Prediction and validation of host cleavage targets of SARS-CoV-2 3C-1 like protease 2

- 3
- 4
- 5 Nora Yucel¹, Silvia Marchiano^{2,3,4}, Evan Tchelepi⁵, Germana Paterlini⁶, Quentin McAfee¹, Nehaar
- Nimmagadda¹, Andy Ren¹, Sam Shi¹, Charles Murry^{2,3,4,7,8,9}, Zoltan Arany¹ 6
- 7
- 8 ¹Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- 9 PA 19104
- ²Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican 10
- Street, Brotman Building Room 453, Seattle, WA 98109, USA. 11
- 12 ³Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
- 13 ⁴Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA
- 14 98195, USA
- 15 ⁵NetQuest Corporation, 523 Fellowship Rd Suite 205, Mt Laurel Township, NJ 08054
- ⁶Certusoft, 8500 Normandale Blvd, #980, Bloomington, MN, 55437 16
- 17 ⁷Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA
- 18 98195, USA
- 19 ⁸Sana Biotechnology, Seattle, WA 98102, USA
- 20 ⁹Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- 21
- 22 Corresponding:
- 23 Zoltan Arany MD PhD
- 24 Professor in Medicine
- 25 Perelman School of Medicine
- University of Pennsylvania
- 26 27 28 29 30 Smilow Center for Translational Research
- 11th floor 3400 Civic Blvd
- Philadelphia 19104
- 31 Administrative assistant:
- 32 **Emily Romick**
- 33
- 34

35 Abstract

- 36 How SARS-CoV-2 causes the observed range of clinical manifestations and disease severity
- 37 remains poorly understood. SARS-CoV-2 encodes for two proteases (3CLPro and PLPro), vital for
- 38 viral production, but also promiscuous with respect to host protein targets, likely contributing
- 39 to the range of disease. Pharmacological inhibition of the 3C-like3 protease has revealed
- 40 remarkable reduction in hospitalization and death in phase 2/3 clinical studies. However, the

41	mechanisms responsible for the pathology mediated by those proteases are still unclear. In this
42	study, we develop a bioinformatic algorithm, leveraging experimental data from SARS-CoV, to
43	predict host cleavage targets of the SARS-CoV-2 3C-like protease, or 3CLPro. We capture targets
44	of the 3CL protease described previously for SARS-CoV, and we identify hundreds of new
45	putative targets. We experimentally validate a number of these predicted targets, including the
46	giant sarcomeric protein Obscurin, and show that expression of 3CL protease alone
47	recapitulates the sarcomeric disorganization seen by SARS-CoV-2 infection of hiPSC-derived
48	cardiomyocytes. Our data provide a resource to identify putative host cleavage targets of 3CL
49	protease that contribute to mechanisms and heterogeneity of disease in COVID-19 and future
50	coronavirus outbreaks.
51	
52	Introduction
53	COVID-19 continues to be a leading cause of death and morbidity across the world since the
54	initial outbreak in Wuhan, China December 2019 ¹ . How SARS-CoV-2, the causative agents of
55	COVID19, leads to its wide range of disease manifestations remains incompletely understood.
ГC	In addition to lung damage, CARS CoV/ 2 infection can also cause hidrow damage, eletting

- 56 In addition to lung damage, SARS-CoV-2 infection can also cause kidney damage, clotting
- 57 disorders, loss of taste and smell, cognitive dysfunction, muscle atrophy, and cardiac

58 dysfunction ^{2–5}. In addition, long-lasting COVID-19 symptoms have been reported in patients up

to a year after initial illness, including fatigue, shortness of breath, brain fog, and elevated heart

- 60 rate ^{6,7}. It remains unclear how SARS-CoV-2 affects differently the multiple organs and cell types
- 61 involved. Nor it is known what host characteristics determine who will develop severe COVID-

62 19, which organs will be affected, or whether long COVID will ensue. A deeper mechanistic

63 understanding of virus-host interactions is thus needed.

