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ABSTRACT

Color vision represents a vital aspect of perception that ultimately enables a wide variety of species1

to thrive in the natural world. However, unified methods for constructing chromatic visual stimuli in2

a laboratory setting are lacking. Here, we present stimulus design methods and an accompanying3

programming package to efficiently probe the color space of any species in which the photoreceptor4

spectral sensitivities are known. Our hardware-agnostic approach incorporates photoreceptor models5

within the framework of the principle of univariance. This enables experimenters to identify the6

most effective way to combine multiple light sources to create desired distributions of light, and7

thus easily construct relevant stimuli for mapping the color space of an organism. We include8

methodology to handle uncertainty of photoreceptor spectral sensitivity as well as to optimally9

reconstruct hyperspectral images given recent hardware advances. Our methods support broad10

applications in color vision science and provide a framework for uniform stimulus designs across11

experimental systems.12

1 Introduction13

From insects to primates, color vision represents a vital aspect of perception that ultimately enables a wide variety14

of species to thrive in the natural world. Each animal is equipped with an array of photoreceptors expressing various15

opsin types and optical filters that define the range of wavelengths the animal is sensitive to. But opsin expression16

alone does not predict how an animal might “see” colors. The downstream neural circuits mechanisms that process17

photoreceptor signals are critical in shaping color perception. Interrogating these neural mechanisms in a laboratory18

setting necessitates experimentalists to construct and present chromatic visual stimuli that are relevant to the animal in19

question. Outside of trichromatic primates, for which studies in human perception and psychophysics have lead the way,20
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there is a lack of unifying methodology to assay color vision across species using disparate laboratory visual stimulation21

systems. Here we describe standardized methods to create chromatic stimuli, using a minimal set of light sources, that22

can continuously span a wavelength spectrum and be flexibly applied to photoreceptor systems in various species.23

Light, the input to a photoreceptor, comprises two components: wavelength and intensity. Importantly, a photon of24

light of any wavelength elicits the same response once absorbed by a photoreceptor. This principle of univariance25

limits a single photoreceptor from distinguishing between wavelength and intensity, as different wavelength-intensity26

combinations can elicit the same response, rendering single photoreceptors “color-blind” (Rushton, 1972; Stockman27

and Brainard, 2010). By combining outputs from different types of photoreceptors in downstream neural circuits,28

animals can separate wavelength and intensity information to ultimately allow for color discrimination. As a result of29

univariance, particular wavelength-intensity combinations remain indistinguishable if they produce an equivalent set of30

photoreceptor responses in an animal. To the human eye, a red-green mixture is perceived as identical to pure yellow,31

as both of these sources equally activate the three cones. This metamerism is taken advantage of in Red-Green-Blue32

(RGB) screens which can display many colors using only three light sources. However, out-of-the-box RGB screens33

cannot easily be used to investigate color processing across animals. This is because the software that operate them34

are based on experimentally measured color matching functions (i.e. “matching” ratios of R/B/G to perceptual colors)35

that are specific to the set opsins expressed in human cones and the neural processing of their signals in the human36

brain. Even though such color matching functions are not available for most animals, it is still possible to leverage37

fundamental concepts of metamerism to construct chromatic stimuli (Fleishman et al., 1998; Tedore and Johnsen, 2017).38

The use of such methods has been limited, in part because of a lack of a practical framework to apply a wide range of39

well-established color theory concepts.40

Here, we present a set of algorithms, and accompanying Python software package drEye, for designing chromatic41

stimuli which allows for the simulation of arbitrary spectra using only a minimal set of light sources. Our framework42

is founded on established color theory (Hempel de Ibarra et al., 2014; Kelber and Osorio, 2010; Rushton, 1972) and43

is applicable to any animal for which the photoreceptor spectral sensitivities are known. Our approach allows for the44

reconstruction of a variety of stimuli, including some that are hard to reproduce in a laboratory setting, such as natural45

images. Importantly, our methods are flexible to various modeling parameters and can account for uncertainties in the46

spectral sensitivities. Even though we provide mathematical tools to select appropriate light sources, our methods are47

ultimately agnostic of the hardware used for visual stimulation. For this reason, our method can be used as a color48

management tool to control conversion between color representations of various stimulus devices. We illustrate basic49

principles as well as examples of our algorithms using the color systems of mice, bees, humans, fruit flies, and zebrafish.50

2 Color theory and color spaces51

As color scientists, we aim to understand how a given animal processes spectral information and thus perceives color.52

A “perceptual color” space gives an approximation of how physical properties of light are experienced by the viewer.53
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CIE 1931 color spaces, for instance, are defined mathematical relationships between spectral distributions of light54

and physiologically perceived colors in human vision (Smith and Guild, 1931). These spaces were derived from55

psychophysical color matching experiments (Smith and Guild, 1931; Wright, 1929), and are an essential tool when56

dealing with color displays, printers and image recording devices. Because the underlying quantitative transformation57

from the spectral distributions of light to the perceived colors in humans is dependent on both the cone spectral58

sensitivities and the neural mechanisms that process them, human color spaces do not transfer to other animals.59

Can we approximate the perceptual space of animals using available physiological and/or behavioral information? A60

perceptual color space is the result of a series of transformations starting from the stimulus itself. The stimulus can61

be represented in “spectral space”, simply describing the spectral distribution of light. This space however is high62

dimensional, and therefore difficult to work with. Instead, a lower dimensional color space can be constructed, by63

taking into account the photoreceptor spectral sensitivities of the viewer. A photoreceptor’s spectral sensitivity defines64

the relative likelihood of photon absorption across wavelengths (e.g. Fig. 1A-C and S1A-B). Weighting a total light65

power spectrum by the photoreceptor’s spectral sensitivities renders n effective values of a stimulus - with n being the66

number of photoreceptor types. The n values compose a n-stimulus specification of the objective color of the light67

spectrum for an animal, called the photon capture. This results in a n-dimensional receptor-based “capture space”.68

For dichromats such as new world monkeys or mice, this receptor-based space is two-dimensional (Fig. 1D). For69

trichromats, such as humans or bees, it is three-dimensional (Fig. 1E) and for tetrachromats, such as zebrafish and fruit70

flies, it is four-dimensional (Fig. 1F).71

In addition, within this n-dimensional receptor-based capture space, it is often useful to define a hyperplane, where vector72

points sum up to 1, and where color is therefore represented independently of intensity. The resulting “chromaticity73

diagram” is the n− 1 simplex where a point represents the proportional capture of each photoreceptor (Fig. 1G-I and74

Fig. S1C-D). For dichromats this visualization simplifies to a line, for trichromats, it is a triangle and for tetrachromats,75

a tetrahedron. The loci of single wavelengths can be mapped onto these spaces as a one-dimensional manifold, as can76

theoretical “non-spectral” color lines. Non-spectral colors result from the predominant excitation of photoreceptor pairs77

that are not adjacent along the single wavelength manifold (Stoddard et al., 2020; Thompson et al., 1992).78

Although the number of photoreceptors, which determines the dimensionality of the receptor-based space, is not always79

equal to the effective dimensionality of perceived colors (Jacobs, 2018), it provides its theoretical maximum. The80

effective dimensionality depends on the processing of photoreceptor signals in the brain. In fact neural processing81

effectively distorts the shape of receptor based spaces, to eventually produce a perceptual space, where distances do not82

necessarily match the distances measured in receptor-based spaces.83

Receptor-based spaces are however a good starting point to mathematically approximate the transformations that the84

brain applies to photoreceptor inputs. They can in particular serve to design relevant chromatic stimuli to interrogate85

these transformations experimentally. Throughout this paper, we will use receptor-based color spaces as the foundation86

for a unified framework for developing such chromatic stimuli.87
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3 Reconstructing arbitrary light spectra: A general framework88

