composition distribution in HSTCL and substantial 
composition changes post-treatment (Fig. 2C). Tumor cells were greatly reduced 
post-treatment in both PBMC (pre: 6.1% vs post: 1.1%) and BM (pre: 45.2% vs post: 
18.5%), In Wright staining, tumor cell was also significantly decreased post-treatment 
(Fig. 2D). Unusual high percentage of monocytes was observed in PBMC samples, 
and became even higher post-treatment (pre: 40.2% and post: 65.0%, Fig. 2C), which 
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was consistent with clinical blood examinations (Fig. 2E). Previous studies suggested 
that elevated monocyte count may associated with poor prognosis and identify high-
risk patients in lymphomas15,16. Ery_pro cell % were increased post-treatment in both 
BM (pre:14.2% vs post: 51.1%) and PBMC (pre:1.6% vs post: 5.0%). In Ery_pro 
cluster, most cells were erythroid and erythroid progenitor cells (Fig. S4). In clinical 
bone marrow examination, erythroid lineage cell % also showed an increasing trend 
(Fig. 2F). B cells reduced to a very low percentage post-treatment in both BM (pre: 
5.2% vs post: 0.8%) and PBMC (pre: 15.7% vs post: 0.7%). In lymphocyte subtype 
counting by flow cytometry, B cells were significantly dropped after chemotherapy 
(Fig. 2G). These results suggested that the tumor microenvironment (TME) was 
dynamically reshaping as responses to disease progression and treatment. 

HSTCL malignant γδ T cells had unique clonal and molecular features 

To investigate the clonal expansion of the malignant γδ T cells, we performed scTCR-
seq in parallel with scRNA-seq. Among the 5,515 cells in the GD_Tumor cluster, 
4,505 (81.7%) cells had recoverable γδ TCR information. The TCR repertoire of 
malignant cells was almost founded by a single clonotype, suggesting the tumor cells 
likely arose from a single ancestor cell and clonal expanded subsequently (Fig. 3A). 
For the 4,419 cells had assembled γ chains, 4,374 (99.0%) had the same γ chain 
sequence (TRGV3 + TRGJ1 + CATWDNLMENYYKKLF), for the 3,614 cells had 
assembled δ chains, 3,576 (99.0%) had the same δ chain sequences (TRDV1 + 
TRDJ1 + CALAVVVGGLGTDKLIF), and for the 3,494 cells had both γ chain and δ 
chain assembled, 3614 cells had the above γ chain and δ chains sequences (Fig. 3A 
blue dots). As a comparison, we identified 559 cells in NK_T cluster with γδ TCR, 
suggesting they were normal γδ T cells from this patient. These normal γδ T cells had 
a more diverse TCR repertoire, ~60% of the cells were singletons (Fig. 3B).  

To give a more comprehensive description of the malignant γδ T cells and search for 
novel candidate genes relevant to HSTCL pathogenesis, we compared the malignant 
γδ T cells gene expressions with those of normal γδ T cells. We found a substantial 
number of genes were differentially expressed between the malignant and normal γδ 
T cells (Fig. 3C, Table. S1). Among them, the top up-regulated genes in tumor cells 
were those related to cancer progression (eg, AREG, CCL3, PLEKHA5, VCAM1 and 
MCM7, Fig. 3D), which might be the targets of innovative treatments. Normal γδ T 
cells have strong cytotoxicity by expressing NK cell-associated genes like NKG2D, 
GNLY and a profile of cytotoxic molecules (eg, GZMA, GZMB, GZMM, and 
PRF1)17-19. However, these genes were mostly absent in the malignant γδ T cells (Fig. 
S5). On the contrary, killer cell immunoglobulin-like receptor 2DL2 (KIR2DL2) and 
KIR2DL3 were increased in the malignant γδ T cells, which encode the inhibitory 
receptors of the KIR family and reduce the cells’ cytotoxic function20. These results 
suggested that malignant γδ T cells differed from normal γδ T cells by lacking the 
cytotoxic modules. KEGG pathway enrichment analysis further showed that the top 
1000 tumor up-regulated genes were significantly enrichment in pathways involving 
in cell proliferation and cancer development, such as Cell cycle, DNA replication, p53 
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signaling pathways (Adjusted p value = 6.99e-14, 5.28e-11 and 1.03e-03, respectively. 
Fig. 4E). 

