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A. Köhn-Luque∗,1, E. M. Myklebust∗,1, D. S. Tadele†,2,3,4, M. Giliberto5,6,3

J. Noory7, E. Harivel1,8, P. Arsenteva1,9, S.M. Mumenthaler10, F. Schjesvold6,11,4

K. Taskén5,6, J. M. Enserink2,3,12, K. Leder‡,13, A. Frigessi‡,1, 14, and J. Foo‡,75

1Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 03726

Oslo, Norway7

2Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital,8

0379 Oslo, Norway9

3Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine,10

University of Oslo, 0318 Oslo, Norway11

4Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH 44131, USA12

5Dept. of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 031013

Oslo, Norway14

6KG Jebsen Center for B-Cell Malignancies, Institute for Clinical Medicine, University of Oslo,15

0450 Oslo, Norway16

7Institute for Mathematics and its Applications, School of Mathematics, University of Minnesota,17

Minneapolis, MN 55455, USA18

8ENSTA, Institut Polytechnique de Paris, 91120 Palaiseau, Paris, France19
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Significance statement36

Tumors are typically comprised of heterogeneous cell populations exhibiting diverse phe-37

notypes. This heterogeneity, which is correlated with tumor aggressiveness and treatment-38

failure, confounds current drug screening efforts to identify effective candidate therapies39

for individual tumors. Here we present a method that enables the deconvolution of tumor40

samples into individual subcomponents exhibiting differential drug-response. This method41

relies on standard bulk drug-screen measurements and outputs the frequencies and drug-42

sensitivities of tumor subpopulations. Our method was validated in cell-line experiments43

and applied to characterize multiple myeloma patient samples. This method can be used44

for personalized predictions of tumor response to future treatments, and also applied more45

broadly to perform phenotypic deconvolution of heterogeneous populations in a variety of46

biological settings.47

Abstract48

Tumor heterogeneity is an important driver of treatment failure in cancer since therapies49

often select for drug-tolerant or drug-resistant cellular subpopulations that drive tumor50

growth and recurrence. Profiling the drug-response heterogeneity of tumor samples using51

traditional genomic deconvolution methods has yielded limited results, due in part to the52

imperfect mapping between genomic variation and functional characteristics. Here, we53

leverage mechanistic population modeling to develop a statistical framework for profiling54

phenotypic heterogeneity from standard drug screen data on bulk tumor samples. This55

method, called PhenoPop, reliably identifies tumor subpopulations exhibiting differential56

drug responses, and estimates their drug-sensitivities and frequencies within the bulk. We57

apply PhenoPop to synthetically-generated cell populations, mixed cell-line experiments,58

and multiple myeloma patient samples, and demonstrate how it can be leveraged to perform59

individualized predictions of tumor growth under candidate therapies. This methodology60

can also be applied to deconvolve phenotypic responses to environmental stimuli in a variety61

of biological settings beyond cancer drug response.62
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Introduction63

Most human tumors display a striking amount of phenotypic heterogeneity in features such64

as gene expression, morphology, metabolism, and drug response. This diversity fuels tu-65

mor evolution and adaptation, and it has been correlated with higher risks of treatment66

failure and tumor progression [1, 2, 3, 4, 5, 6, 7, 8]. Indeed, treatments that initially elicit67

clinical response can select for drug-tolerant tumor subpopulations, leading to outgrowth68

of resistant clones and tumor recurrence. Additionally, the heterogeneity and composition69

of tumors is known to vary widely between patients, underscoring the need for more per-70

sonalized approaches to cancer therapy that profile and address intra-tumor heterogeneity71

and its evolutionary consequences. Towards this goal, recent advances in single-cell ge-72

nomic profiling of tumor samples have enabled the assessment of the genetic variability73

within tumor cell populations. However, single-cell technologies are often limited by large74

measurement errors, incomplete coverage, and small sample availability, which leads to75

challenges in capturing the temporal dynamics crucial for understanding response to ther-76

apies. Furthermore, the mapping between genotypic and phenotypic variation is far from77

perfect: not all variation in cellular drug response can be explained by genetic mechanisms,78

and divergent genetic profiles can lead to similar treatment responses [9, 10].79

Another important approach to designing individualized treatment strategies is person-80

alized drug sensitivity screening, a procedure in which patient tumor samples are tested81

for functional responsiveness to a library of drugs using high throughput in vitro drug82

sensitivity assays. In these assays, cells are treated with various concentrations of a drug83

and the number of viable cells is measured at one or more fixed time points. The resulting84

data are normalized and fitted to produce viability curves, whose summary characteristics85

(e.g. IC50, EC50, AUC) are used to compare drug sensitivity across multiple drugs and/or86

cell populations [11, 12, 13, 14, 15]. Increasingly, such drug screens are used as a tool in87

personalized medicine to evaluate and rank the potential efficacy of therapeutic agents on a88

patient’s disease cell population. However, the interpretation of these cell viability curves89

and associated metrics are confounded by the presence of cellular heterogeneity within90

the population. In particular, the presence of multiple subpopulation with divergent drug91

response characteristics may result in an intermediate drug sensitivity profile that does92

not accurately represent any individual cell type within the population [16]. Developing93

techniques to detect the presence of subpopulations with distinct drug sensitivity profiles94

is crucial for achieving effective treatment strategies.95

In this work, we develop a novel methodology for detecting the presence of cellular sub-96

populations with differential drug responses, using standard bulk cell viability assessment97

data from drug screens. Our method, PhenoPop, detects the presence and composition98

fractions of distinct phenotypic components in the tumor sample and quantifies the sen-99

sitivity of each subpopulation to a specific mono-therapy. It utilizes statistical tools in100

combination with a novel underlying population dynamic model describing the evolution101

of a heterogeneous mixture of tumor cells with differential drug sensitivity over time. We102
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validate PhenoPop using simulated tumor drug screening data as well as measurements of103

drug response in known mixture experiments of cancer cell lines. We then use this method104

to profile the population drug response heterogeneity in multiple myeloma patient samples,105

and we demonstrate how these results can be used to produce personalized predictions of106

tumor response to therapy. This methodology can be applied across cancer types and107

therapies to characterize the drug-response heterogeneity within tumors.108

Results109

PhenoPop 
method

Drug 
screening

Cancer 
sample

Phenotypic 
deconvolution

1 2 3 4

population  
models

maximum  
likelihood

model  
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+ 
 subpopulation specific 
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Figure 1: The PhenoPop workflow: 1) A cancer sample is taken from a patient. 2) Drug
screening is performed on the bulk sample. 3) Population deconvolution is performed
using PhenoPop. 4) Resulting identification of population subcomponents, their mixture
fractions and drug-sensitivity.