Probing an animal’s color vision requires measuring behavioral or physiological responses to relevant chromatic stimuli.89

Amongst these are artificial stimuli which are constructed to probe specific aspects of visual processing, such as a set of90

Gaussian spectral distributions to measure spectral tuning, naturalistic stimuli, such as measured natural reflectances, or91

randomly drawn spectral stimuli, akin to achromatic noise stimuli. Current methods to display such stimuli often do not92

take into account the visual system of the animal under examination, and instead focus on spectral space which is often93

not as relevant functionally. Instead, we have developed a method that allows for the reconstruction of a wide range of94

chromatic stimuli, with only a limited number of light sources, that can be applied across animals for which spectral95

sensitivities are known. Here we describe the core method for light spectra reconstruction, followed by highlights of96

important considerations regarding the stimulus system and aspects of the fitting procedure. An overview of the method97

is illustrated in Figure 2 for an idealized dichromatic animal chosen for ease of visualization.98

3.1 Building receptor-based color spaces99

The light-induced photon capture Q elicited by any arbitrary stimulus j is calculated by integrating its spectral100

distribution Ij(λ) (in units of photon flux: E = mol/s/m2) with the effective spectral sensitivity Si(λ) of photoreceptor101

i across wavelengths (Fig. 2A-C). Even when no photons hit a photoreceptor, it randomly produces dark events (Barlow102

et al., 1993; Chu et al., 2013; Stockman and Brainard, 2010). Mathematically, we can add these dark events as a baseline103

capture ϵi to the light induced capture. By multiplying this sum by the absolute sensitivity of photoreceptor i (Ci), we104

obtain the total absolute capture Qt
(i,j):105

Qt
(i,j) = Ci

(
Q(i,j) + ϵi

)
= Ci

(∫
λ

Si(λ)Ij(λ)dλ+ ϵi

)
(3.1)

When we calculate the total capture for all n photoreceptor types present in an animal, we get a vector that can be106

represented as a point in the receptor-based capture space (Fig. 2C and H):107

Q⃗t =


Qt

(1,j)

Qt
(2,j)

...

Qt
(n,j)

 =


C1

(
Q(1,j) + ϵ1

)
C2

(
Q(2,j) + ϵ1

)
...

Cn

(
Q(n,j) + ϵn

)

 = C⃗ ⊙
(
Q⃗+ ϵ

)
(3.2)

Equations 3.1 and 3.2 assume we know the spectral sensitivity of each photoreceptor and two more quantities: the108

absolute sensitivity Ci and the baseline capture ϵi. Unlike the spectral sensitivities of photoreceptors, both Ci and ϵi109

are usually unknown (and difficult to estimate) for most model organisms. In many conditions, it is assumed that the110

photoreceptors adapt to a constant background light according to von Kries adaptation (Kelber et al., 2003; Stockman111

and Brainard, 2010). This removes Ci from the equation, and we obtain the relative light-induced capture q(i,j) and112

baseline capture η(i,b) for background b:113
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Ci

(
Q(i,j) + ϵi

)
Ci

(
Q(i,b) + ϵi

) =
Q(i,j)

Q(i,b) + ϵi
+

ϵi
Q(i,b) + ϵi

= q(i,j) + η(i,b) (3.3)

For all n photoreceptor types, we obtain a vector (qt = q+ η) representing a point in relative receptor-based capture114

space (Fig. 2D and I). Note that equation 3.3 is mathematically equivalent to setting Ci to 1/
(
Q(i,b) + ϵi

)
. Thus, the115

relative photon capture is simply a form of multiplicative scaling that has been shown to approximate adaptational116

mechanisms within isolated photoreceptors (Clark et al., 2013; Juusola, 1993; Stockman and Brainard, 2010).117

Finally, if we assume that the light-induced capture is much larger than the baseline capture, we can drop η so that118

q = qt. However, we will show in a later example why setting a baseline capture value to a specific low value can have119

practical uses for designing color stimuli even when we lack knowledge of the exact biophysical quantity ascribed to it.120

Receptor-based photon capture spaces do not take into account the neural transformation applied by the photoreceptors121

themselves once photons are absorbed to give rise to electrical signals. It can therefore be beneficial to further convert122

our relative capture values to photoreceptor excitations e by applying a transformation f that approximates the change123

in the response in photoreceptors (Fig. 2E and J):124

e = f(q+ η) (3.4)

Common functions used for animal color vision models are the identity, the log, or a hyperbolic function (Chittka,125

1992; Clark et al., 2017; Hempel de Ibarra et al., 2014; Vorobyev and Osorio, 1998). Applying any of these functions -126

except the identity function - will change the geometry of the color space and thus distances measured between points127

(Fig. 2H-J). If the transfer function is not known for an animal’s photoreceptors, the identity function (i.e. the linear128

case) can be used or a transfer function can be reasonably assumed given measured transfer functions in other animals129

or photoreceptor types. Photoreceptor excitation values are the de facto inputs to the visual nervous system of the130

organism. We will therefore consider spectral stimuli within photoreceptor excitation spaces as a foundation for our131

subsequent fitting procedures.132

3.2 Fitting procedure133

The goal of our method is to enable experimenters to use only a limited set of light sources to create metamers that134

“simulate” arbitrary light spectra for a given animal or animals. In order to do so, we use a generalized linear model135

of photoreceptor responses (Fig. 2A-E) to adjust the intensities of a set of the light sources in order to map intended136

spectral distributions onto calculated excitations of each photoreceptor type. Using equations 3.1-3.4, we can calculate137

photoreceptor excitation for any desired light stimulus. This results in an n-dimensional vector e that represents the138

effect of this visual stimulus on the assortment of photoreceptors of the animal. Instead of presenting this particular139

arbitrary distribution of light, we can use a visual stimulus system composed of a limited set of light sources to140

approximate this vector e and thus match the responses to our desired light stimulus. In figure 2, this corresponds to141

finding a coefficient for each light source vector to approximate the coordinates of the visual stimulus points in the 2D142
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excitation space. This operation could theoretically be done in capture or relative capture space. However given that143

each transformation distorts the distances between points, it is more appropriate to perform this operation in excitation144

space, given that it is closer to perceptual space.145

Given an animal’s n photoreceptors and m available light sources, we can construct a normalized capture matrix A146

using equation 3.3:147

A =


q(1,1) q(1,2) . . . q(1,m)

q(2,1) q(2,2) . . . q(2,m)

...
...