64

65	Various studies have identified host interaction partners of many SARS-CoV-2 proteins,
66	including the spike, envelope, nucleocapsid, and membrane proteins ^{8–10} . These interactions
67	have various consequences, including suppression of innate immune response, suppression of
68	apoptosis, and reprogramming of host transcription and translation. In addition to protein-
69	protein interactions, important virus-host interactions can be caused by enzymatic cleavage of
70	host proteins by viral proteases. For example, myocardial dysfunction following infection by
71	coxsackie CVB3 virus can in part be ascribed to cleavage of dystrophin protein by the viral
72	protease 2A ^{11,12} ; enteroviral 3C proteases can cleave host NLRP1 to trigger inflammasome
73	activation ¹³ ; HIV-1 protease mediates apoptosis by cleaving host procaspase 9 and Bcl2 ^{14,15} ;
74	and the Zika virus nsP2 cysteine protease can cleave host proteins SFRP1 NT5M, and FOXG1 ¹⁶ .
75	
76	SARS-CoV-2 encodes for two proteases, a papain-like protease (PLPro) and the 3C-like protease
77	(3CLPro, also knowns as main Protease, MPro, or NSP5) . These proteases are highly conserved
78	across coronavirus species and are absolutely required for viral replication ^{17–20} . Both proteases
79	are thus actively being investigated as targets for antivirals ²¹ . Recent Phase2/3 clinical trial
80	results with PF-07323332, a 3CL inhibitor, administered in combination with ritonavir, revealed
81	89% reduction in hospitalization with COVID-19 ²² . Both PLPro and 3CLPro are generated via
82	autocatalytic cleavage from the overlapping ORF1a and ORF1ab polyproteins, the first
83	translation products following SARS-CoV-2 infection. The ORF1a/ab polyproteins encode 16

84	non-structural proteins (NSP1-16) that build the viral replication machinery (Fig 1A). The
85	nonstructural proteins are liberated from the ORF1a/ab polyprotein through cleavage by PLPro
86	and 3CLPro, encoded by NSP3 and NSP5, respectively. Following this processing PLPro remains
87	bound to the endoplasmic reticulum membrane, while 3CLPro cleaves itself free, giving it
88	access to the full cytosolic compartment. The impact of these proteases on the host proteome,
89	and in particular the 3CLPro, remains poorly defined. Targeted screening of 300 interferon-
90	stimulated proteins in cell lines overexpressing SARS-CoV-2 3CLPro identified RNF20 as a target
91	of 3CLpro ²³ . In a different screening of 71 immune pathway-related proteins, IRF3 was
92	identified as target of PLpro and NLRP12 and TAB1 as targets of 3CLpro, suggesting the role of
93	those proteases in the innate immune response to the virus ²⁴ .

95 Only limited efforts have thus far been taken to identify systematically, and in unbiased fashion, 96 host cleavage targets of 3CLPro from SARS-CoV-2. Given the high conservation of 3CLPro, such 97 analysis would extend as well across coronavirus species. One approach taken recently used N-98 terminomics to identify neo-N-termini generated by the viral proteases, and identified 14 new cellular substrates ²⁵ and more than 100 substrates in a second study ²⁶. This approach is 99 100 limited, however, by the need for sufficient protein abundance and appropriate fragment size and properties to be detected by mass spectrometry ^{27,28}. Only 3 cleavage targets have been 101 102 identified by more than one study to date (TAB1, ATAD2 and NUP107), reflecting the lack of 103 saturation of these approaches. Moreover, cleaved proteins that are subsequently degraded (a 104 process accelerated by infection)^{29,30} also escape detection by N-terminomics, as do proteins not expressed by the cell types used experimentally. In silico approaches provide the 105

106	opportunity to overcome these numerous limitations, and to avoid laborious experimental
107	screens. An initial such approach relied on similarity between cleavage sites in the viral
108	polypeptide across divergent coronavirus species (NetCorona1.0) ³¹ . However, this method
109	generates scores using assumptions about the viral cleavage site that do not apply to the SARS-
110	CoV-2 consensus sequence. For example, NetCorona1.0 predicts that a sequence containing a
111	proline at the P2' position can be cleaved, but this substitution has been shown to block
112	cleavage in cleavage assays ³² . In addition, NetCorona1.0 does not consider cleavage site
113	accessibility conferred by secondary structure, the relative efficiency of cleavage at different
114	sites, or the possibility that there may be host target sites of higher affinity than viral sites.
115	
116	Here we combine published cleavage efficiency data on the SARS-CoV 3CLPro, which is 96%
117	similar to SARS-CoV-2 3CLpro ³³ , with genome-wide secondary structure analyses, to identify
118	and score 99,000+ predicted SARS-CoV/SARS-CoV-2 3CLPro cleavage sites across the human
119	proteome. Through score filtration and secondary structure analysis, we identify over 1000 high
120	likelihood sites. We re-discover nearly all prior SARS-CoV-2 3CLPro experimentally identified
121	sites, and we validate newly identified targets with purified reagents and in cell culture.
122	Focusing on cardiomyocyte-specific hits, we show 3CLPro leads to cleavage and degradation of
123	the sarcomeric protein obscurin (OBSCN) in human induced pluripotent cell-derived
124	cardiomyocytes (hiPSC-CM), and recapitulates the sarcomeric disorganization observed with
125	SARS-CoV-2 infection of hiPSC-CMs ^{34–36} . Our study provides a comprehensive atlas for
126	identifying the degradome of 3CL proteases, applicable to SARS-CoV-2 and, in light of the