Figure 1 provides an overview of the PhenoPop workflow. First, a tumor sample is110

extracted, divided, and exposed to a panel of therapeutic compounds at a range of concen-111

trations. For each drug, the population size counts are measured at a series of time points112

for each concentration and replicate. This data is then used as the input to PhenoPop,113

which estimates the parameters of the underlying population dynamic model for each can-114

didate number of subpopulations. Then, a model selection process is performed to identify115

the number of subpopulations present and to estimate the mixture fractions and drug116
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sensitivities of each subpopulation. Details are provided in the Materials and methods117

section.118

Validation in synthetic populations119

To quantify the performance of PhenoPop in mixtures of 1, 2, and 3 populations, three120

synthetic populations were designed to have drug-response properties similar to cell lines121

observed in in-vitro experiments. Using the model for data generation described in the122

Materials and methods section (subsection Generation of synthetic population data), syn-123

thetic data was generated for 9 different mixture compositions of the three populations.124

The synthetic mixtures were exposed to 17 concentrations of the simulated drug, and the125

bulk cell populations were measured at 9 equidistant points in time. The simulated drug126

concentrations were chosen to cover the range where population growth rates were affected127

by changes in the drug concentration. To simulate measurement error, random noise was128

added to each bulk cell count. Data from 4 replicates of the experiment were used to129

perform the inference.130

To measure drug sensitivity, PhenoPop uses the growth rate-associated metric GR50,131

introduced in [17] and defined as the concentration at which the population growth rate132

is reduced by half of the maximum observed effect, as it provides a robust metric for133

comparing drug-response across cellular subpopulations (Materials and methods, section134

Calculation of GR50 values). To assess the accuracy of the PhenoPop deconvolution anal-135

ysis, (i) the estimated mixture fractions from the deconvolution were compared with the136

true mixture fractions, and (ii) the GR50 obtained from the deconvolution was compared137

with the true GR50 region. The use of a region, or range of values, for the true GR50 re-138

flects the inherent limitation from sampling discrete concentrations in experimental data;139

it is only possible to ascertain that the GR50 is somewhere between the closest two sam-140

pled concentration levels, and the finer the sampling resolution, the smaller the range of141

uncertainty.142

Figure 2a shows true mixture compositions and GR50 values compared to PhenoPop’s143

estimates for the 9 cases, in an experiment where the noise terms were sampled indepen-144

dently from a Gaussian distribution with mean 0 and base noise level of 5 %, meaning145

that the standard deviation of the noise terms equaled 5 % of the noiseless cell count at146

time 0. Additional sensitivity tests evaluating PhenoPop performance on synthetic data147

with varying noise levels (up to 50 %) are discussed in the section PhenoPop-recommended148

experimental design and limitations and data are provided in the Supplementary Informa-149

tion. To place these noise levels in the context of expected noise levels from experimental150

drug screen data, the standard deviation to mean ratio reported from several common151

automated or semi-automated cell counting techniques ranges from 1-15 % [18, 19]. For152

example, counts obtained via a trypan blue exclusion-based Vi-CELL® XR Cell Viability153

Analyzer (Beckman Coulter) had noise levels consistently less than 5.3 % across several154

cell lines [18], while those obtained via a Countess®Automated Cell Counter (Invitrogen)155
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fell in the range 11-14.3 %. Cells counts obtained using the Cellomics ArrayScan high156

content screening platform in another set of experiments (used in this work) had standard157

deviation to mean ratios of 1-5.6 % [19].158

Figure 2a demonstrates that PhenoPop inferred the mixture fractions within 2 percent-159

age points for mixtures of 1, 2, and 3 populations at the 5 % noise level. The GR50 values160

were inferred precisely within the true GR50 region for all mixtures of 1 and 2 populations,161

and also for an equal mixture of 3 populations. In the case with 3 populations in a 40:30:30162

mixture, one of the estimated GR50 values is off by 1 GR50 region, and in the 3-population163

mixture with a 60:20:20 mixture, all three estimated GR50 values are off by 1 GR50 region.164

Validation with cell line experiments165

Next, to investigate the performance of our method in the experimental setting, mixtures166

of cell populations with differential drug sensitivity were constructed and subjected to167

drug screen experiments. The resulting bulk cell population readings at varying drug168

concentrations, time points, and replicates were used as inputs to PhenoPop.169

Imatinib-sensitive and -resistant Ba/F3 cells. We tested monoclonal and mixture pop-170

ulations of isogenic Ba/F3 murine cell lines that were stably transformed with either the171

wild-type BCR-ABL fusion oncogene or with BCR-ABL-T315I, which contains a point172

mutation that confers increased resistance to the Abl tyrosine kinase inhibitor imatinib.173

Note that expression of these oncogenes renders cells addicted to BCR-ABL activity [20].174

Monopopulations and mixtures of these two cell lines were treated with 11 different concen-175

trations of imatinib, and the bulk cell population sizes were quantified at 14 time points.176

Using this bulk population data, PhenoPop was able to correctly assess the number of com-177

ponent subpopulations (see Supplementary Figure S17). As shown in Figure 2b, PhenoPop178

also estimated the fraction of the population belonging to each subcomponent at the start of179

the drug screen as well as the drug sensitivity (GR50) of each subpopulation; the estimates180

demonstrated good agreement with the known mixture proportions and independently181

assessed GR50 ranges of the monoclonal T315I+/- populations.182

Erlotinib-sensitive and -resistant NSCLC cells. Additionally, two EGFR-mutant non-183

small cell lung cancer (NSCLC) lines, HCC827 and H1975, were considered for their differ-184

ential sensitivity to the drug compound erlotinib. The mutation T790M, which is present185

in H1975 cells but not in HCC827 cells, confers increased resistance to erlotinib. Monopop-186

ulations and mixtures of the erlotinib-sensitive and -resistant NSCLC cell lines were treated187

with four drug concentrations and total cell population count was assessed at 0, 24, 48, and188

72 hours with four replicates [19]. Figure 2c demonstrates PhenoPop’s results on this bulk189

data. PhenoPop was able to correctly assess when populations were monoclonal, as well190

as to detect the presence of two populations in the bulk drug response data from mixed191

populations. Furthermore, using the bulk mixture response data, PhenoPop accurately192

estimated the mixture fractions and GR50 values of each component subpopulation. The193

reference GR50 ranges were independently assessed on monoclonal HCC827 and H1975 cell194
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a

b

c

Figure 2: PhenoPop validation on simulated data and cell-line derived exper-
imental data. a, True and estimated mixture fractions and GR50 values for synthetic
data. For each row, the “True mixture” pie chart shows the mixture fractions used to gen-
erate the data; the “Estimated mixture” pie chart shows the mixture fractions estimated
by PhenoPop; in the ”GR50 values” panel, the vertical grey lines show the sampled drug
concentrations; the true GR50 region of each subpopulation has been marked by coloring
the region between the two adjacent observed concentrations in the color belonging to that
population (see main text for more details); for each estimated population, the estimated
GR50 is marked by a white dot, with the region between the adjacent observed concentra-
tions colored in the estimated clone’s color. b, True and estimated mixture fractions and
GR50 values for Ba/F3 murine cell line data. c, True and estimated mixture fractions and
GR50 values for NSCLC cell data.
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populations.195

Deconvolution analysis of Multiple Myeloma patient samples196

Next, PhenoPop was used in a clinical scenario to deconvolve twenty drug sensitivity screens197

performed on five Multiple Myeloma (MM) patient samples. MM is a clonal B-cell malig-198

nancy characterized by abnormal proliferation of plasma cells in the bone marrow. The199

median survival time of MM patients is about 6 years, with a disease course typically200

marked by multiple recurrent episodes of remission and relapse [21]. Drug responses and201

relapses are currently unpredictable, largely due to unknown complex clonal compositions202

and dynamics under treatment [22, 23].203

Bone marrow samples were taken from each patient, processed, and screened with a set204

of MM clinically-relevant drugs, as illustrated in Figure 3a and described in the Materials205

and methods section [24]. To perform the drug screens, samples from each patient were206

subjected to treatment at varying concentrations with a subset of the following drugs:207

Dexamethasone, Ixazomib, Melflufen, Selinexor, Thalidomide, and Venetoclax. We note208

that screening data for all drugs for each patient was not available; Figure 3b-g shows209

the set of patient samples treated by each drug and summarizes the results of PhenoPop210

deconvolution analysis on each set of drug screen data.211

Inter-patient similarities in subpopulation GR50s. In all cases PhenoPop identified212

either one or two subpopulations; details of model selection results are shown in supple-213

mentary Figure S16. For example, Figure 3b shows that for patient MM1420, PhenoPop214

estimates that 87 % of the cells are resistant to Dexamethasone. This matches the clini-215

cally observed response, as the patient was refractory to Dexamethasone treatment in vivo.216