Transcriptional landscape revealed the heterogeneity of HSTCL malignant cells 

We next investigated the heterogeneity of the malignant cells at single-cell level. The 
4505 cells from GD_Tumor cluster with γδ TCR were taken out and re-clustered. 
Two distinct tumor clusters were identified from these cells (Fig. 4A), which had a 
strong correlation with the treatment status (Fig. 4B). Tumor_1 cluster consisted 3439 
(75.3%) tumor cells, 98.0% of which were from pre-treatment samples (BM1 and 
PBMC1) and were almost absent in post-treatment samples. Tumor_2 cluster was 
relative smaller, included 1066 cells but dominating the post-treatment samples (BM2 
and PBMC2), suggesting the chemotherapies may have a selection effect on the tumor 
cell populations.  

We further did a comprehensive comparison between the two tumor clusters. From 
the expression of G2M and S-phase genes, we inferred the cell cycle phases for each 
tumor cell and observed different phase distribution between the two clusters (Fig. 4C, 
Fig. S6). 76.0% of the Tumor_1 cells were at S and G2M phases, while only 60.1% in 
the Tumor_2 cluster. We then surveyed the expression of proliferation associated 
genes (eg, MKI67, PCLAF, PCNA), Tumor_1 cells also had higher expression than 
Tumor_2 among these genes (Fig. 4D), together with the cell cycle analysis, 
suggesting that Tumor_1 cells were more actively proliferating than Tumor_2 cells.  

Differentially expressed genes were identified from the two clusters (Fig. 4E and F, 
Table. S2). NK cell receptors (NKR) were frequently expressed in normal γδ T cells. 
We found the kill receptor KLRC1 (NKG2A) was expressed in 62.0% Tumor_1 cells 
but only 3.3% in Tumor_2. KLRK1 (NKG2D), another NKR highly expressed in 
normal γδ T cells, was almost absent in Tumor_1 but presented in 25.8% Tumor_2 
cells. Unexpectedly, we observed high expression level of CD19, a marker for B cell, 
in Tumor_1. Other B cell marker such as CD79, CD20 were not identified in 
Tumor_1 (Fig. S7), suggesting the CD19 expression was not caused by doublet. 
Therefore, Tumor_1 had a CD3, CD19 double positive phenotype, which is rarely 
reported in previous studies21,22. In Tumor_2, the tumor cells lost the CD19 
expression. Among the genes highly expressed in Tumor_2, many were associated 
with tumor progression and potential drug resistance. IL32 was reported to accelerates 
the proliferation of cutaneous T cell lymphoma cell lines through mitogen-activated 
protein kinase (MAPK) and NF-κB signaling pathways23. TOX2 is a novel tumor 
driver, which promotes in Natural Killer/T-Cell Lymphoma cell growth and enhances 
ability of colony formation, as well as protects cell viability under adverse condition24. 
AIF1 and AKAP12 were reported to correlated with various chemo resistance25,26. 
These results suggested that Tumor_2 might obtained unique survival features under 
the therapeutic conditions. 
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To describe different phenotypic characteristics of the malignant cells, we calculated 
the 10 cancer hallmarks scores curated by Cancer Hallmark Genes (CHG) database27. 
By permutation test, we identified 9 out of the 10 hallmark scores were significantly 
different between the two tumor clusters (Fig. 4G, Table. S3). Except “Inducing 
Angiogenesis”, all other 8 hallmarks were significantly higher in Tumor_1 cluster, 
indicating Tumor_1 had stronger cancer related signaling pathways. Since Tumor_2 
cells were mostly from post-treatment samples, the decreased hallmarks scores could 
be a response to therapeutic pressure. Tumor_2 might be a less aggressive tumor 
subtype, however, may have unique features to tolerant the chemotherapy. 