- 128 outbreaks.
- 129

130 Bioinformatic prediction of SARS-CoV-2 3CLPro targets using experimental data from SARS-

- 131 **CoV 3CLPro**
- 132

133 We first sought to identify and score potential cleavage targets of the 3CLpro encoded by SARS-134 COV-2. Given the 96% sequence similarity between 3CLPro from SARS-CoV-2 as well as the homology in the viral genome cut sites ^{17,33,37}, we developed an algorithm based on 135 experimental data generated previously from SARS-CoV (2003) 3CLPro³². In this previous study, 136 137 FRET polypeptides spanning the first endogenous cut site between NSP4 and NSP5 (P5-138 SAVLQSGF-P3') were generated and modified with every possible single amino acid substitution 139 from P5 to P3' position relative to the cleavage site. Cleavage efficiency by 3CLpro was then 140 assessed by fluorescence intensity compared to the consensus cleavage sequence. We 141 leveraged this data set to generate a score for every possible cleavage site using a lookup table, 142 multiplying the relative efficiency of each amino acid. This multiplication was then applied with 143 a sliding 8-amino acid windows across the entire human proteome (Fig 1B). Substitution at any 144 site that showed no detectable cleavage was interpreted as "0". Assuming a glutamine (Q) in 145 the P1 position, over 98,697 scored sites (>0) were identified. Expanding our search to include 146 methionine (M) or histidine (H) at P1 uncovered a total of 195,684 sites with a median score of 147 0.0008 (Fig 1C) (Supplemental Table 1). GO analysis of scores in the top 15% (>0.01) showed

an enrichment for cell-adhesion, morphogenesis and cytoskeletal genes (Supplemental Table
We named the algorithm Sarsport1.0.

150

151	To evaluate the precision of Sarsport1.0, we calculated scores for the 11 known 3CLPro cut sites
152	in the SARS-CoV viral genome. Scores ranged from $1.31 - 0.04$, all within the upper 5^{th}
153	percentile of the score range. These scores were then compared with the published relative
154	K_{cat}/K_m values for each cleavage site ³⁸ . With the exception of the cut-site between NSP9 and
155	NSP10 (ATVRLQ*AGNAT), our calculated score correlated closely with relative K_{cat}/K_m (Fig 1D
156	left). In contrast, there was essentially no correlation between NetCorona1.0 scores and
157	relative Kcat/Km (Fig 1D , right).
158	
159	To evaluate the sensitivity of Sarsport1.0 to identify SARS-CoV-2 host protein targets, we next
160	calculated scores for the >100 recently published experimentally-identified SARS-CoV-2 3CLPro
161	cleavage targets. Sarsport1.0 identified 104 of 117 sites, including those with non-canonical
162	methionine or histidine at the P1 position (Fig 1C). The median score was over 0.1, which is
163	within the top 2.5% of all scores. Receiver operator curve (ROC) analysis (Fig 1E) showed
164	Sarsport1.0 to be highly predictive, with an area under the curve of 0.9473, and P < 0.0001. This
165	is likely an underestimate of true ROC, because true positives were likely missed in the
166	experimental approaches. We conclude that Sarsport1.0 is highly predictive of cleavage sites by
167	both SARS-CoV and SARS-CoV-2 3CLpro proteases.
168	