. . .
...

q(n,1) q(n,2) . . . q(n,m)

 (3.5)

Here, q(i,j) is the relative light-induced photon capture of photoreceptor i given the light source j at an intensity of148

one unit photon flux. Calculating A requires knowledge of the spectral distribution of each light source, which can be149

obtained using standard methods in spectrophotometry (Franke et al., 2019; Heath et al., 2020). This will also yield the150

intensity bounds of each light source. We denote the lower bound intensity vector as ℓ and the upper bound intensity151

vector as u. The theoretical minimum value for ℓ is 0 as a light source cannot show negative intensities.152

To match the desired photoreceptor excitations, we need to find the intensity vector x for the available light sources so153

that the calculated excitations of the system match the desired photoreceptor excitations e:154

f (Ax+ η) ∼ e (3.6)

To find the optimal x, we first consider two points. First, x needs to be constraint by the lower bound ℓ and upper155

bound u. If an experimenter wants to find the best fit independent of the intensity range of the stimulation system, we156

only need to have a non-negativity constraint for x (theoretical minimum of ℓ). Second, an experimenter may want to157

weight each target photoreceptor excitation differently, if certain photoreceptors are thought to be less involved in color158

processing (see e.g. Heath et al. (2020)). Thus, we obtain a constrained objective function that minimizes the weighted159

(w) difference between our desired excitations (e) and possible excitations (f (Ax+ η)) subject to the intensity bound160

constraints ℓ and u:161

minimize ∥w ⊙ (f (Ax+ η)− e) ∥2

subject to ℓ ≤ x ≤ u
(3.7)

To ensure that we consistently find the same x, we use a deterministic two-step fitting procedure. First, we fit the relative162

capture values - before applying any nonlinear transformation - using constrained convex optimization algorithms.163

Next, we initialize x to the value found during linear optimization and use nonlinear least squares fitting (Trust Region164

Reflective algorithm) to find an optimal set of intensities that match the desired excitations. This two-step fitting165

procedure is deterministic and ensures that the nonlinear solution found is the closest to the linear solution, if the166

nonlinear optimization problem is not convex. If the transformation function is the identity function, the second step is167
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skipped completely as the first step gives the optimal solution. There are a few important points to note regarding this168

fitting procedure, which we address below.169

3.3 Gamut and visual stimulation systems170

So far we have not considered the hardware and the ability of a visual stimulus system to represent colors. In human171

color vision, the “gamut” represents the total subset of colors that can be accurately represented by an output device,172

such as a LED stimulation system (Balasubramanian and Dalal, 1997). In order to generalize this concept and use it to173

design stimulus systems that are adequate for our fitting procedures, we have derived a gamut metric that corresponds174

to the “percentage of (animal) colors reproduced by a stimulation system”. To calculated this metric we separately175

consider a “perfect” stimulation system, where the intensity of each unit wavelength along the (animal) visible spectrum176

can be varied independently, and a “real” stimulation system, composed of a combination of light sources. We derive a177

measure of size that each system occupies in an animal’s corresponding chromaticity diagram and calculate their ratio178

(See methods for details). This mathematical tool can be applied to any set of light sources for which the spectra have179

been measured, and can be used to optimally select a set of light sources in the context of our fitting procedure.180

For illustration purposes we consider a set of commercially available LEDs (Fig. S2A-B) which can be combined to181

create a stimulus system (Heath et al., 2020). We vary the composition and number of LEDs of a stimulus system,182

and calculate the metric for mice, bees, humans, fruit flies and zebrafish. We find that if the number of LEDs is below183

the number of photoreceptors, each LED added to the system significantly increases the fraction of colors that can be184

represented (Fig. S2H-L). Adding more LEDs than this only minimally improves the system (Fig. S2H-L). Examining185

the distribution of all n-sized LED stimulus systems (with n being the number of photoreceptor types of the animal)186

highlights that different animals allow for more or less freedom of LED choice (Fig. S2M-Q). Interestingly, LED187

combinations that would be chosen according to the peak of the sensitivities, a commonly used strategy when designing188

stimulus systems (Schnaitmann et al., 2018; Zimmermann et al., 2018), most often are not included in the 10% largest189

gamuts of all n-LED combinations (Fig. S2M-Q). This is due to the fact that our metric takes into account the shape190

and overlap of the sensitivities and LEDs, in addition to the peak of the sensitivities and LEDs.191

Finally, a desired property of a given stimulus system may be to enable experiments across vastly different intensity192

regimes. As stimulus intensities are increased, LEDs will reach their maximal intensities (Fig. S2B) and the gamut of193

the stimulation system will decrease (Fig. S2H-L). At higher intensities of a stimulus, adding additional LEDs can194

enable reconstruction of more colors. This gamut metric is therefore a useful tool for assessing the suitability of an195

existing visual stimulation system or selecting light sources for de novo assembly.196

3.4 In and out of gamut fitting197

A desired capture value of light can be within the gamut of the stimulation system or out-of-gamut (e.g. Fig. 2H). If the198

desired captures of a stimulus set are within the gamut of the stimulus system, applying any excitation transformation199

or changing the weighting factor w will have no effect on the fitted intensities as an ideal solution exists (Fig. 2H-J).200
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In this case, the second step of the fitting procedure (i.e. the nonlinear optimization) will be skipped to improve201

efficiency. Conversely, the intensities found when fitting captures outside the system’s gamut can vary depending on202

the chosen non-linearity and weighting factor w (Fig. S3). In these cases, it is especially important to consider the203

light conditions during experiments (photopic, mesopic, scotopic). According to various models of photoreceptor204

noise, the noise of photoreceptors is constant in dark-adapted conditions and becomes proportional to the capture205

in light-adapted conditions (Weber’s law) (Chen et al., 2012; Stockman and Brainard, 2010). Thus the monotonic206

transformation function f chosen for each condition should be the identity or the log, respectively, in order to ensure207

homogeneity of variance. We have found that using a log transformation and adding a small constant baseline capture ϵ208

provide a good prediction of photoreceptor responses across intensities for the fruit fly in the dark-adapted state (Fig.S4).209

This nonlinearity effectively rectifies the calculated captures for small values that are indistinguishable from dark and210

smoothly transitions between a linear and logarithmic regime. Furthermore, this transformation approximates the211

measured responses of other photoreceptors (Kawasaki et al., 2015) and prevents a zero division error in dark-adapted212

or close to dark-adapted conditions when using a log transformation.213

3.5 Gamut correction prior to fitting214

For humans, many displays use gamut correction algorithms to adjust how out-of-gamut colors are represented (Bae215

et al., 2010). For example, an image that is too intense will be scaled down in overall intensity in order to fit within the216

gamut. This can also be achieved with our method by fitting the image without any upper intensity bounds and then217

rescaling the fitted intensities to fit within the gamut of the stimulation system. Alternatively, capture values can be218

scaled prior to fitting, so that they are within the intensity bounds of the stimulation system (Suppl. C for details). For219

values that are completely outside of the color gamut - they cannot be reproduced by scaling the intensities - values220

are usually scaled and clipped in a way to minimize “burning” of the image (Bae et al., 2010). An image is burned221

when it contains uniform blobs of color that should have more detail. Procedures to minimize burning of an image222

for humans usually involve preserving relative distances between values along dimensions that are most relevant for223

color perception. But these procedures are imperfect and will ultimately distort some of the colors. To generalize224

such procedures to non-primate animals, we have implemented an algorithm that assesses which capture values are225

outside of a system’s gamut and adjusts the capture values across the whole image to minimize “burning-like” effects226

by preserving relative distances between target values (Suppl. C for details). Our gamut-corrective procedures can227

be applied before fitting or optimized during fitting using our package. Applying gamut-corrective procedures will228

ensure that the relative distribution of capture values of the fitted image resembles the distribution of the original image,229

thus minimizing burning-like effects. Additionally, gamut correction does not require a specification of the nonlinear230

transformation function as all capture values are projected into the system’s gamut (as discussed in section 3.4).231
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3.6 Underdetermined stimulus system232

If the stimulus system is underdetermined - i.e. there are more light sources to vary than there are types of photoreceptors233

- then a space of target excitations can be matched using different combinations of intensities (Fig. S3). By default,234

the intensities that have smallest L2-norm within the intensity constraints are chosen. This will choose a set of light235

source intensities that generally have a low overall intensity and similar proportions. However, in our package drEye,236

we provide alternative options such as maximizing/minimizing the intensity of particular light sources or minimizing237

the differences between the intensities of particular light sources. An underdetermined system can also be leveraged in238

other ways, as we discuss in section 5.239

4 Example applications240

4.1 Targeted stimuli241

To illustrate our approach, we have applied our fitting procedure to two sets of targeted stimuli using the five example242

animals and LED-stimulation systems comprised of the LEDs introduced previously (Fig. S2A-B). The first stimulus is a243

set of Gaussian spectral distributions. Simulating this set of stimuli is similar to exciting the eye using a monochromator244

and mapping responses along a one-dimensional manifold in color space. We have simulated such a set of stimuli245

previously to map the tuning properties of photoreceptor axons in the fruit fly (Heath et al., 2020). The second stimulus246

is a set of natural reflectances of flowers multiplied with a standard daylight spectrum (Chittka, 1997; Chittka et al.,247