Chromosomal aberrations are frequently observed in HSTCL28,29. To determine if the 
transcriptional heterogeneity was potentially associated with chromosomal 
abnormalities, we inferred large scale copy number variations (CNV) at single cell 
resolution using inferCNV R package. We identified gains of chromosome 7 and 8 in 
majority of the tumor cells (Fig. 4H green arrows), which are the most common 
chromosomal abnormalities in HSTCL, presented in up to 63% and 50% of cases, 
respectively, and frequently cooccurring28,29. The two tumor clusters also showed 
cluster-specific CNVs. For example, a portion of cells in Tumor_2 cluster 
demonstrated a CNV gain in chromosome 4 and a loss in chromosome 19 (Fig. 4H 
yellow arrows and Fig. 4I). These findings suggested that some chromosomal 
aberrations might have occurred during the evolution of the tumor cells under 
therapeutic pressures and may contribute to the survival of the tumor cells.  

Tumor microenvironment heterogeneity associated with disease progression 

To characterize the features of TME in this HSTCL patient, we performed analysis for 
the immune cells in the single cell profiles, with a focus on T cells and monocytes. 
We first re-clustered the cells in T_NK cluster, and grouped them into 4 major sub-
clusters. Based on the expression signatures, these clusters can be annotated as CD4 T 
cells (CD4_T), CD8 memory T cells (CD8_Mem_T), CD8 naïve T cells 
(CD8_Naive_T) and NK cells (NK) (Fig. 5A and B, Fig. S8). In the post-treatment 
samples, the CD8 memory T cell % were increased (BM1 21.9% vs BM2 40.6% and 
PBMC1 21.7% vs PBMC2 35.3%, Fig. 5C), indicating these cells populated during 
disease progression. scTCR-seq results showed that the cells in CD4_T and 
CD8_Naive_T were mostly singletons (71.5% and 73.0%, respectively). Meanwhile, 
CD8_Mem_T cluster had more clonal expanded cells, only 40.6% were singletons, 
consisting with their cytotoxic and memory features (Fig. 5D). Cells in the post-
treatment samples were more clonal expanded than the pre-treatment samples (Fig. 
5E). In addition, we observed multiple clonotypes were already detected in pre-
treatment samples then further expanded in the post-treatment samples (Fig. 5F), 
suggesting they were potential effector cells, expanding during the disease 
progression to perform anti-tumor functions.  

We next analyzed differentially expressed genes in T-cell subsets pre- and post-
treatment (Fig. 5G, Table. S4-6). We observed noticeable changes in the 
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transcriptomes of these cells, involving genes that related to tumor invasion, 
metastasis, and therapeutic resistance. For example, CD69 was increased post-
treatment in all three T cell subsets. CD69 was demonstrated to regulate T-cell 
migration and retention in tissues, playing an important role in inducing the 
exhaustion of tumor-infiltrating T cells30. ANXA1 was increased in CD8 memory T 
cell post-treatment, which has been reported to inhibit the anti-tumor immunity and 
support the formation of an immunosuppressed tumor microenvironment that 
promotes tumor growth and metastasis31.  

We observed substantial increase of monocytes in the PBMC samples (Fig. 2C), 
suggesting monocytes may also play a role in the disease progression. Here, we 
further evaluated the heterogeneity of the monocyte population. We identified two 
major monocyte subtypes, the classic monocytes (Classic_Mono) and the CD16+ 
Monocytes (CD16_Mono) (Fig. 6A and B). The CD16+ nonclassical monocytes 
might have a function to scavenge tumor cells and debris due to their patrolling 
activities32. It accounted 25.4% and 58.5% of the monocyte population in BM1 and 
PBMC1, respectively, but decreased to 9.9% and 26.3% post-treatment. These 
findings demonstrated the actively reforming TME that may influence tumor 
development and therapeutic outcomes. 