169 **Refinement of cleavage prediction by secondary structure analysis**

171	The unique high score but low K_{cat}/K_m of the NSP9/10 cleavage site (Fig 1D) suggested that a
172	higher order structure, not captured by scoring based on primary sequence alone, might inhibit
173	cleavage. We therefore estimated the secondary structure of each cut site in the viral genome,
174	using the JPRED4 protein secondary structure prediction server ³⁹ and a 100aa window spanning
175	the P1 position. The NSP9/10 site in SARS-CoV was the only cleavage site where the P1 position
176	(Q) was predicted to lie in a β -sheet (Supplemental Table 3). In contrast, the other sites all lay
177	in predicted $lpha$ -helices or disordered regions, structures known to be more accessible to
178	proteases $^{40,41}.$ These data suggested that higher order structures such as β -sheets hinder
179	cleavage by 3CLpro.
180	
181	To further probe this possibility, we used JPRED4 to evaluate secondary structures around all
182	predicted cleavage sites with a Q at P1 and with a Sarsport1.0 score >0.1 (4416 sites) (Fig 1F)
183	(Supplemental Table 4). The recent publication of predicted structures for most of the human
184	proteome with AlphaFold ⁴² also provides the opportunity to cross validate secondary with
185	higher order structure. The relative frequency of eta -sheet structures at the P1 position of
186	predicted cleavage sites was significantly less than the overall frequency of eta -sheets for
187	glutamines in the proteome 43 (Fig 1G), indicating that <code>Sarsport1.0</code> partly biases away from β -
188	sheets. Further comparison to published experimentally-identified cleavage sites revealed in
189	the latter an additional significantly increased propensity for cleavage in regions where P1 (Q) is
190	unstructured and in particular not in a β -sheet (Fig 1F). Thus, filtering results from Sarsport1.0
191	for the absence of a β -sheet structure at P1 will improve its positive predictive value.

192	Interestingly, the median Sarsport1.0 score for sites that lie in unstructured regions (0.1024)
193	was significantly lower than for sites that lie in $lpha$ -helices (0.1727) or eta -sheets (0.27) (Fig 1G),
194	suggesting that the presence less permissive secondary structural order imposes a higher
195	evolutionary pressure for an optimal primary sequence cleavage motif.
196	
197	Cleavage validation of novel targets
198	
199	Because of the higher sensitivity of our method, we identified numerous new predicted
200	cleavage sites, in addition to those previously published. Gene Ontology (GO) analysis of
201	proteins with Sarsport1.0 score > 0.01 showed enrichment for many cell-adhesion proteins,
202	including many predicted cleavage sites located within homologous cadherin domains in the
203	cadherin protein superfamily (Supplemental Table 2). Evaluation with AlphaFold predicted
204	these sites to be in unstructured accessible loops within the cadherin domain, thus making
205	them likely to be cleaved if exposed to 3CLPro (Fig 1G). We validated these hits in vitro by
206	incubation of purified 3CLPro with commercially available recombinant cadherin proteins
207	(CDH6, CDH20), which have identical predicted sites (Score 0.145, Q203 and Q209, respectively,
208	Fig/Table XX). 3CLPro efficiently cleaved both CDH6 and CDH20, yielding the expected fragment
209	sizes based on the predicted cleavage site (Fig 2A). We similarly validated novel cleavage sites
210	in thrombin (IIA) and in the intracellular domain of NOTCH1: in vitro reactions with purified
211	proteins yielded expected fragment sizes for both (Fig 2B-D). The appearance of thrombin IIA
212	cleaved product was inhibited by the 3CLpro inhibitor GC376, demonstrating the requirement
213	of 3CLpro enzymatic activity (Fig 2B). Cleavage of NOTCH1 at a predicted site (Q2315, score

214 0.432), within the intracellular domain of NOTCH1, yielded both predicted fragments (Fig 2C). 215 Overexpression of 3CLPro in hiPSC-CMs also yielded NOTCH1 fragments of predicted length, 216 demonstrating cleavage in intact cells (Fig 2D). Additional targets chosen for their high score 217 and secondary structure accessibility (SVIL, UACA, NOTCH2) were similarly validated with 218 3CLPro overexpression in 293T cells, as was the previously published target TAB1 219 (Supplemental Fig 1A). Interestingly, in these cell overexpression experiments, while the levels 220 of full length target proteins were significantly reduced by expression of 3CLpro, the 221 appearance of fragments of predicted size were not observed. We hypothesized that cytosolic 222 fragments generated by 3CLPro may be further degraded by endogenous proteolytic pathways. 223 Supporting this notion, the plasma-membrane bound N-terminal cleavage product of full length 224 NOTCH1 yielded the expected 90kda fragment, while the C-terminal fragment only showed 225 reduction in total protein (Supplemental Fig 1B). We conclude that 3CLPro can cleave a wide range of host proteins, and that the generated cytosolic protein fragments are likely often 226 227 degraded by endogenous pathways. 228 229 Cardiac targets of SARS-CoV-2 3CLPro show multiple cut sites across sarcomeric proteins 230 Previous work has demonstrated disorganization of sarcomeres after SARS-CoV-2 infection of

hiPSC-derived cardiomyocytes ^{34–36,44}. We hypothesized that 3CLPro may be degrading