1994; Gumbert et al., 1999; Hernández-Andrés et al., 2001) (Fig. 3A). In both cases, we assume that photoreceptors are248

adapted to the mean of either stimulus set. We include a small baseline ϵ of 10−3µE and a log transformation in our249

photoreceptor model. Each photoreceptor type is equally weighted. To compare the results for different stimulation250

systems, we calculated their R2 values as a measure of goodness-of-fit. For the single wavelength stimulus set, a good251

fit is usually achieved with a n-size LED stimulus system, although for tetrachromatic animals some wavelengths may252

require more LEDs for a good reconstruction (Fig. 3B-D and H-J). Furthermore, more LEDs become necessary for253

high-intensity simulations (Fig. S5A-F). For the natural reflectance stimulus set, a n-size LED stimulus system usually254

gives a perfect fit, if an appropriate LED set is chosen (Fig. 3E-G and H-J). However, more LEDs than this improve fits255

for high-intensity spectra (Fig. S5A-F). The naturalistic stimulus set is more correlated across wavelengths. Thus, these256

types of stimuli are usually easier to simulate given different stimulation systems, as they are covered by a stimulus257

system’s gamut - especially when adapted to the mean.258

4.2 Random stimuli259

So far, we have assumed to have a set of spectral distributions to simulate. However this is not necessarily the case.260

Random sampling of a color space can be a useful way to probe a chromatic system. Similar to stimulating the eye261

using artificial achromatic stimuli, such as random square or white noise stimuli (Meyer et al., 2017; Zhuang et al.,262

2017), we can stimulate the eye using artificial chromatic stimuli to extract detailed chromatic receptive fields. This263
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can theoretically be done in either spectral- or receptor-based color space. To compare both methods, we will consider264

the excitation space of the medium- and long-wavelength photoreceptors of our five animals - the mouse, honey bee,265

zebrafish, human, and fruit fly. For this example, the stimulus system consists of the violet and lime LEDs (Fig.266

S2A). Photoreceptors are adapted to the sum of 1µE photon flux of light for both LEDs, and the photoreceptor model267

incorporates a small ϵ of 10−3µE and a log transformation. We sample 121 individual stimuli that equally span a268

two-dimensional plane from -1 to 1. The samples are drawn either from relative LED intensity space - log(i/ib) with269

i being the LED intensities and ib being the background intensities - or from photoreceptor excitation space. In the270

latter case, we fit LED intensities using our fitting procedure to best match the desired excitations. Points outside of271

the system’s gamut will be clipped as per the fitting procedure. No fitting is required when directly drawing LED272

intensities. When drawing equally spaced samples in relative LED space, the samples are highly correlated along the273

achromatic dimension of the excitation space (i.e. eL = eM ) and do not span the available gamut in excitation space274

(Fig. S6A-C). Consequently, any neural or behavioral tuning extracted from such a stimulus set can be biased towards275

specific directions in color space (Meyer et al., 2017; Weller and Horwitz, 2018). On the other hand, drawing samples276

in excitation space and then fitting them to the given LED stimulus system will always ensure that as much of the277

available color space is tested (Fig. S6D-F). Colors outside the system’s gamut will be clipped, but if the system is278

chosen to efficiently span color space, clipping can be reduced significantly. Since photoreceptor sensitivities always279

have some overlap, the photoreceptor axes are not completely independent as is the case with the spatial dimensions of280

width and height. Thus, clipping would even occur in a perfect stimulus system. Our drEye Python package includes281

various ways to efficiently draw samples within the gamut of a stimulation system to avoid clipping.282

5 Dealing with uncertain spectral sensitivities283

So far, we have assumed that the spectral sensitivities are uniquely described. However, measured sensitivities can vary284

depending on the experimental methods used (Salcedo et al., 2003; Sharkey et al., 2020). Furthermore, eye pigments285

and the optics of photoreceptors can change the effective sensitivities of photoreceptors (Hart, 2001; Sharkey et al.,286

2020). This can lead to uncertainty in the measured sensitivity of photoreceptors within the experimental conditions287

of interest. For example, recent measurements of fly photoreceptors show a shift in the peak of the rh6-expressing288

photoreceptor and a general broadening in the photoreceptors, as compared to original measurements (Sharkey et al.,289

2020). These differences likely reflect differences in sample preparation and measurement technique. Instead of having290

to (re-)measure the sensitivities within the experimental context of interest, previous measurements can be taken into291

account to build a prior distribution of photoreceptor sensitivities.292
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In order to take into account the distribution of photoreceptor properties, we first construct a normalized variance matrix293

Σ:294

Σ =


σ2
(1,1) σ2

(1,2) . . . σ2
(1,m)

σ2
(2,1) σ2

(2,2) . . . σ2
(2,m)

...
...

. . .
...

σ2
(n,1) σ2

(n,2) . . . σ2
(n,m)

 (5.1)

Here, σ2
i,j is the estimated variance of the relative light-induced capture of photoreceptor i given the light source j295

at an intensity of one unit photon flux. We can estimate each variance by drawing samples from the distribution of296

photoreceptor properties, then determining the light-induced capture for each sample given each light source at one297

unit photon flux, and finally calculating the empirical variance across samples. Given a particular set of light source298

intensities x, we can approximate the total variance of the calculated excitations ϑ2 by propagating Σ using Taylor299

expansions:300

ϑ2 =
(
f ′ (Ax+ η)

2
)T

Σx2 (5.2)

A large value of ϑ2 indicates that the chosen intensities x result in calculated excitations that vary considerably301

between different samples from the prior distribution of photoreceptor properties. We are less certain that the calculated302

excitations match the desired target values. Conversely, a smaller value of ϑ2 indicates that we are more certain that the303

calculated values match the desired target excitations. Thus, we wish to minimize ϑ2 while also matching the target304

excitations. To do this we apply a two-step procedure. The first step uses the mean spectral sensitivities and fits the305

excitation values as described in equation 3.7. We use the fitted x from the first step as our initial guess for the second306

step. In the second step, we minimize ϑ2, while constraining our solution for x to not deviate significantly from our fit307

in the first step:308

minimize ϑ2

subject to ∥w ⊙ (f (Ax+ η)− e) ∥2 < δ

ℓ ≤ x ≤ u

(5.3)

δ is the value of the objective function after optimizing x in the first step plus some added small value. δ may even be309

zero in an underdetermined system as multiple solutions can exist that give an optimal fit but have different values for310

the overall uncertainty ϑ2.311

As an example, we consider two photoreceptors with spectral sensitivities that follow a Gaussian distribution (Fig.312

4A) and an underdetermined stimulus system consisting of a UV, green and orange LED (Fig. 2G). The widths of the313

sensitivities vary between 30-70nm and 60-100nm for each photoreceptor respectively. The peaks of the sensitivities314

vary between 420-460nm and 500-540nm for each photoreceptor respectively. Changing the width and/or peak of the315

spectral sensitivity of either photoreceptor will affect the calculated capture for each LED differently. As an example of316

fitting using equation 5.3, we take a look at four different relative capture values (Fig. 4B). All four values are within317

the gamut of the stimulation system for the expected spectral sensitivities. As this is an underdetermined system, we318

can find multiple LED intensities x that fit the desired capture values for the expected sensitivities (Fig. 4C). Using319
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only the standard fitting procedure from section 3.2, we find a set of intensities that has the smallest L2-norm (Xs in Fig.320