Interestingly, for all drugs used except Dexamethasone, the inferred subpopulations across217

patient samples share comparable GR50 values, although the proportions of these sub-218

populations may vary between patients (see Figure 3c-g). For example, for three patient219

samples treated with Venetoclax, PhenoPop inferred one more-sensitive and one more-220

resistant population (Figure 3e). However, the estimated proportions of the more-resistant221

populations (shown in the plot by the right-pointing arrows) varied from 23% up to 58%.222

We hypothesized that subpopulations with similar GR50s across patients may in some223

cases be driven by similar genetic alterations. To investigate this, we also characterized224

the samples with inferred heterogeneous compositions for the presence of high-risk genomic225

abnormalities, including Gain(1q21) (2/3) and several mutations co-existing in the same226

screened sample (MM36). Interestingly, we noticed that the proportion of MM cells from227

two samples (MM1420 and MM195) harboring the aberration gain (1q21) (approximately228

50 %) was similar to the PhenoPop-inferred mixture fractions for the more-resistant clone in229

the same two samples (50% and 58%, respectively). This supports our hypothesis that these230

subpopulations, which have similar levels of drug tolerance in different patients, may be231

driven the same alterations, and it is consistent with previous findings showing Gain(1q21)232

as negative predictor for Venetoclax efficacy in MM. This analysis provides genetic evidence233
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that supports PhenoPop’s ability to profile phenotypic drug response heterogeneity.234

Treatment response prediction using PhenoPop estimates. The utility of these pheno-235

typic deconvolutions as initial states for predicting and optimizing patient-specific treat-236

ment schedules remains to be systematically explored. Here, as a proof of concept, we237

present a mathematical model to illustrate how to use the PhenoPop estimates of popula-238

tion frequencies and differential drug sensitivities to predict the treatment outcome for the239

three patients exposed to Venetoclax. For easier comparison, we assumed that all three240

patients start with a total of 1012 abnormal plasma cells. Figure 4 demonstrates how the241

same treatment dose, 2 µM of Venetoclax, assumed constant over the simulation for sim-242

plicity, leads to highly disparate treatment outcomes in patients with distinct phenotypic243

heterogeneity profiles uncovered by PhenoPop. In particular, we note that to observe the244

predicted relapse in patient MM36, simulations have to be run for a much longer time245

(3000 days) than for the other two patients. See the Materials and methods section for a246

description of the used model and its parameterisation.247
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Figure 3: Phenotypic deconvolution of drug screens from MM patient samples. a, Illus-
tration of the experimental protocol described in Materials and methods [24]. Illustration
created by the authors using smart.servier.com and biorender.com. b-g, Inferred mix-
tures and GR50 values for 5 MM samples with respect to 5 drugs: b) Dexamethasone, c)
Selinexor, d) Melflufen, e) Venetoclax, f) Ixazomib, g) Thalidomide. For each row, the
“Estimated mixture” pie chart shows the mixture fractions estimated by PhenoPop; In the
”GR50 values” panel, the vertical grey lines show the observed drug concentrations; For
each estimated population, the estimated GR50 is marked by a white dot, with the region
between the adjacent observed concentrations colored in the estimated clone’s color. If the
inferred GR50 value of a population was higher than the highest observed concentration
value, the estimated GR50 is instead marked by an arrow pointing towards the right from
the highest observed concentration.
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PhenoPop-recommended experimental design and limitations248

We next performed a computational study using synthetic drug screen data to identify249

experimental design strategies that enhance PhenoPop accuracy, and to explore the limi-250

tations of the method.251

Prioritization of experimental efforts: increasing the number of drug concentrations,252

time points, or replicates. We first considered the relative importance of experimental253

resolution in drug concentration, time points, and replicates in PhenoPop performance.254

Figure S2 shows the average gain in accuracy for a mixture of 2 populations (one sensitive,255

one resistant) when either the replicates R, the number of concentrations Nc or the number256

of time points Nt are increased while the others are held constant at the value three. To257

compare the accuracies, 27 two-sided t-tests were made, since 3 effects (increasing R, Nc,258

and Nt) were compared pairwise at 3 sample sizes (5, 9 and 17), in 3 different comparison259

measures. To account for multiple testing, the family-wise error rate was controlled to be260

below 0.05 using the Bonferroni correction.261

We find that for accuracy in the mixture parameter, increasing the number of con-262

centrations or time points gives significantly higher precision than increasing the number263

of replicates to the same amount. Similarly, to enhance accuracy in the GR50 value of264

the sensitive population, increasing either the number of concentrations or number of time265

points gives significantly higher precision compared to increasing the number of replicates266

by the same number. In addition, increasing the number of concentrations to 9 or 17 is267

significantly better than increasing the number of time points similarly. No significant268

differences were found for estimating the GR50 of the resistant population.269

Noise level. We also studied how increasing levels of measurement noise in the data (e.g.270

in cell counting) impact the precision of the deconvolution results. Results of these tests271

are shown in Supplementary figures S3, S4, S5 and S6, where the same synthetic data with272

increasing levels of measurement noise were used as inputs to PhenoPop. We found that for273

noise levels up to a standard deviation equal to 20% of the initial cell count, PhenoPop is274

able to correctly deconvolve the bulk response signal into the correct components. Beyond275

this noise level mixture fractions are off by more than 10% in 2-population mixtures, and276

populations may go undetected in 3-population mixtures. Supplementary figures S9, S10,277

S11, S12, and S13 (corresponding to Figure 2a and Supplementary figures S3, S4, S5 and278

S6) show how model selection was performed in these cases.279

Small mixture fractions. To determine how small population fractions PhenoPop is280

able to detect, inference was performed on simulated data with a range of small mixture281

fractions, with a noise level of 5% of the initial cell count. We found that in 2-population282

mixtures, PhenoPop was able to detect populations at frequencies as low as 1 percent. In283

3-population mixtures, PhenoPop was able to detect populations with mixture fractions284

of 3 percent and higher. At noise level of 5%, the estimated mixture parameters were285

within 1% of the true value and the estimated GR50 values were always within two GR50286

regions of the true value. Supplementary Figure S7 shows these results. The figure also287
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Figure 4: Proof-of-concept modeling of Multiple Myeloma disease dynamics under Vene-
toclax treatment for three patients using PhenoPop deconvolution results. The estimated
mixture and drug-response parameters obtained by PhenoPop (see Figure 3e) define the
initial percentage of cells and drug-response for each clone and patient. Cells from both
clones are assumed to produce monoclonal protein (M-protein), which can be used as a
proxy for tumor burden. For easier comparison, we assume that all three patients start
with a total of 1012 abnormal plasma cells (cell number shown in the right y-axes) and
1g/dL M-protein (shown in the left y-axes). All three patients are exposed to 2 µM of
Venetoclax. See Materials and methods for description of mathematical model.
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shows that it is harder to detect two small populations mixed with a large population288

(bottom row), than it is to infer one small population mixed with two larger ones (fifth289

row). Supplementary Figure S14 shows how model selection performed for these cases.290

Subpopulation similarity. We performed computational experiments to determine the291

degree of similarity between component subpopulations beyond which PhenoPop was un-292

able to detect distinct populations. We tested a set of 2 similar mixed populations, at a293

noise level of 5% of the initial cell count. We found that PhenoPop was able to detect294

populations whose GR50 values were as close as 2 GR50 regions apart. For such close295

populations, the estimate of the mixture parameters were within 2% of the true value and296

the estimated GR50 values were within 1 GR50 region of the true value, even for mixtures297

as unbalanced as 90:10. The results are shown in Figure S8. The figure’s third, sixth and298

ninth rows show that the inferred GR50 values may overlap or swap position if the true299