Rewired Tumor-microenvironment interaction networks during treatment 

As we observed substantial changes in TME during the disease progression, we 
further performed cell-cell interaction analysis to explore the communication 
dynamics between tumor cells and other TME cells. We revealed significantly 
decreased cell-cell interactions in post-treatment cells, for both total interaction counts 
and interaction strengths (Fig. 7A and B). The total interaction counts were 1487 in 
BM1 cells, decreased to 913 in BM2 cells. Among them, tumor cell involving 
interactions decreased from 709 to 418, contributing to 50.7% of the decrease (Fig. 
S9). We also observed that several signaling pathways were affected by the 
interaction network rewiring (Fig. 7C). For example, cell-cell interactions in MHC-1, 
MIF, GALECTIN and ICAM signaling pathways became weaker in post-treatment 
cells. We further evaluated each ligand-receptor pair between tumor and other major 
immune cells (Fig. 7D). As examples, MIF-(CD74+CXCR4) interaction was 
decreased between tumor and most immune cell types post-treatment. MIF/CXCR4 
axis were reported to induce an aggressive phenotype by inducing proliferation, 
adhesion, migration, and invasion of the colon cancer cells33. ADGRE5 (CD97)-
CD55 interaction were also decreased post-treatment, an interaction has been shown 
to contributing to aggressiveness in multiple cancers34-36. Together, our results 
suggested that the interaction between malignant γδ T cells and the TME were 
actively reshaping during the disease progression. The Tumor_2 cells had cut down 
the communications with the TME, however might acquire survival advantages.  

Discussion 
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HSTCL is a highly aggressive tumor with limited knowledge of its pathogenesis. In 
this study, we provided the first single cell transcriptome and T cell receptor atlas of 
HSTCL at both treatment naïve status and post-chemotherapy. Although limited to a 
single patient, our study provides a framework of using single-cell technologies to 
dissect disease in a clinically meaningful way, providing plentiful information for 
future diagnosis and personalized treatment of this disease. By comparing with 
normal γδ T cells, we described the molecular signatures of HSTCL. We found that 
the malignant γδ T cells didn’t resemble the cytotoxic modules as the normal γδ T 
cells. Cytotoxic molecules like granzyme and perforins were negative or only lowly 
expressed. On the contrary, several oncogenesis-related gene were highly expressed in 
the malignant γδ T cells: AREG, of which the oncogenic activities were well 
documented in many cancer types, including hematological cancers37. PLEKHA5 has 
been identified to regulates tumor growth in metastatic melanoma and gastric 
carcinoma38,39. Our findings suggested these gene may also involve in HSTCL 
pathogenesis and offer potential novel therapeutic targets. 