4C). If we subsequently optimize to minimize the variance ϑ2, the fitted intensities x can differ significantly from the321

first fitting procedure (open squares in Fig. 4C). However, the overall goodness-of-fit for the expected target excitations322

is not affected as the solution simply moved within the space of possible optimal solutions (lines in Fig. 4C). To get a323

better idea of how fits differ between the original approach and this variance minimization approach, we drew many324

random capture values that are inside and outside the system’s gamut (Fig. 4D). After fitting, we calculated the average325

R2 scores of the two approaches for all samples from the prior distribution of spectral sensitivities. We find that on326

average the variance minimization approach improves the R2 score when considering a distribution of possible spectral327

sensitivities (Fig. 4E).328

The variance minimization approach works well when the goal is to fit particular excitation values (e.g. to span the329

excitation color space as in section 4.2). However, if the goal is instead to fit particular spectral distributions, the method330

can lack accuracy because the corresponding target excitation values are not unique due to uncertainty of photoreceptor331

sensitivities. To deal with this problem, we can increase the number of photoreceptors we use to fit artificially by adding332

different samples of sensitivities to the estimation procedure and weighting them by their prior probability. We can still333

perform variance minimization as a second step, if the sampled sensitivities cover a range of possible excitation values.334

A final approach to dealing with uncertainty of the spectral sensitivities is to update the prior distribution of the335

sensitivities with different behavioral and/or physiological data. Besides the more classical approaches to assessing the336

spectral sensitivity of photoreceptors and the dimensionality of color vision, sets of metameric stimuli can be designed337

to probe the responses of various neurons responding to visual inputs. For example, the lines in figure 4C correspond to338

a range of metameric stimuli that match the four example target captures in figure 4B. In the drEye package, we provide339

various ways to design metameric stimuli. For another example, we have measured the responses of photoreceptor340

axons in the fruit fly to stimuli that simulate the spectrum of one LED and then compared this response to the response341

of the neuron to the actual LED (Fig. S7). If the responses match, the sensitivities used are a good approximation342

within the wavelength range tested. However, care should still be taken as different sensitivities can still produce the343

same response in a (randomly) chosen neuron or behavior. Thus, many different types of neurons should be measured344

and stimuli tested for validation purposes.345

6 Application to patterned stimuli346

So far we have not explicitly considered the spatial aspect of chromatic stimuli. Our method can be used to display not347

only full field stimuli but also patterned stimuli, simply by applying it pixel by pixel. However, specific considerations348

need to be taken into account when it comes to these types of stimuli, which depend both on the animal and the349

hardware.350

Our method can directly be applied to LCD screens and any other screens that pack small LEDs onto single pixels351

(Powell et al., 2021), as long as the set of light sources are adequate for the animal in question (see section 3.3).352
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However, if the gamut afforded by the available set of LEDs used in a particular display is small, it will require a change353

in the LED set at every pixel, a time consuming and expensive task. In such cases, projectors offer a more flexible and354

affordable solution, as these only require replacing a single set of light sources by either swapping one or more LEDs or355

filters or using fiber optics to couple an external light source (Bayer et al., 2015; Franke et al., 2019). However, the356

effective use of our method in the context of this type of hardware depends on two factors: the dimensionality of color357

vision and the flicker fusion rate of the animal of interest.358

Indeed, the core principle of projector design relies on "temporally" mixing light sources in different ratios in repeating359

patterns of subframes, and doing so at a higher frequency than the flicker fusion rate of the viewer (Fig. 5A). In most360

modern video projectors, this mixing occurs independently at each pixel, owing to an array of mirrors that are synced361

with each subframe and thus allow for a patterned image to be formed. This method at its core is equivalent to the362

algorithm we presented above, mixing in time instead of space.363

Importantly, in such systems, each subframe is dedicated to one light source. Therefore this subframe structure typically364

limits the experimenter to use only up to a number of independent light sources equal to the number of subframes, to365

reconstruct a light spectrum at each pixel. If this number is equal or larger than the number of photoreceptor types of a366

given animal, and if the refresh rate of the hardware is higher than the flicker fusion rate of the animal, the algorithm367

detailed above can be applied to reconstruct patterned images. However, when both of these conditions are not met,368

the method is not suitable. If there are fewer subframes than photoreceptor types, the gamut of the system will be too369

small to properly reconstruct most images. If the flicker fusion rate of the animal is higher than the refresh rate of the370

hardware, the temporal mixing will not work, and the subframes will be seen as flickering.371

For such cases, we have instead developed a different algorithm that can alleviate either problem, by allowing the use372

of a higher number of light sources than subframes and using the high spatial-spectral correlations existing in natural373

images, to optimally mix light sources in each subframe. We take advantage of modifications to some projector systems374

which allow for a more flexible use of their subframe structure. This flexibility in practice lifts the requirement of one375

dedicated light source per subframe, giving the user control over the spectral composition of each subframe (Bayer376

et al., 2015; Franke et al., 2019).377

As pixel intensity and light source intensities can be manipulated independently, the aim of our algorithm is to find the378

best light source intensities X (sources x subframes) and pixel intensities P (subframes x pixels) for each independent379

subframe, so that they match the target photoreceptor excitations E (photoreceptors x pixels) of the whole image:380

E ∼ f (AXP+ η) (6.1)

The light sources are constrained by the lower ℓ and upper u bound intensities they can reach, whereas the pixel381

intensities are parameterized, so that 1 allows all light from the light sources to go through and 0 does not allow382

any light to go through (i.e. luminosity). We fit P and X using an iterative approach similar to common EM-type383

algorithms, where we fix either P or X at each iteration while fitting the other using the same nonlinear least-squares384
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approach as previously. To initialize both P and X we first decompose the relative capture matrix of the image Q385

(photoreceptors x pixels) using standard non-negative matrix factorization. This returns two non-negative matrices P0386

(subframes x pixel) and Q0 (photoreceptors x subframes), whose dot product approximates Q. P0 is normalized so387

that its maximum is 1 and used as the initial matrix for P. For each column - i.e. each subframe - in Q0, we apply388

the nonlinear transformation to obtain excitation values and then fit light source intensities according to our objective389

function in equation 3.7. Using the initial values for P and X only a few iterations are needed (usually <10) to obtain a390

good fit for reconstructing the image.391

As an example, we fit a hyperspectral image of a calendula flower (Resonon Inc.) given the bee and the zebrafish392

photoreceptor sensitivities and their corresponding optimal LED sets (Fig. 5). For both animals, we set the number of393

subframes to be smaller than the number of photoreceptor types (2 subframes for the trichromatic bee, and 3 subframes394

for the tetrachromatic zebrafish), allowing for a high projector frame rate and high image bit-depth to be set given the395

experimenter’s hardware. Despite having fewer subframes than photoreceptors, we are able to achieve good fits by396

mixing LEDs available in each subframe at different intensities, showing that we can effectively increase the refresh397

rate of a projector system for trichromatic animals, or use four LEDs for tetrachromatic animals without sacrificing our398

fits. It is important to note that, although this method works well in most cases, it may sometimes be impossible to399

achieve perfect fits for every photoreceptor, depending on given photoreceptor sensitivities and the spectral correlations400

of the hyperspectral image. An example of this is clear for the fitting of the S photoreceptor of the bee in our example401

image, only reaching a R2 value of 0.753. In such cases, hardware limitations may prompt the experimenter to use402

more subframes at the cost of the projector frame rate.403

7 Conclusion404

While studies in trichromatic primates have benefited from the wide adoption of consistent methods for designing405

chromatic stimuli, studies in other animals have suffered from a lack of uniform methodology. This has resulted in406

difficulties in comparing experimental results both within and between animals. More generally used chromatic stimuli407