GR50 values are less than 2 GR50 regions apart. The figure’s eighth row shows that for300

mixtures of 5% or smaller, the inferred GR50 values can overlap even when the true GR50301

values are 2 GR50 regions apart. Figure S15 shows how model selection performed for302

these cases.303

Discussion304

Understanding the phenotypic heterogeneity of human tumors, especially in terms of drug305

response, is essential in treatment planning and prognosis prediction. The optimization306

of treatment regimens is a long-standing area of research in the mathematical oncology307

community [25, 26, 27, 28]; however, the initial state of the tumor, which strongly influences308

optimal treatment strategies, is typically unknown. The PhenoPop method enables the309

detection of tumor subpopulations, as well as estimation of their frequencies and drug310

sensitivities. The resulting deconvolved tumor profile can be fed, as an initial state, into311

mathematical models of tumor dynamics to predict treatment response (see Figure 4) and312

identify optimal treatment regimens.313

Although the mathematical structure of the phenotypic deconvolution problem bears a314

resemblance to classical clustering based on observing individual responses, a vital differ-315

ence is that in our setting the observed data is a combined signal from the entire population316

with unknown mixture frequencies and components. This statistical problem is also sim-317

ilar to the problem considered in blind source separation in digital signal processing, in318

which one attempts to recover individual source components from a mixture of signals (see319

e.g., [29]). However, a key assumption in this classic problem is the independence of the320

constituent components, a restriction that is not needed for PhenoPop. Interaction be-321

tween individual populations, e.g. due to resource limitation or phenotypic switching, can322

be incorporated within the PhenoPop framework (see Supplementary Information section323

entitled Model Extension to Interacting Populations). The mathematical structure used324

in PhenoPop can also be applied to perform deconvolution analyses for cellular response325
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to many other external stimuli, such as intercellular signaling, the environmental pH level,326

mechanical forces and many others. To achieve this, the underlying population dynamic327

model of drug response used in PhenoPop can be replaced with another mechanistic or328

machine-learning derived model describing response to other stimuli. PhenoPop produces329

a heterogeneity profile tailored to each patient sample for each drug in a drug-screen panel.330

While this information is useful for identifying successful single-agent therapies and for331

optimizing or designing their therapeutic schedules, combination therapy design requires332

joint deconvolution analyses that elucidate the mapping between heterogeneity profiles for333

multiple drugs. This task will necessitate additional data from combination drug screens,334

and further methodological development in experimental design to identify tractable sub-335

sets of combination screening experiments that are necessary for identifying these joint336

deconvolution profiles. We plan to address this problem in future work.337

The precision of PhenoPop depends on the amount of observation noise in the data. For338

the exponential growth model, normally distributed noise with a standard deviation of up339

to 20% of the initial cell count can be tolerated, while higher noise levels lead to errors in340

model selection and decreased accuracy in mixture fractions and GR50 estimates. This is341

especially seen in the 3-population mixtures, and it is expected that the problem would be342

aggravated in mixtures of more than 3 populations. We note that the standard deviation343

to mean ratio reported from several of the most common automated or semi-automated344

cell counting techniques ranges from 1-15 % [18, 19].345

At moderate noise levels (standard deviation to mean ratio of 5%), PhenoPop was able346

to detect subpopulations as small as 1% of the total population in 2-population mixtures,347

while in 3-population mixtures the smallest detectable population fraction was 3 %. The348

precision is reduced when subpopulations have very similar GR50 values and the reso-349

lution of experimental drug concentrations does not distinguish well between them, but350

for predicting treatment response, distinguishing subpopulations that are almost identical351

is of limited clinical importance. Additionally, our study suggests that in terms of data352

resolution and prioritization of experimental effort, increasing the number of observed con-353

centrations improves accuracy the most, followed by the number of time points, and then354

the number of replicates.355

Accurate, efficient techniques for profiling of heterogeneity across multiple axes are356

important foundations for personalized treatment decision-making. In this work we have357

demonstrated that PhenoPop can provide vital insights into the diversity of drug response358

amongst tumor cells. This framework, enabled by mixture population dynamic modeling of359

response to therapy, utilizes bulk drug screen data and alleviates the need for costly single-360

cell methods in profiling tumor heterogeneity. Although we focus here on tumor drug-361

response heterogeneity, the PhenoPop framework can also be applied to detect and profile362

heterogeneous cellular response to other stimuli, such as stromal content, nutrient/oxygen363

deprivation, and epigenetic modifiers. This general framework can also be applied beyond364

cancer to other biological settings in which reproducing populations harbor heterogeneous365

responses to environmental stimuli, such as the response of bacterial or viral populations366
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to antibiotic or antiviral therapies.367

Materials and methods368

Given a set of experimental drug-screen data on a bulk tumor sample, PhenoPop solves a369

series of optimization problems to identify individual subpopulations within the sample and370

to estimate their frequencies and drug sensitivities. This problem is challenging because it371

requires simultaneous estimation of the number of individual subpopulations present, their372

frequencies in the population and their drug response characteristics, all based on noisy373

observations of the total cell population. Our solution to this problem is enabled by the374

introduction of a mixture population dynamic model of the tumor in which the growth rate375

dependence on drug concentration follows a Hill-type functional form (see equation (3)).376

Model of dose-dependent population dynamics377

PhenoPop relies upon an underlying model of heterogeneous tumor population dynamics
in vitro. The growth of a single population of cells with homogeneous drug response is
modelled by

X(d, t) = X(0) ∗ exp [t (α+ logH(d))] , (1)

where X(d, t) is the number of cells at time t under drug concentration d, X(0) is the
initial population size, α is the intrinsic growth rate of the population in the absence of
drug, and H(d) is a classic sigmoidal function describing the dependence of the population
growth rate on drug concentration d:

H(d) = b+
1− b

1 +
(
d
E

)n . (2)

The parameters of this function control the shape of the sigmoid: b ≥ 0 reflects the max-378

imum effect of the drug, E is the log concentration at which 50 percent of the maximum379

effect is achieved, and n > 0 controls the steepness of the response. This novel form of380

the growth rate, r(d) ≡ α + logH(d), is chosen so that the predicted cell viability curve,381

which is the treated viable cell population size normalized by the untreated viable cell382

population size at a fixed time, exhibits the standard Hill-shaped dependence on drug con-383

centration that is empirically observed in viability assays [16]. Supplementary Figure S1384

demonstrates that this model accurately recapitulates experimental cell viability depen-385

dence on drug concentration in two BCR-ABL positive Ba/F3 cell lines (with and without386

the T315I mutation) treated with the tyrosine kinase inhibitor imatinib. Note that since387

we are studying in vitro populations prior to confluence, an exponential growth model is388

appropriate.389
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To extend the monoclonal growth model (1) to a population composed of several sub-
populations, each with a specific own drug response dynamics, we denote the growth pa-
rameters of the i-th subpopulation by αi, bi, Ei, ni. Then the model of a cell population
with S subpopulations under drug concentration d at time t is:

Z(d, t;PS) = Z(0)
S∑
i=1

πi exp [t(αi + logH(d; bi, Ei, ni))] (3)

where Z(0) is the total initial population and πi is the initial mixture fraction of the i-th390

subpopulation (
∑S

i=1 πi = 1). Here, PS ≡ {πi, αi, bi, Ei, ni : i ∈ {1, . . . , S}} denotes the391

set of parameters for S populations, and the parameters of the Hill function H(d; bi, Ei, ni)392

are written explicitly to emphasize the individual drug response profile of each subpopu-393

lation. Under this formulation, we need to estimate, on the basis of the drug screen data,394

the unknown number of subpopulations S and the corresponding parameters PS . Note395

that in this case, the heterogeneous population is modelled as a mixture of populations396

in which individual subpopulations are assumed to grow independently. In the Supple-397

mentary Information, we consider a case in which interaction between subpopulations is398

incorporated.399

Estimation procedure400

As input, PhenoPop takes bulk tumor sample drug screening observations, in the form of401

total cell counts at a series of time points and drug concentrations. A variety of experimen-402

tal techniques is commonly used to generate such observations of cell population counts403

in drug screening. For example, tetrazolium reduction assays (e.g. MTT, MTS), protease404

viability markers (e.g. GF-AFC), ATP assays (e.g. Cell Titer-Glo), and more recently405

developed real-time assays (e.g. Real-Time Glo, live-cell imaging) [30, 31]. The PhenoPop406

methodology is capable of using experimental input from any of these assays, as long the407

measurements provide viable cell count or a proxy quantity (e.g. fluorescence intensity)408

that is proportional to the cell number. Generally, real-time techniques may yield superior409

deconvolution results due to a reduction in the total noise of the data set.410

Given a set of experimental drug-response data on a bulk tumor sample, PhenoPop411

solves a series of optimization problems to deconvolve and characterize individual subcom-412

ponents of the bulk sample in terms of varying drug sensitivity profiles. In particular,413

each experimental observation, denoted by Oj,k,r, corresponds to a cell population num-414

ber measured under drug concentration d(j) where j ∈ {1, . . . , C}, time point tk, where415

k ∈ {1, . . . , T}, and replicate r ∈ {1, . . . , R}. We denote the total set of observations by O.416

For simplicity, we will first assume that there are S subpopulations. Our statistical
model of experimental observations will be based on the deterministic model in equation
(3). In particular, we model each experimental observation as an independent standard
Gaussian random variable with mean Z(d(j), t(k);PS) and standard deviation σ(d(j), t(k)).
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Note that we allow the standard deviation σ to vary with dose and time. This is because
at low doses and high times we expect a larger variance due to the larger cell counts.
Therefore we define

σ(d, t) =

{
σH , d ≤ DL and t ≥ TL
σL, otherwise.

Our standard deviation is thus characterized by four parameters, σ = (σL, σH , DL, TL).417

We will denote the set of time-dose observations where we use standard deviation σH by418

IH , and the set where we use σL by IL. We denote their cardinalities by |IH | and |IL|.419

Assuming S subpopulations we can use this model to write the log-likelihood as

L (PS , σ;O) = −1

2
R|IH | log(2πσ2H)− 1

2
R|IL| log(2πσ2L) (4)

− 1

2σ2H

R∑
r=1

∑
(j,k)∈IH

(Oj,k,r − Z (d(j), t(k);PS))2

− 1

2σ2L

R∑
r=1

∑
(j,k)∈IL

(Oj,k,r − Z (d(j), t(k);PS))2 .

For a fixed S, we thus compute the maximum likelihood estimates of the model parameters
by solving the optimization problem

(P̂S , σ̂) = argmaxPS ,σL (PS , σ;O) . (5)

Model selection using the elbow method. To infer the number of subpopulations in the420

mixture, PhenoPop is fitted to the data repeatedly, for each number of subpopulations421

S in S = {1, 2, . . . , Smax} in turn, and the S negative log-likelihood values are recorded.422

We then plot the negative log-likelihood values as a decreasing function of S, and observe423

the number of subpopulations corresponding to which the negative log-likelihood does not424

decrease significantly further. This means that no useful increase in model accuracy is425

gained by including another additional population. This point of inflection of the negative426

log-likelihood is called the elbow of the curve. The optimal number of populations is then427

chosen by the experimenter through visual inspection. The resulting estimate P̂Ŝ contains428

the inferred population’s drug response substructure: the estimated number of populations429

along with the estimated mixture frequency and estimated drug sensitivity GR50 of each430

subpopulation. This method is known as the elbow method, and it is a well-known heuristic431

for model selection in cases where the model fit generally increases with complexity. Model432

selection is shown in Supplementary figures S17.433

Optimization methodology434

The maximum likelihood estimate of the parameters θ̂MLE was obtained by maximizing the435

log-likelihood (4), subject to constraints that were placed on the range of each parameter.436
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This constrained optimization problem was performed using the function fmincon from the437

MATLAB Optimization Toolbox [32], with the default interior-point optimization method.438

To combat converging to suboptimal local minima, the log-likelihood was maximized re-439

peatedly and independently, by starting from Noptim different random initial positions for440

the parameter θ, sampled uniformly within their allowed range (except for the parameter441

E, which was sampled log-uniformly within the bounds). Among the Noptim minima, the442

one with the highest log-likelihood value was chosen as estimate θ̂MLE.443

Calculation of GR50 values444

The viability curve and associated metrics of drug response (e.g. IC50, EC50) typically
exhibit dependence on the timing of data collection (see [17]). We form a growth rate
curve by inferring the growth rate r(d) at each tested dose level d. In contrast to the
viability curve the growth rate curve does not have a hidden dependence on the duration
of the experiment, assuming exponential growth. Once the parameters of model (3) are
estimated for each subpopulation using the inferential procedures above, the GR50 for each
subpopulation can be explicitly determined using the set of parameters (αi, bi, Ei, and ni).
Following Sorger and et al [17] we characterize dose-response of clones with a GR50 value.
This number represents the dose at which the cellular growth rate experiences half of its
total reduction. In particular, suppose that we are interested in a homogeneous population
with the growth rate at dose d given by

GR(d;α, b, E, n) = α+ logH (d; b, E, n) .

Note that we will generally suppress the dependence on parameters and simply writeGR(d).
If the maximum dose administered is dm, and the minimum dose administered is 0, then
the median growth rate is rm = (GR(0) + GR(dm))/2. We then define the GR50 as the
dosage that results in this growth rate, i.e., the value d such that GR(d) = rm. We can
then solve to obtain

GR50 = E

(
erm−α − 1

b− erm−α

)1/n

.

Generation of synthetic population data445

By defining a number of populations S and a parameter set PS ≡ {πi, αi, bi, Ei, ni : i ∈446

{1, . . . , S}}, synthetic data can be generated in a deterministic manner with equation (3).447

Table 1 shows the parameters {αi, bi, Ei, ni : i ∈ {1, 2, 3}} of the blue, red and yellow448

populations in figures 2, S3, S4, S5 and S6.449

For the synthetic validation, simulated data with initial population size of Z0 = 1000450

cells were generated for the following 9 mixtures of the three cell populations in table 1:451

[1,0,0], [0,1,0], [0,0,1], [0.5,0.5,0], [0.7, 0.3, 0], [0.3, 0.7, 0], [1/3, 1/3, 1/3], [0.4, 0.3, 0.3] and452

[0.6, 0.2, 0.2].453
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α b E n

Clone 1 (blue) 0.03 0.3 0.0001 3.0

Clone 2 (red) 0.03 0.4 0.01 3.0

Clone 3 (yellow) 0.03 0.5 0.1 3.0

Table 1: Parameters for simulated data.