Single cell technology also allowed us to evaluate the heterogeneity of the HSTCL 
tumor cells. Although the TCR sequencing data suggested that 99% of the tumor cells 
carried the same TCR thus should be derived from the same ancestor, we found the 
tumor cells evolved into two transcriptionally distant subtypes. The pre-treatment 
tumor cells were dominated by Tumor_1, which presented a more aggressive 
molecular phenotypes than Tumor_2 cells. Though the overall tumor cell load 
decreased post-treatment, Tumor_2 cells were expanded and became the dominant 
tumor subtype, while Tumor_1 cells were almost disappeared. Differential gene 
expression analysis identified noticeable differences between the two tumor subtypes, 
with multiple genes related to lymphoma progression and chemo-resistance were 
significantly increased in Tumor_2. IL32 exerts both anti-tumor or pro-tumor effects 
in a cancer type dependent manner40 and it has been reported to play a role in the 
formation and maintenance of lesions in cutaneous T-cell lymphoma (CTCL)23. 
TOX2 was recently reported to be a novel tumor driver in natural killer/T-cell 
lymphoma (NKTL)24 and high expression of TOX2 was associated with worse overall 
survival in both NKTL and acute myeloid leukemia (AML)24,41. AIF1 and AKAP12 
were associated with chemo-resistance. AIF1 has been demonstrated to reinforce the 
resistance of breast cancer cells to cisplatin by inhibition of cell apoptosis and 
reduction of intracellular cisplatin accumulation26 and AKAP12 is associated with 
paclitaxel-resistance in serous ovarian cancer25. Together, these results suggested that 
Tumor_1 cell was highly aggressive but might be more sensitive to the administrated 
chemotherapies while Tumor_2 cells could harbor unique features to tolerant the 
therapeutic pressures. Interestingly, we also observed high expression of CD19 in 
Tumor_1 but not in Tumor_2 cells. CD19 co-expression in a mature T cell neoplasm 
has barely been reported before. Rizzo et al. reported the first case of CD19 
expression in peripheral T-cell lymphomas (PTCL)22 and Jain et al reported a rare 
case of CD19 positive HSTCL21.Our observations suggested the CD19 positive and 
negative T cell neoplasm can co-exist within the same patient and potentially related 
to the drug sensitivity. In addition to gene expression profiles, we also identified 
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subtype-specific CNVs among the tumor cells, adding another layer of heterogeneity 
of the tumor population. Currently, there is no efficient treatment for HSTCL. The 
heterogeneity, specifically the arising of multiple malignant subtypes, may improve 
our understanding of the disease refractory, where malignant subtypes can be resistant 
to treatment. 

Recent studies have highlighted the critical role of TME in the evolution of various 
tumors42,43. In this study, we also observed dynamic reforming of the TME during the 
disease progression. We noticed significant increasing of monocytes percentage 
among the immune cells, and further dissected the heterogenicity of the monocyte 
population. During cancer, different monocyte subsets can perform both pro‐ and 
antitumoral function32. Our results indicated that the composition of monocyte 
subtype was rebalanced during the disease. The T cell population was also reshaped 
pre- and post-treatment, in both TCR repertoire and gene expression profiles. Post-
treatment T cells had more clonal expanded cells that may have interacted with tumor 
cells. On the other side, the reformatted T cell transcriptomes may also promote 
evolution of malignant subtypes. 

In summary, our study generated a comprehensive view of molecular heterogeneity 
and tumor microenvironment in HSTCL, provided a valuable resource for 
understanding the pathogenesis of HSTCL and exploring the potential therapeutic 
targets in the future. 
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Tables 