- e.g. using monochromators or standard RGB displays - also do not take into account the color space of the animal408

under investigation and usually give an incomplete description of the properties of a color vision system. Furthermore,409

with the currently available techniques, it has been challenging to design more natural stimuli, especially natural images,410

and thus understand the role of spectral information in processing ecologically-relevant scenes.411

Here, we present a method for designing chromatic stimuli, founded on color theory, that resolves these issues and can412

suit any animal where the spectral sensitivities of photoreceptors are known using a minimal visual stimulation system.413

Specifically, we provide a series of tools to reconstruct a wide range of chromatic stimuli such as targeted and random414

stimuli as well as hyperspectral images. We offer refinements to our methods to handle various nuances of color vision,415

such as uncertainty in spectral sensitivities or handling out-of-gamut color reconstruction. Even though our methods416

are hardware agnostic, we provide guidelines for assessing the suitability of a given stimulus system or selecting de417
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novo light sources. Because our methods do not depend on the stimulation device itself, they can serve as a color418

management tool to control stimulus systems within and between laboratories and therefore improve reproducibility of419

experimental results.420

In addition to the tools that we present here, our Python package drEye contains other tools that we have only mentioned421

briefly or omitted. These include efficient and even sampling of the available gamut, designing metameric pairs in422

underdetermined stimulation systems, and finding silent substitution pairs (e.g. section D). In addition, we have focused423

here on receptor spaces as a foundation for building stimuli, however if further transformations of receptor excitation,424

such as opponent processing, are known, these can also be included using our package, allowing the user to work in a425

space that might be “closer” to the animal’s perceptual space. Future updates will include new features such as the426

possibility of taking into account the varying spatial distribution of photoreceptor types across the eye of many animals427

(Wernet et al., 2015). With the aim of making adoption of our methods effortless, we provide our open-source drEye428

API and will make an accessible web application, which will be easy to use, regardless of coding proficiency.429

Code availability430

The drEye Python package is available under https://github.com/gucky92/dreye, and a list of the essential dependencies431

are listed in Table S1. Tutorials for using the different methods mentioned in the paper and additional approaches that432

were ommitted can be found in the documentation for the package under https://dreye.readthedocs.io/en/latest/.433
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Figure 1. Color and chromatic spaces of di-, tri-, and, tetrachromatic animals. (A-C) Spectral sensitivity functions
for the different opsins expressed in the photoreceptors of the mouse, the honey bee, and the zebrafish, respectively.
Photoreceptors assigned the label long (L), medium (M), short (S), ultrashort (U) from the longest to shortest wavelength-
sensitive photoreceptor. (D-F) Schematic representation of receptor-based color spaces of di-, tri-, and, tetrachromatic
animals, respectively. Q denotes capture. (G-I) Chromatic diagrams for the mouse, the honey bee, and the zebrafish,
respectively. The colored line indicate the loci of single wavelengths in the chromatic diagram. The dotted lines indicate
hypothetical non-spectral color lines that connect the points along the single wavelength color line that maximally
excite non-consecutive photoreceptors.
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Figure 2. Schematic representation of the photoreceptor model. (A) Two example spectral distributions of light
constructed artificially. Red: exp {sin(2π(λ− 300nm)/400nm)}; blue: exp {cos(2π(λ− 300nm)/400nm)}. (B)
Artificial spectral sensitivities constructed using a Gaussian distribution with mean 440nm and 520nm and standard
deviation 50nm and 80nm for the shorter (S) and longer (L) wavelength-sensitive photoreceptor, respectively. (C) To
calculate capture, the lights in A hitting the photoreceptors in B are each multiplied by the spectral sensitivities of each
photoreceptor and integrated across wavelengths. A small baseline capture value ϵ can be added to the light-induced
capture value. (D) To calculate the relative capture, the absolute capture calculated in C is divided by the background
capture according to von Kries adaptation. (E) A nonlinear transformation is applied to the relative capture values to
obtain photoreceptor excitations. (F) Photoreceptor signals are further processed in downstream circuits to give rise
to color percepts. (G) Example stimulation system consisting of a set of three LED light sources at their maximum
intensity (violet, green, and orange). (H-J) Capture space, relative capture space, and excitation space of photoreceptors
in B. The colored vectors represent the integration of the LED spectra in G with the spectral sensitivities in B. The colors
match the colors of the LEDs in G. These vectors can be combined arbitrarily up to their maximum LED intensities and
define the gamut of the stimulation system (black lines). The red and blue circles are the calculated captures, relative
captures, and excitation values for the spectra in A, respectively. The red-colored spectrum is out-of-gamut for the
stimulation system defined in G. Projection of this out-of-gamut spectrum onto the gamut of the stimulation system
gives different solutions when done in capture, relative capture, or excitation space (red line). The red X drawn at the
edge of the stimulation system’s gamut corresponds to the projection of the red-colored spectrum onto the gamut in
excitation space (i.e. the fit in excitation space).
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Figure 3. Fitting targeted stimuli to different model organisms. (A) Example target spectra to be reconstructed: a
set of natural spectral distributions (blue) and a set of Gaussian spectral distributions (red). (B-D) Absolute relative
error of fitting the 400nm spectrum to the mouse, honey bee, and zebrafish, respectively. For the mouse two LEDs
are sufficient to recreate the spectrum, but for the zebrafish a perfect recreation is not even possible with six LEDs.
(E-G) Absolute relative error of fitting a natural spectrum to the mouse, honey bee, and zebrafish, respectively. For the
mouse two LEDs, for the honey bee three LEDs, and for the zebrafish four LEDs are sufficient to perfectly simulate
the spectrum. (H-J) Goodness-of-fit (R2) values for the best LED sets (top 10%) across different number of LED
combinations for the mouse, honey bee, and zebrafish, respectively. The barred lines for each point correspond to the
range of R2 values achieved for the top 10% of LED combinations. The y-axis is plotted on an exponential scale to
highlight differences in the goodness-of-fit close to 1.
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Figure 4. Minimizing the variance in excitation values due to uncertainty improves the average fit. (A) Variance
in the spectral sensitivity for the short and long photoreceptor from the example in figure 2B by varying the mean
between 420-460nm and 500-540nm for each photoreceptor in steps of 10nm and varying the standard deviation
between 30-70nm and 60-100nm in steps of 10nm for each photoreceptor, respectively. (B) Relative capture space of
the photoreceptors in A adapted to a flat background spectrum. Gamut of the LED set in figure 2G (thick line) and the
resulting variance of the gamut due to the variance in the spectral sensitivities (thin lines). Xs correspond to example
capture values that are within the gamut given the expected sensitivities in A (thick lines). (C) Possible LED proportions
that result in the same calculated capture for the four examples in B using the expected sensitivities and the stimulation
system from figure 2G. Each colored line corresponds to the set of proportions that result in the same capture. The color
indicates the overall intensities of the set of LEDs. Xs indicate the fitted LED intensities using the fitting procedure
defined by equation 3.7. The open squares indicate the fitted intensities after minimizing the variance according to
equation 5.3 given the uncertainty in the spectral sensitivities as shown in A. (D) Randomly drawn captures that are in-
and out-of-gamut (gray squares). (E) Average improvement in the R2 score for all possible samples of the spectral
sensitivities in A when fitting the points in D with the additional variance optimization step. The black bars correspond
to within-gamut samples and open bars correspond to out-of-gamut samples.
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Figure 5. Reconstructing hyperspectral images with fewer subframes and number of photoreceptor types in the
honeybee and zebrafish. (A) Schematic of the subframe structure in traditional RGB projectors (B) Schematic of a
subframe structure with fewer subframes than LEDs. (C-D) Reconstruction of a hyperspectral flower (Resonon Inc.)
in the honeybee and zebrafish with two or three subframes and three or four LEDs, respectively. The top images are
the 8-bit mask for each subframe and the bottom are the normalized LED intensities used for each subframe. (E-F)
Comparison of target photoreceptor captures and fitted captures for each photoreceptor type for the honey bee and
zebrafish, respectively. The R2 value for each photoreceptor type is indicated in the image of fitted values.
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Supplementary Material539