232 sarcomere proteins directly. Consistent with this notion, overexpression of 3CLPro, but not a

- 233 catalytically inactive mutant (C145A), in hiPSC-CMs led to pronounced sarcomere breakdown
- within 48h (Fig 3A). At this 48h time point, we also observed numerous cells with a
- 235 stereotypical intermediate phenotype, in which sarcomeres exhibited increased length, as

236	defined by the distance between alpha-actinin stained Z-discs (Fig 3B-C), suggesting that a key
237	structural protein of the sarcomere is being targeted by 3CLpro.

239	We applied our in silico primary and secondary analysis to identify putative sarcomere targets
240	of 3CLpro (Supplemental Table 5). Within this list, we identified the giant protein Obscurin
241	(OBSCN) as a probable target, with 5 high-likelihood sites along the length of the $^{\sim}$ 800kda
242	(>7500 amino acids) protein (Fig 4A). Consistent with these data, hiPSC CMs expressing 3CLpro
243	had a marked reduction in Obscurin protein, compared to cells expressing the C145A mutant
244	(Fig4B-C). The reduction was apparent using antibodies against multiple epitopes along this
245	large protein. In contrast, levels of alpha-actinin (ACTN2) and myosin heavy chain (MYH6),
246	which our algorithm did not predict to be cleaved by 3CLpro, were not altered (Fig 4B). In
247	addition, immunocytochemistry showed loss of Obscurin in otherwise apparently intact, alpha-
248	actinin-positive sarcomeres in cells expressing 3CLPro, but not cells expressing C145A (Fig 4C).
249	
250	As with a number of targets described above (Supplemental Fig 1) we did not detect any
251	Obscurin fragments, despite using antibodies that recognize multiple epitopes along the length
252	of the protein. To test whether the absence of fragments might be due to endogenous
253	proteosome activity, we treated cardiomyocytes expressing 3CLPro, versus C145A, with the
254	proteosome inhibitor MG132, and collected cellular protein 24h later. Blotting with the two
255	antibodies that recognize the region between cut sites 3 and 4 (Q4075 and Q5488, respectively)
256	yielded the expected fragment size (~155kda) (Fig 4D), validating the predicted sites as a
257	3CLpro targets, and demonstrating that the ensuing fragment is targeted for degradation by the

proteosome. Identification of other fragments within Obscurin was technically unfeasible due to either lack of antibodies against the specific region, or to overlap with non-specific bands on blots. However, we also observed the appearance, after proteasome inhibition, of fragments of predicted size in Supervillin (SVIL), another giant sarcomeric protein predicted to be targeted by our algorithm, as well as TAB1, which was previously shown to be targeted by 3CLpro but for which no fragments had been detected²⁴

264

265 Obscurin degradation in SARS-CoV-2 infection

266 Finally, we tested if those results were recapitulated in a model of hPSC-CMs infected with live 267 SARS-CoV-2. For these experiments, we used two hPSC-CM lines, WTC-11c (hiPSC-CMs) and H7 268 (hESC-CMs, human embryonic stem cell-derived cardiomyocytes), previously used to study the 269 effects of SARS-CoV-2 on human cardiomyocytes³⁵. Within 48h of infection, coincident with the 270 robust appearance of viral nucleocapsid, total Obscurin protein gradually reduced by 40-60% 271 (Fig 5A-B). In contrast, protein abundance of ACTN2, MYH6, and MYH7 was unaffected by 272 infection (Fig 5B), mirroring the effects seen with 3CLpro alone (Fig 4B). Similarly, 273 immunocytochemistry of infected cells showed reduction of Obscurin staining in cells 274 expressing viral nucleocapsid, despite seemingly intact sarcomeres (TNNT2 staining), again 275 mirroring the effects seen with 3CLpro alone (Fig 4D). Thus the loss of Obscurin caused by 276 3CLpro-mediated cleavage might explain the loss of sarcomere integrity during SARS-CoV-2 277 infection in human cardiomyocytes.