We chose 17 simulated drug concentrations. One equal to zero, the rest spaced log-454

linearly in a region designed to cover the GR50 values of the simulated populations. The455

simulated concentrations were: [0, 0.00000500, 0.0000108, 0.0000232, 0.0000500, 0.000108,456

0.000232, 0.000500, 0.00108, 0.00232, 0.00500, 0.0108, 0.0232, 0.0500, 0.108, 0.232, 0.5]457

µM. Cell counts were measured at 12-hour intervals from 0 to 96 hours, and 4 replicates of458

the simulation were carried out, where the only difference between the replicates was the459

randomly sampled observation noise: A random noise term was added to each observed460

cell count, sampled from an independent and identically distributed (i.i.d.) Gaussian dis-461

tribution with mean 0 and standard deviation ranging from 1 to 50% of the initial cell462

count. Any negative cell count caused by the additive noise was set to zero. This gives the463

following expression for the generated observation Oj,k,r with concentration number j at464

time k for replicate r:465

Oj,k,r = max

(
Z(d, t;PS) + εj,k,r , 0

)
, εj,k,r ∼ N (0, σ2) i.i.d. (6)

Model of multiple myeloma under treatment466

Inspired by [33] we present a mathematical model of M-protein levels of a multiple myeloma
patient under treatment with an anti-cancer drug. This model assumes that the patient
has two subpopulations of cancer cells with distinct responses to the drug. In particular
the cancer cells and M-protein levels are governed by the following system of ordinary
differential equations

dx

dt
=

r1(d)x

1 + p(x+ y)
, (7a)

dy

dt
=

r2(d)y

1 + p(x+ y)
, (7b)

dz

dt
= r3(x+ y)− d3z, (7c)

where x and y denote number of myeloma cells in subpopulations 1 and 2 respectively, and467

z denotes M-protein concentration in plasma. Parameters r1 and r2 are the net growth468

rates under treatment of subpopulations 1 and 2 respectively. We assume the net growth469

rates can be computed as470

17

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2022. ; https://doi.org/10.1101/2022.01.17.476604doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.17.476604
http://creativecommons.org/licenses/by-nc/4.0/


ri(d) = αi + logH(d; bi, Ei, ni), i ∈ {1, 2}, (8a)

where (αi, bi, Ei, ni) are the estimated parameters of subpopulation i using PhenoPop. The471

term (1 +p(x+y))−1 in equations 7a and 7b alters the growth rate of both subpopulations472

when the total number of cells increases. Parameters r3 and d3 are the production and decay473

rate of the M-protein, respectively. Inspired by [33], we use p = 10−13, r3 = 0.07 ∗ 10−13474

and d3 = 0.07.475

Model parameter ranges476

For model with S = {1, 2, 3, 4} populations, the log-likelihood was maximized Noptim =477

1000 times or more to combat local minima. For each maximization, the initial estimate478

was sampled from within the bounds on the parameter range, which were set to the values479

listed below for the different datasets.480

The parameter ranges for the different settings were largely similar. Some differences481

occur due to different concentration scales in the different experiments or due to parameter482

estimates hitting the boundary of the domain, in which case the range was expanded. When483

working with the Ba/F3 cells we needed to adjust the lower bound on the parameter b.484

Due to the complexity of the optimization problem, the solver had a tendency to push b485

towards an unrealistically low value. To address this issue we used previous observations486

and derived a realistic lower bound on b. Denote the net growth rate of the cells by487

λ = β − µ, where β is the birth rate and µ the death rate. From [34], we know that488

β ≤ .06. We can thus write µ = β − λ ≤ .06 − λmin = d0, where λmin is the minimum489

observed growth rate amongst all Ba/F3 cell line experiments. Thus the maximal possible490

death rate is d0, and the minimal possible net growth rate is −d0. Next note that according491

to our growth rate model, as the dose d goes to infinity the growth rate decreases to the492

lower limit α + log(b). Therefore we know that α + log(b) ≥ −d0. We again use that493

α ≤ .06, and based on observed data we set λmin = .04 and get d0 = 0.2. However to494

account for any possible errors in the method we increase d0 to be 0.07. This then gives495

us the lower bound log(b) ≥ −0.08 or equivalently b ≥ 0.878.496

NSCLC data.497

pi ∈ [0, 1] with the inequality constraint
S−1∑
s=1

pi ≤ 1498

αi ∈ [0, 0.1] hours−1499

b ∈ [0, 1] hours−1500

E ∈ [0, 50] µM501
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n ∈ [0, 50]502

σL, σH ∈ [0, 5500]503

Ba/F3 data.504

pi ∈ [0, 1] with the inequality constraint
S−1∑
s=1

pi ≤ 1505

αi ∈ [0, 0.06] hours−1506

b ∈ [0.878, 1] hours−1, see comment below.507

E ∈ [0, 50] µM508

n ∈ [0.001, 20]509

σL, σH ∈ [0, 2500]510

Synthetic data.511

pi ∈ [0, 1] with the inequality constraint
S−1∑
s=1

pi ≤ 1512

αi ∈ [0, 0.1] hours−1513

bi ∈ [0.27, 1] hours−1514

Ei ∈ [10−6, 0.5] µM515

ni ∈ [0.01, 10]516

S ∈ [0, 4]517

σL, σH ∈ [10−6, 5000]518

Multiple Myeloma data.519

For the multiple myeloma patient data, an inital parameter range was chosen for all pa-520

tients. Then if one or more of the inferred parameters happened to lie on or near the upper521

or lower bound, the parameter range was increased for that patient until the estimate was522

no longer on the bound. Therefore, the parameter for the E and σ variables are different523

for some of the patients.524

pi ∈ [0, 1] with the inequality constraint
S−1∑
s=1

pi ≤ 1525

19

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2022. ; https://doi.org/10.1101/2022.01.17.476604doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.17.476604
http://creativecommons.org/licenses/by-nc/4.0/


αi ∈ [−0.1, 0.1] hours−1526

bi ∈ [0, 1] hours−1527

ni ∈ [0.01, 10]528

S ∈ [0, 5]529

The E parameter ranges were:530

Ei ∈ [10−6, 2] µM for patient MM2108.531

Ei ∈ [10−6, 50] µM for patient MM720.532

Ei ∈ [10−6, 5] µM for patient MM195.533

Ei ∈ [10−6, 5] µM for patient MM36.534

Ei ∈ [10−6, 100] µM for patient MM1420.535

The σ parameter ranges were:536

σL, σH ∈ [10−6, 50, 000] for patient MM2108.537

σL, σH ∈ [10−6, 1, 000, 000] for patient MM720.538

σL, σH ∈ [10−6, 150, 000] for patient MM195.539

σL, σH ∈ [10−6, 250, 000] for patient MM36.540

σL, σH ∈ [10−6, 150, 000] for patient MM1420.541

Ba/F3 cell line experiments542

Preparation of sensitive and resistant cell lines543

BCR-Abl-T315I expressing plasmid was established by site-directed mutagenesis of p210544

BCR-Abl (Addgene 27481) using QuickChange II XL (Agilent Technologies) with the545

forward primer 5’ GGGAGCCCCCGTTCTATATCATCATTGAGTTCATGACCTACG 3’546

and the reverse primer 5’ CGTAGGTCATGAACTCAATGATGATATAGAACGGGGGCT547

CCC 3’ for T315I. To generate cells stably expressing BCR-Abl (imatinib-sensitive) and548

BCR-Abl-T315I (imatinib-resistant), parental Ba/F3 cells were transfected with the appro-549

priate plasmids by electroporation using Amaxa biosystems nucleofecor II and stable cells550

were established by selecting with medium containing 500µg/ml Geneticin (Gibco, UK) and551

lacking the growth factor IL3 (BCR-ABL activity can overcome the requirement for IL3552

of untransformed parental cells for survival/proliferation [20]). Furthermore, Ba/F3 cells553

expressing BCR-Abl were stably transfected with GFP expression, pRNAT-H1.1/Hygro554

plasmid from Genscript (Piscataway NJ, USA). The resulting subpopulations exhibited555
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distinctive phenotypic differences upon treatment with Imatinib.556

557

Cell cultures558

Parental Ba/F3 cells were maintained in RPMI-1640 supplemented with 10% heat-inactivated559