A Projecting capture values into the chromaticity diagram540

To project (relative) capture values of any set of photoreceptors onto the n− 1 simplex, we first need to normalize the n541

capture values by the L1-norm to obtain the porportional captures p:542

p =
q

∥q∥1
(A.1)

Next, we define a linear transformation T (n− 1 x n) that project p onto the n− 1 simplex:543

T =



0 1 x(1,<2) x(1,<3) . . . x(1,<n)

0 0
√
1− ρ2,3 x(2,<3) . . . x(2,<n)

0 0 0
√
1− ρ3,4 . . . x(3,<n)

0 0 0 0 . . . x(4,<n)

...
...

...
...

. . .
...

0 0 0 0 . . .
√
1− ρn−1,n


(A.2)

where x(i,<j) is the average for all values in row i before the jth column, and ρ(i, i+ 1) is the average of544 ∑i−1
k=1(x(k,<j) − x(k,<j))

2 given row i and column j = i + 1. For example, x(1,<2) = 0.5 and ρ(2, 3) = 0.25.545

These formulations ensure the equality of all the distances between all the vertices in the n− 1 simplex. The point of546

capture values in the chromaticity diagram is then defined by Tp. We can also center the simplex by subtracting the547

point of equal capture from our capture values Tp−T1/n.548

B Calculating the percent of colors represented by a stimulation system549

Our gamut metric - the percent of colors represented by a stimulation system - is the ratio of the mean width of the550

stimulation system in the chromatic space of an animal over the mean width of an ideal system in this space.551

To calculate this metric we separately consider a “perfect” stimulation system, where the intensity of each unit552

wavelength along the (animal) visible spectrum can be varied independently, and the “real” stimulation system,553

composed of a combination of light sources. The intensity-independent gamut of the “perfect” stimulation system is the554

convex hull of the single wavelength manifold in the n− 1-dimensional chromaticity diagram (Fig. S2C, multi color555

line). To measure the size of this body (the convex hull), we calculate its mean width:556

1

N

N∑
i=1

(max (Xui) + max (−Xui)) (B.1)

where X are the mean-centered vertices that describe the convex hull in the chromaticity diagram (points x chromaticity557

dimension) and ui is one of N L2-normalized random vectors drawn from a standard normal distribution. We drew558
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a total of 10000 random vectors (N = 10000). We also project a set of possible captures of the stimulation system559

in question (the “real” one) onto the chromaticity diagram S2C, gray shape). The set of captures we include are the560

calculated captures from all possible combinations of turning the LEDs off or maximally on. This will include all561

vertices of the convex body of the “real” stimulation system. As with the “perfect” system, we calculate the mean width562

of “real” stimulation system. The ratio of the mean widths corresponds to the fraction of colors that can be represented563

by a given stimulation system relative to a “perfect system” for a given animal.564

The sum of capture values - the overall capture - approximates the overall intensity of a stimulus. Before projecting the565

set of possible captures of a stimulation system onto the chromaticity diagram, we can linearly interpolate between566

points to obtain points at specific overall capture and thus obtain the gamut metric for different intensity regimes.567

Consequently, the percentage of colors that can be represented by a given stimulation system drops significantly for568

high intensity regimes (Fig. S2D-E). Unlike in the intensity-independent case, having more LEDs than the number of569

photoreceptors can significantly improve our gamut metric. Therefore, we can determine if and when adding additional570

LEDs would enable reconstruction of more colors at higher intensities.571

C Gamut corrections prior to fitting572

More details on gamut corrections methods available in our package, can be found on the github page for drEye. Here573

is just a short summary of two methods to correct a set of capture values obtained from an image to prevent burning of574

the image.575

C.1 Scaling of the overall capture values to fit within the range of intensities of the stimulation system576

If the stimulation system does not reach the intensities required to accurately reconstruct a set of stimuli (i.e. excitation577

values), we can scale the target relative capture values q linearly for all stimuli. To do this we first multiply the578

normalized capture matrix A element-wise by the maximum possible intensity u of each light source:579

Amax = A⊙ uT (C.1)

Then we calculate the minimum of the maximum in each row of Amax:580

qamax = min
i

(
max

j
qa(i,j)

)
(C.2)

where qa(i,j) is the element in Amax corresponding to photoreceptor i and light source j.581

Similarly, we calculate the maximum relative capture across the whole set of target stimuli:582

qmax = max
i

(
max

j
q(i,j)

)
(C.3)

where q(i,j) is the relative capture of photoreceptor i and stimulus j.583

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.17.476640doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.17.476640
http://creativecommons.org/licenses/by-nc-nd/4.0/


Finally, we scale all target capture values, so that they span the intensity range of the stimulation system that is able to584

reproduce the most colors:585

qscaled
j = qj ·

qamax

qmax
(C.4)

Using the rescaled relative captures, we can then apply the baseline term η and the nonlinear transformation f to obtain586

the rescaled target excitation values.587

C.2 Scaling of capture values to fit within the gamut588

Our fitting algorithm will automatically clip values that are outside of the system’s gamut. However, this simple clipping589

can burn a set of target values as the relative distances in receptor-based capture space are not preserved. After applying590

the transformation from the previous section, we can further rescale capture values, so that they are within the gamut of591

the stimulation system. That is all capture values are inside the body defined by the light sources of the stimulation592

system in the chromaticity diagram (e.g. gray shapes in Fig. S2C-G). To do this we first project all target captures onto593

the chromaticity plane (see section A) to obtain a matrix P (stimuli/pixels x photoreceptors). For humans, rescaling and594

clipping usually occurs to preserve hue while caring less for saturation of a color. This effect can be quasi-replicated in595

the chromaticity diagram for any animal by aiming to preserve the angles relative to the adapted capture - the center in596

the chromaticity diagram. To adjust the saturation of a stimulus, we need to adjust the distance of all capture values to597

the center of the chromaticity diagram until all points are within the gamut of the stimulation system. First, we find by598

how much each set of capture values has to be rescaled in order to fit within gamut. Then, we take the minimum scaling599

value and scale all capture vectors by that amount in the chromaticity diagram. This ensures that all points are within600

the gamut of the system. Finally, we project the capture values back into the receptor-based capture space and multiply601

them by their overall capture. Using the rescaled captures, we can then apply the baseline term η and the nonlinear602

transformation f to obtain the rescaled target excitation values.603

In our drEye package, we also implemented an algorithm that performs the two described steps simultaneously using a604

convex optimization approach that finds the optimal trade-off between scaling the intensities and scaling the angles in605

the chromaticity diagram.606

D Silent substitution607

The goal of silent substitution is to excite single (or a select set of) photoreceptor types while keeping all others silent.608