Table 1. The clinical characteristics of the studied patient  

Date ~2021/5/10 ~2021/6/16 ~2021/7/20 ~2021/8/24 

Systemic symptoms 
Fever, Dizzy, 
Ecchymosis, 

Epistaxis 

Cough, Fever, 
Dizzy, 

Ecchymosis 

Cough, Dizzy, 
Ecchymosis, 

Fatigue 

Cough, Fever, 
Dizzy, 

Ecchymosis 
Anemia + + + + 

HB (g/L) 85 69 79 61 

HB (BM) (g/L) 94 84 80 81 

RBC (10^12/L) 3.37 2.92 2.70 2.03 
RBC (BM) (10^12/L) 3.82 3.44 2.77 2.82 

RET% 4.41 
   

RET% (BM) 2.85 3.7 8.76 4 

Thrombocytopenia - - - - 

WBC (10^9/L) 5.28 5.5 5.85 4.23 
WBC (BM) (10^9/L) 5.6 3.58 5.29 10.26 

Neutropenia + + + + 

PLT (10^9/L) 38 9 4 6 
PLT (BM) (10^9/L) 34 23 5 29 

LDH (U/L) 310 228 244 221 

IL-6 (pg/mL) 40.16 114.53 49.37 20.42 

IL-8 (pg/mL) 4.01 30.56 21.59 43.38 

IL-10 (pg/mL) 69.2 278.04 126.40 3.88 

INF-γ (pg/mL) 5.72 2.69 3.04 2.65 

TNF-β (pg/mL) 4.03 2.53 2.17 2.65 

Th/Ts 1.34 0.61 0.57 0.52 
CD45+ lymphocyte count 1303 443 754 346 

T cell count  797 366 581 264 

CD4 T count 348 124 178 77 
CD8 T count 262 201 308 148 

B cells count 305 14 27 9 

NK cell count 157 54 139 61 

RF IgG（U/Ml） +  
  

RF A/G/M + 
EBV-RNA - 
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Table 2.  Chemotherapy administrations for the patient 

Date Therapies Drugs Dose Period 
May 25 Hyper-CVAD-A Cyclophosphamide, CTX 300mg q12h，D1-3 

  Vindesine sulfate, VDS 4mg Day 4 and Day 11 
  Adriamycin, ADM 70mg Day 4 
  Dexamethasone, DEX 40mg Day 1-4 and Day 11-12 

June 22 ICE Ifosfamide, IFO 6.6g Day 2 
  Carboplatin 600mg Day 2 
  Etoposide (VP-16) 130mg Day 1-3 

July 26 ICE Ifosfamide, IFO 6.6g Day 2 
  Carboplatin 600mg Day 2 
  Etoposide (VP-16) 130mg Day 1-3 
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Figure Legends 

Figure 1. Clinical presentations of the studied HSTCL patient. (A) Timeline of the patient 
diagnosis, chemotherapy administration and biopsies collected for single cell sequencing. (B) CT 
scan and 3D image reconstruction during the disease progression, the volume of the spleen and 
liver was measured and labeled. (C) Wright-staining of bone marrow aspirate, arrows indicate 
selected typical neoplastic T cells. (D) Immunophenotypes of the neoplastic γδ T cells identified 
by flow cytometry. 

Figure 2. A cell type atlas of γδ hepatosplenic T-cell lymphoma. (A) Cell type atlas of γδ 
HSTCL presented by UMAP. (B) Dotplot of the canonical marker genes used to annotate major 
cell types. Dot size represents % of cells of that cluster expressing the given gene, while color 
indicates the expression level of that cluster. (C) Barplot to show the cell type compositions in 
each sequenced sample. Significant composition changes are observed pre- and post-treatment. 
(D-G) Cell type % or absolute count during treatments. Dotted lines indicate chemotherapy-
initiated date. (D) Tumor cell % estimated from histology slides (Wright staining) at different 
time points. Tumor cell % is sharply reduced during the treatments. (E) Absolute monocyte 
counts flatulate during the disease progression, with a drop after chemotherapy administration 
and soon increase to an unusual high level. (F) In clinical bone marrow examinations, erythroid 
lineage cell % (polychromatophilic (Poly-E) and orthochromatophilic (Ortho-E)) shows an 
increasing trend. (G) In lymphocyte subtype counting, B cell absolute counts drop to very low 
level after treatment. 

Figure 3. Molecular features of γδ hepatosplenic T-cell lymphoma. (A) TCR sequencing 
reveals the distribution of a single prominent clonotype in the malignant γδ T cells (Blue dots). 
(B) TCR sequencing shows that the normal γδ T cells have a diverse TCR repertoire, colors 
indicate different clonotypes. (C) Volcano plot to show the differentially expressed genes 
between malignant and normal γδ T cells, top 10 up and down genes by fold changes are labeled. 
(D) Heatmap to present the top 20 differentially expressed genes between malignant and normal 
γδ T cells. (E) KEGG pathway enrichment of the differentially expressed genes. Dot size 
represents the number of significantly changed genes in the pathway and color indicates adjusted 
p values.  