Fetal Bovine Serum (FBS), 7.5 ng/ml IL3 and 1% penicillin and streptomycin at 37◦C un-560

der a humidified atmosphere containing 5% CO2. Ba/F3 cells stably expressing BCR-Abl561

and BCR-Abl-T315I were maintained in medium lacking IL3.562

563

Experimental procedures564

Cells were harvested at 70-80% confluence, stained with trypan blue (ThermoFisher, UK),565

and counted with a Countess 3 Automated Cell Counter (Life Technologies). Mono- and566

co-cultures were seeded at different initial ratios in 384 well microplates (Greiner Bio-One)567

that contained different concentrations of imatinib (Cayman, USA). Imatinib ranging from568

(0 - 5µM) was dispensed using an Echo acoustic liquid dispenser (Labcyte, San Jose, CA,569

USA) in seven replicates per condition. Then time-lapse microscopy images were obtained570

for bright field and GFP using IncuCyte (Essen BioScience, UK) every 3 hours over the571

course of 72 hours.572

573

Image Processing574

Images were processed with the open-source software ImageJ [35] Images were background575

subtracted, converted to 8-bit, bandpass filtered, sharpened, contrast enhanced, and thresh-576

olded. Then images were converted to binary images, watershed segmentation was per-577

formed, and raw cell numbers were extracted.578

NSCLC cell line experiments579

Cell Cultures580

HCC827 and H1975 cell lines were maintained in RPMI-1640 media supplemented with581

10% Fetal Bovine Serum and 1% penicillin and streptomycin under standard cell culture582

growth conditions (37oC and 5% CO2.583

Experimental Growth Assay584

Tumor cells were seeded in 96-well black walled plates at 5,000 cells per well. The following585

day, the cells were treated with erlotinib at various concentrations (0, 0.1, 1, 10uM). Cell586

counts were determined at 0, 24, and 48 hours post drug treatment using the Cellomics Ar-587

rayscan High Content Screening Platform. Briefly, cells were stained with 5 g/mL Hoechst588

33342 (nuclear marker to determine total cell count) and 5 g/mL Propidium Iodide (PI -589

vital dye to determine dead cells) for 45 minutes prior to imaging. The average intensity590

for Hoechst and PI was determined for each cell to classify as live or dead. Each condi-591

tion was performed in replicates of four. For admixture experiments, each cell line was592
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labeled with a different CellTracker dye (CellTracker orange CMTMR and H1975 labeled593

with CellTracker green CMFDA). The cells were mixed at the specified ratios (total 5,000594

cells/well) and imaged following the procedures outlined above.595

Drug screen of Multiple Myeloma patient samples596

Patient samples597

The multiple myeloma (MM) patients enrolled in this study were recruited from the Oslo598

Myeloma Center at Ullev̊al Oslo University Hospital under the Regional Committee ap-599

proval for Medical and Health Research Ethics of South-Eastern Norway (REC-2016/947)600

The MM samples were obtained following written informed consent in compliance with the601

Declaration of Helsinki.602

603

Primary MM cells processing604

Bone marrow samples from 5 relapsed myeloma patients were collected in ACD tubes.605

Details about patient ID, treatment lines and refractory status are provided in Supple-606

mentary Table 1. A Lymphoprep TM (Stemcell Technologies) density gradient centrifuga-607

tion method was used to obtain bone marrow mononuclear cells (BMMCs) from patient608

samples. As described in [36], after CD8 T cell depletion by Dynabeads (Life Technolo-609

gies), BMMCs were then stimulated by activated T helper cells in the presence of Human610

T-activator CD3/CD28 Dynabeads (Life Technologies) and 100U/ml human interleukin-611

2 (hIL-2, Roche, Mannheim, Germany). After 24h, CD138+ MM cell enrichment was612

performed from the BMMC fraction by immune-magnetic microbeads CD138+ (Milteny613

Biotec, Bergisch Gladbach, Germany).614

615

Drug sensitivity assay616

CD138+ MM cells (200,000 cells/ml) derived from activation assays were treated with617

drugs at 9 concentrations using a drug customized concentration range (0,1-10,000), as618

described in [24]. The drug panel included clinically relevant anti-myeloma drugs, Dexam-619

ethasone (0,1-10,000), ixazomib (1-10,000), thalidomide (0,1-10,000), selinexor (0,1-1000),620

melflufen (0,1-1000) and venetoclax (0,1-10,000). Pre-printed drug plates were made by an621

acoustic dispenser (Echo 550, LabCyte Inc., San Jose, CA, USA), by the Chemical Biology622

Platform, NCMM, University of Oslo. Control agents included a negative control, 0,1%623

solvent solution dimethyl sulfoxide (DMSO), and a positive control 100 uM benzethonium624

chloride (BzCl). In brief, MM cells were diluted in culture medium (RPMI 1640 medium625

supplemented with 10% fetal bovine serum, 2mM L-glutamine, penicillin (100U/ml), strep-626

tomycin (100 µg/ml), and 25 µl of cell suspension was transferred to 384-well plates using a627

Certus Flex liquid dispenser (Fritz Gyger, Switzerland). Afterward, plates were incubated628

at 37◦C and 5% CO2 humidified environment. Cell viability was measured at 4 different629

time points (0h-96h), using the CellTiterGlo (Promega, Madison, WI, USA) ATP assay630
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according to manufacturer’s instructions and with an Envision Xcite plate reader (Perkin631

Elmer, Shelton, CT, USA) to measure luminescence.632

Data and code availability633

All data and code used in this article are publicly available in the online repository of the634

Oslo Center for Biostatistics and Epidemiology.635
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Supplementary Information742

Model Extension to Interacting Populations743

Our model currently ignores potential interactions between subpopulations. Based on the
sample size of our current data sets we were not able to fit a more complex model that
allows for interacting populations. For the situation when sufficient data are available, we
propose the model below that allows for interactions between the subpopulation. Assuming
that there are S subpopulations, for each i ∈ {1, . . . , S} define the function

fi(X, d) =
S∑
l=1

(αilXj − cilXiXl) +Xi logHi(d),

where d is possible drug dose and X ∈ RS+. The parameter αil represent the rate at which744

type-l cells produce type-i cells, and αii is the net growth rate of the type-i cells. We assume745

that each αil term is non-negative. The term cil represents the effect of population l on746

population i. If cil > 0 then population l inhibits population i, if cil < 0 then population l747

encourages population i to grow, and finally if cil = 0 then population l has no direct effect748

on population i. Note that the term cii represents the effect of type-i cells on itself and we749

assume that cii > 0. The parameters αil allow for inter-conversion between cell types, and750

the parameters cil allow for inhibition or promotion between cell types.751

For dose d, and initial population vector x0 = (x01, . . . , x
0
S), define {X(t, d;x0); t ≥ 0}

as the solution to the differential equation

Ẋi(t, d) = fi(X, d), for each i ∈ S, (9)

with initial condition Xi(0) = x0i . Define x0 =
∑

i x
i
0 and write x0i = pix0. We assume752

that x0 is a known quantity, but the proportions {pi}i∈S are unknown. We denote the753

model-predicted total population at time t under dose d by X(t, d). Recall that the total754

population is the observable variable in our model.755

In this interacting population model, we have more model parameters, namely the
parameter set

P = {({ail}l∈S , {cil}l∈S , pi, νi, bi, Ei, ni) ; i ∈ S} .