Silent substitution takes the spectral sensitivities of the chosen model organism into account in order to alter the stimulus609

in a way that only changes the excitation of a single or a subset of photoreceptors. More specifically, if the chosen610

stimulus presentation which activates the photoreceptor of interest also affects the excitation of other the photoreceptors,611

adjustments are to be made to negate those effects (Estévez and Spekreijse, 1982). While the silent substitution method612

is by no means new (Estévez and Spekreijse, 1982), here we offer a unified method that can be flexibly used regardless613

of stimulation system or model organism and does not require the experimenter to perform any calculations by hand.614

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.17.476640doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.17.476640
http://creativecommons.org/licenses/by-nc-nd/4.0/


The objective function for silent substitution is the following:615

minimize −
(
qt
1

)T
(1− s) +

(
qt
2

)T
(1− s)

subject to Ax1/2 ≡ q1/2

l ≤ x1/2 ≤ u

qt
1 ⊙ s1 ≡ qt

2 ⊙ s2

(D.1)

where s is an indicator vector with one indicating which photoreceptors to keep silent and 0 indicating the photoreceptors616

that are supposed to be differentially excited. The 1 and 2 subscript indicates the two stimuli/captures that aims to617

silence all photoreceptors but maximize the contrast for the photoreceptors that are not supposed to be silent. This618

objective function aims to find the maximum possible contrast between two stimuli for the non-silent photoreceptors619

given the LED system and spectral sensitivities of each photoreceptor.620

For example, if an experimenter was attempting to isolate the blue-sensitive pR8 photoreceptor in the fruit fly, it would621

clearly require presentation of blue light to do so. However, this would also activate the blue-green-sensitive yR8. Thus,622

our method would also adjust the intensities of longer-wavelength LEDs to keep the response of yR8 the same, while623

only modulating the activity of pR8. Ultimately, this canonical method has been developed in a myriad of different624

settings, but our method unifies them by allowing any experimenter to customize the stimulus to their LED system and625

model organism specifics. Based on that information, our method then automatically finds the best LED combination626

that maximizes the contrast of the non-silent photoreceptors.627
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Figure S1. Sensitivities and chromatic diagrams of the human and fruit fly. (A) Human spectral sensitivities as
measured by Stockman et al. (1993). (B) Spectral sensitivities of Drosophila melanogaster as measured by Sharkey
et al. (2020). For simplicity, we ommitted the photoreceptor type expressing the rh1 opsin in the fruit fly as they are
broadly sensitive to all wavelengths. (C-D) LMS chromaticity diagram for humans and fruit flies based on their spectral
sensitivities, respectively.
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Figure S2. Color in the gamut across LED sets and animals. (A) Normalized photon flux across the wavelength
spectrum for 11 LEDs currently available for purchase from ThorLabs. In order, the LED labels stand for: deep UV (D),
UV (U), violet (V), indigo (I), blue (B), azure (Z), cyan (C), green (G), lime(L), amber (A), orange (O), and red (R). (B)
Maximum intensity in photon flux (µE = µmol/s/m2) for LEDs in (A) calculated from the irradiance measurements
provided by ThorLabs. (C-G) Chromaticity diagram of the mouse, honeybee, human, fruit fly, and zebrafish. The color
line is the single wavelength line, which corresponds to the perfect system. The shaded area is the gamut of the LED
stimulus system chosen according to the peak of the spectral sensitivities. (H-L) Percentage of colors in gamut for
the best LED sets (top 10%) across different number of LED combinations for the mouse, honeybee, human, fruit
fly, and zebrafish. Each line is the mean of the top 10% LED sets. The shaded area for each line spans the range of
values for the top 10% LED sets. The red line is the percentage of colors in the gamut ignoring the intensity range of
the LEDs. The gray lines are the percentage of colors in the gamut for different values of the overall capture. (M-Q)
The cumulative distribution of the percentage of color in the gamut for all n-size stimulus systems. The vertical lines
indicate the percentage of colors in the gamut for the LED set that most closely match the peak of the sensitivities.
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Figure S3. Fitting out-of-gamut spectra using different non-linearities and photoreceptor weights and fitting
within-gamut intensities of underdetermined systems. (A) Fitting of the red-colored spectrum in figure 2A given
the sensitivities in 2B and the stimulation system defined by the spectra in 2G using different non-linearities and
photoreceptor weight ratios. In this case, using different non-linearities and weights mainly affects the intensity of the
green LED. (B) Fitting the blue-colored spectrum in figure 2A given the sensitivities of 2B and the stimulation system
in 2G yields many possible LED intensity combinations that give the same set of capture values (colored line). The
color of the line indicates the overall intensity of the given intensity combination.
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Figure S4. Responses of putative isolated photoreceptors to various combinations of lights fit a log photoreceptor
model with a small baseline value ϵ. Two-photon calcium imaging was done as described in and using the same
stimulation system as in Heath et al. (2020). The genetic fly lines are also the same NorpA lines used in Heath et al.
(2020). The flies were adapted to the dark and different LED combinations were shown at an interval of 2 seconds
with a duration of 0.5 seconds. The circles in panel A and B show the average response to all LED combinations that
correspond to a small range of absolute capture values for the short-wavelength sensitive yR7 and long-wavelength
sensitive yR8 photoreceptors, respectively. To calculate the capture values we used the spectral sensitivities as measured
by Sharkey et al. (2020) (Fig. S1B). The error bars indicate the 95% confidence interval calculated as described in
Heath et al. (2020). The solid line is the best fit for the baseline ϵ value given a log transformation of the relative capture
values. In the dark, the relative capture values is calculated as follows: q = (Q+ ϵ)/ϵ. To prevent zero division, ϵ = 0
is clipped to 10−8. The dashed lines are two different values for ϵ as indicated. yR7: 4 flies and 51 neurons; yR8: 6
flies and 120 neurons.
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Figure S5. Fitting targeted stimuli to different model organisms at high intensities. (A) Example target spectra to
be reconstructed at higher intensity than in figure 3 (same set as in figure 3A, but at 2000x the intensity): a set of natural
spectral distributions (blue) and a set of Gaussian spectral distributions (red). (B-F) Goodness of fit (R2) values for the
best LED sets (top 10%) across different number of LED combinations for the mouse, honey bee, human, fruit fly, and
zebrafish, respectively. The filled areas correspond to the range of R2 values achieved for the top 10% LED sets.
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Figure S6. Fitting random stimuli to different model organisms. (A-C) Samples drawn in relative log LED space
using the violet and lime LED (Fig. S2A) mapped onto excitation space of the mouse, honey bee, and zebrafish,
respectively. The set of samples are more correlated along the achromatic direction (sum of excitations) than the
chromatic direction (difference of excitations). (D-F) Samples drawn in excitation space and fitted using our optimization
approach in equation 3.7. The set of samples span the chromatic and achromatic dimensions more equally within the
limits of gamut of the stimulation system.
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Figure S7. Performing LED simulations to verify previously measured sensitivities within the UV- and violet-
wavelength range. Two-photon calcium imaging was done as described in and using the same stimulation system as in
Heath et al. (2020). The genetic fly lines are also the same lines used in Heath et al. (2020). (A-B) Simulating the UV
LED and violet LED using the surrounding LEDs: dUV and violet for UV LED simulation and the UV and azure LED
for the violet LED simulation. We used the fruit fly sensitivities as measured by Sharkey et al. (2020) to fit the LED
intensities for the simulations. (C-D) Responses of yR7 photoreceptor axons to the actual LEDs and their simulations.
(E-F) Responses of yR8 photoreceptor axons to the actual LEDs and their simulations.
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Package Version
Python ≥3.6
SciPy ≥1.6
cvxpy ≥1.1.10
quadprog ≥0.1.9
jax ≥0.2
scikit-learn ≥1.0

Table S1. Essential Package Dependencies of drEye.
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