Figure 4. scRNA-seq reveals tumor cell heterogeneities. (A) UMAP of malignant γδ T cells, 
which are separated into two distinct sub-clusters. (B) Barplot to show that Tumor_1 cells are 
mostly from pre-treatment samples (BM1 and PBMC1) while Tumor_2 cells are dominant in 
post-treatment samples (BM2 and PBMC2). (C) Cell cycle phase distribution among Tumor_1 
and Tumor_2. Tumor_1 has a higher portion of cells in S and G2M phases. (D) Dotplot of 
proliferation markers expression in Tumor_1 and Tumor_2. (E) Volcano plot to show the 
differentially expressed genes between Tumor_2 and Tumor_1 cells, top 10 up and down genes 
by fold changes are labeled. (F) Violin plot of selected differentially expressed genes between 
Tumor_1 and Tumor_2. (G) Violin and box plot of Cancer Hallmarks scores. Tumor_1 has 
higher scores in most cancer hallmarks. (H) Heatmap of the inferred CNVs in Tumor cells using 
normal immune cells as references. Red indicates CNV gains and blue indicates CNV loss. 
Green arrows indicate chromosome 7 and 8 duplications inferred in majority of the tumor cells. 
Yellow arrows indicate tumor sub-cluster specific CNVs. (I) Selected tumor sub-cluster specific 
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CNVs. Left: a chromosome 4 partial duplication is enriched in Tumor_2. Right: a chromosome 
19 partial deletion is enriched in Tumor_2. Blue indicates cells with specified CNVs. 

Figure 5. T cell subtypes and dynamics in tumor microenvironment. (A and B) T cell 
subtypes are identified by canonical markers and unique cell type features. (C) T cell subtype 
composition changes during the disease progression. CD8 memory T cells are increased post-
treatment. (D) Clonal size distribution among the T cells. Clonal expanded cells are enriched in 
CD8 memory T cells. (E) Barplot to show the clonal size distribution in each sequenced sample, 
post-treatment samples have less singletons, suggesting lower diversity (F) Pie plot to show the 
clonotypes with clonal size > = 5. Pie size represents the size of the clonotype, color indicate the 
cell origins. (G) Selected differentially expressed genes between post- and pre-treatment cells in 
each T cell subtype. 

Figure 6. Monocyte subtypes and composition changes in tumor microenvironment. (A) 
UMAP presentation of monocyte subtypes. (B) Heatmap to present the canonical marker genes 
used to identify the classical monocytes and the CD16+ nonclassical monocytes. (C) Barplot to 
show the monocyte subtype composition changes pre- and post-treatment. CD16+ nonclassical 
monocytes decreased post-treatment. 

Figure 7. Rewired cell-cell interaction networks during disease progression. (A) Overview 
of the cell-cell interactions inferred from ligand-receptor expressions. Post-treatment samples 
have less interactions than the pre-treatment samples. (B)  Scatter plot of the incoming and 
outgoing signals for each cell type. Tumor cell signals are reduced post-treatment. (C) Heatmap 
to compare the signaling patterns pre- and post-treatment. (D) Bubble plot to show the increasing 
and decreasing ligand-receptor interactions between tumor cells and major immune cells. Bubble 
sizes indicate p values and colors indicate average expression of ligand and receptor in the given 
interaction. 

Figures 
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Figure 1. Clinical presentations of the studied HSTCL patient 
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Figure 2. A cell type atlas of γδ hepatosplenic T-cell lymphoma
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Figure 3. Molecular features of γδ hepatosplenic T-cell lymphoma
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Figure 4. scRNA-seq reveals tumor cell heterogeneities
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Figure 5. T cell subtypes and dynamics in tumor microenvironment 
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Figure 6. Monocyte subtypes and composition changes in tumor 
microenvironment 
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Figure 7. Rewired cell-cell interaction 
networks during disease progression 
A

C

B
D