To make clear the dependence on the parameter set P, we denote the predicted total756

population at time t using d units of drug with parameter set P by X(t, d;P).757

Similar to our main model, we will start by simply using additive Gaussian noise for
our measurement error. In particular, we assume that observation at dose dj and time tk
is given by

xj,k = X(dj , tk;P) + Zj,k,

for i.i.d N(0, σ2) random variables Zj,k. We can then implement the same maximum likeli-758

hood estimation procedure as for our original model. This will be a more computationally759
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challenging problem because evaluating the likelihood function will require numerically760

solving the non-linear differential equation (9). In addition, this inference problem is more761

difficult because we have a higher dimensional parameter space to search over.762
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Supplementary figures763

Figure S1: Model from Equation (1) of the Materials and methods section accurately
recapitulates experimental cell viability dependence on drug concentration in two example
BCR-ABL positive Ba/F3 cell lines (with and without the T315I mutation) treated with
tyrosine kinase inhibitor imatinib.
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a

b

c

Figure S2: Comparison of accuracy gain in mixture fraction and GR50 values when in-
creasing either the number of replicates (R), the number time points (Nt) or the number
of concentrations (Nc) while keeping the other two equal to 3. The inference was carried
out on 30 datasets generated from a mixture of 40% sensitive and 60% resistant cells.
The standard deviation of the observation noise was equal to 10% of the initial cell count.
The random seed for the noise was the only parameter varying between the 30 datasets.
In a), the accuracy metric is absolute error in inferred mixture parameter; in b) and c)
the metric is max(GR50inferred/GR50true, GR50true/GR50inferred), chosen to address the
logarithmic scale of the concentrations. The plots show mean accuracy metrics with 95%
confidence intervals for the mean (t-distribution with 29 degrees of freedom). The number
of subpopulations (2) was assumed known, and model selection was not performed.
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Figure S3: True and estimated mixture fractions and GR50 values for synthetic data with
observation noise with standard deviation equal to 1% of the initial cell count. For each row,
“True mixture” pie charts show mixture fractions used in the data generation; “Estimated
mixture” pie charts show estimated mixture fractions; vertical grey lines show observed
concentrations on a logarithmic scale. In the ”GR50 values” panel, the region between the
two observed concentrations closest to each true GR50 value is given the same color as
that subpopulation has in the ”True mixtures” pie chart; White dots represent estimated
GR50 values, with the region between the closest observed concentrations colored in the
same color as the inferred subpopulation in the ”Estimated mixture” pie chart.
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Figure S4: True and estimated mixture fractions and GR50 values for synthetic data with
observation noise with standard deviation equal to 10% of the initial cell count. For each
row, “True mixture” pie charts show mixture fractions used in the data generation; “Es-
timated mixture” pie charts show mixture fractions estimated by the model; vertical grey
lines show observed concentrations on a logarithmic scale. In the ”GR50 values” panel, the
region between the two observed concentrations closest to each true GR50 value is given
the same color as that subpopulation has in the ”True mixtures” pie chart; White dots
represent estimated GR50 values, with the region between the closest observed concentra-
tions colored in the same color as the inferred subpopulation in the ”Estimated mixture”
pie chart. 32
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Figure S5: True and estimated mixture fractions and GR50 values for synthetic data with
observation noise with standard deviation equal to 20% of the initial cell count. For each
row, “True mixture” pie charts show mixture fractions used in the data generation; “Es-
timated mixture” pie charts show mixture fractions estimated by the model; vertical grey
lines show observed concentrations on a logarithmic scale. In the ”GR50 values” panel, the
region between the two observed concentrations closest to each true GR50 value is given
the same color as that subpopulation has in the ”True mixtures” pie chart; White dots
represent estimated GR50 values, with the region between the closest observed concentra-
tions colored in the same color as the inferred subpopulation in the ”Estimated mixture”
pie chart. 33
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Figure S6: True and estimated mixture fractions and GR50 values for synthetic data with
observation noise with standard deviation equal to 50% of the initial cell count. For each
row, “True mixture” pie charts show mixture fractions used in the data generation; “Es-
timated mixture” pie charts show mixture fractions estimated by the model; vertical grey
lines show observed concentrations on a logarithmic scale. In the ”GR50 values” panel, the
region between the two observed concentrations closest to each true GR50 value is given
the same color as that subpopulation has in the ”True mixtures” pie chart; White dots
represent estimated GR50 values, with the region between the closest observed concentra-
tions colored in the same color as the inferred subpopulation in the ”Estimated mixture”
pie chart. 34
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Figure S7: True and estimated mixture fractions and GR50 values for synthetic data with
observation noise with standard deviation equal to 5% of the initial cell count. For each row,
“True mixture” pie charts show mixture fractions used in the data generation; “Estimated
mixture” pie charts show mixture fractions estimated by the model; vertical grey lines show
observed concentrations on a logarithmic scale. In the ”GR50 values” panel, the region
between the two observed concentrations closest to each true GR50 value is given the same
color as that subpopulation has in the ”True mixtures” pie chart; White dots represent
estimated GR50 values, with the region between the closest observed concentrations colored
in the same color as the inferred subpopulation in the ”Estimated mixture” pie chart.
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Figure S8: True and estimated mixture fractions and GR50 values for synthetic data with
observation noise with standard deviation equal to 5% of the initial cell count. For each row,
“True mixture” pie charts show mixture fractions used in the data generation; “Estimated
mixture” pie charts show mixture fractions estimated by the model; vertical grey lines show
observed concentrations on a logarithmic scale. In the ”GR50 values” panel, the region
between the two observed concentrations closest to each true GR50 value is given the same
color as that subpopulation has in the ”True mixtures” pie chart; White dots represent
estimated GR50 values, with the region between the closest observed concentrations colored
in the same color as the inferred subpopulation in the ”Estimated mixture” pie chart.
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Figure S9: Elbow plots showing the negative log-likelihood for simulated data with obser-
vation noise with standard deviation equal to 1% of the initial cell count (Figure S3), with
the selected model marked by a circle. The color of the circle also indicates the selected
model: blue for 1 population, teal for 2, dark magenta for 3.
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Figure S10: Elbow plots showing the negative log-likelihood for simulated cases with ob-
servation noise standard deviation equal to 5% of the initial cell count (Figure 2), with the
selected model marked by a circle. The color of the circle also indicates the selected model:
blue for 1 population, teal for 2, dark magenta for 3.
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Figure S11: Elbow plots showing the negative log-likelihood for simulated cases with obser-
vation noise with standard deviation equal to 10% of the initial cell count (Figure S4), with
the selected model marked by a circle. The color of the circle also indicates the selected
model: blue for 1 population, teal for 2, dark magenta for 3.
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Figure S12: Elbow plots showing the negative log-likelihood for simulated cases with obser-
vation noise with standard deviation equal to 20% of the initial cell count (Figure S5), with
the selected model marked by a circle. The color of the circle also indicates the selected
model: blue for 1 population, teal for 2, dark magenta for 3.
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Figure S13: Elbow plots showing the negative log-likelihood for simulated cases with obser-
vation noise with standard deviation equal to 50% of the initial cell count (Figure S6), with
the selected model marked by a circle. The color of the circle also indicates the selected
model: blue for 1 population, teal for 2, dark magenta for 3.
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Figure S14: Elbow plots showing the negative log-likelihood for all cases in Figure S7, with
the selected model marked by a circle. The color of the circle also indicates the selected
model: blue for 1 population, teal for 2, dark magenta for 3.
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Figure S15: Elbow plots showing the negative log-likelihood for all cases in Figure S8, with
the selected model marked by a circle. The color of the circle also indicates the selected
model: blue for 1 population, teal for 2, dark magenta for 3.
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Figure S16: Elbow plots showing the negative log-likelihood for all drugs for all multiple
myeloma patients (Figure 3), with the selected model marked by a circle. The color of the
circle also indicates the selected model: blue for 1 population, teal for 2, dark magenta for
3.
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Figure S17: Elbow plots showing the negative log-likelihood values for all cases in Figure 2b
(left) and 2c (right), with the selected model marked by a circle. The color of the circle
also indicates the selected model: blue for 1 population, teal for 2, dark magenta for 3.
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