278

279 Discussion

280 We leveraged here experimental data and genome-wide secondary structure analyses to 281 develop a reliable computational algorithm, Sarsport1.0, that predicts endogenous non-viral 282 cleavage targets by the 3CLpro SARS-CoV-2 protease across the human proteome. We validated 283 the precision of the algorithm by confirming novel predicted cleavage sites, using both 284 biochemical and cell culture approaches. The algorithm is specific: all 8 predicted host proteins 285 that we chose to test experimentally confirmed cleavage by 3CLpro. The algorithm is also 286 precise, accurately correlating scores with the known K_m/K_{cat} values for the cut sites in the 287 single viral polypeptide. The single exception to this correlation, the NSP9/10 site, is also the 288 only site lying within a predicted beta-sheet, which likely hinders protease access. The 289 particularly high score of the NSP9/10 site (score = 1.31) may have evolved to overcome this 290 more inaccessible higher order structure.

291

Finally, the algorithm is highly sensitive, accurately predicting high cut scores in nearly all 292 previously experimentally identified 3CLpro sites ^{23–26}. In addition, thousands of novel sites are 293 294 predicted to be cleaved by 3CLpro. Numerous reasons likely explain why the computational 295 algorithm is more sensitive than prior experimental approaches: (1) experimental paradigms 296 are limited to detecting the proteins expressed in the chosen experimental cells; (2) proteomic 297 approaches rely on the ability to detect new protein fragments by mass spectrometry, a 298 relatively insensitive method; (3) and proteomic approaches also require the physical presence 299 of cleaved products, but as shown here, these fragments are often quickly degraded after 300 cleavage. Our computational algorithm overcomes these limitations and provides a 301 comprehensive atlas of the putative SARS-CoV-2 3CLpro degradome.

303	The SARS-CoV-2 3CLpro is the target of ongoing therapeutic efforts to treat COVID-19. Recent
304	interim analysis of the phase 2/3 EPIC-HR (Evaluation of Protease Inhibition for COVID-19 in
305	High-Risk Patients) ²² , which tested the combination therapy of PF-07321332, a 3CLpro inhibitor,
306	with ritonavir, a CYP3A4 inhibitor that prevents the metabolism of protease inhibitors, reported
307	a nearly 90% reduction in hospitalization or death compared to placebo in non-hospitalized
308	high-risk adults with COVID-19 (P<0.0001). Our data suggest that these remarkable benefits of
309	3CLpro inhibition may accrue from effects beyond suppression of viral replication. For example,
310	infected cells that do not sustain replication may nevertheless experience significant cellular
311	damage from 3CLpro activity on the host proteome, and PF-07321332 and other 3CLpro
312	inhibitors would be predicted to prevent this cellular damage. Similarly, expression of 3CLpro is
313	one of the earliest events in the viral life cycle, and may thus cause early cellular damage,
314	potentially suppressing cellular defenses against the ensuing viral replication. Lingering effects
315	of 3CLpro may also contribute to persistent symptoms, as observed with the long-COVID
316	syndrome. In sum, the remarkable benefits of 3CLpro inhibition in COVID-19 patients
317	underscores the need to further understand the impact of 3CLpro on the host proteome, which
318	will be substantially aided by our predictive algorithm.
319	
320	To validate our algorithm, we investigated the effects of 3CLPro in two different models (OE
321	and live SARS-CoV-2) on hiPSC-CMs, previously shown to be susceptible to SARS-CoV-2
322	infection with profound effects on sarcomeric organization ^{34–36} . We identified the giant

323 sarcomeric protein Obscurin as a target of 3CLpro, and showed (1) that both ectopic expression

324	of 3CLpro and infection by SARS-CoV-2 cleave and degrade Obscurin, while leaving other
325	sarcomeric proteins intact; and (2) that ectopic expression of 3CLpro, but not a mutant without
326	enzymatic activity, causes sarcomeric disorganization in a stereotypical fashion similar to that
327	observed with SARS-COV-2 infection, and consistent with the pattern predicted by degradation
328	of Obscurin, an important structural component of the Z-disk. Thus, we propose that
329	sarcomeric disorganization during SARS-CoV-2 infection is likely caused in large part by direct
330	proteolysis of Obscurin by 3CLpro.
331	
332	Cardiac complications of COVID19 have been well documented, and the presence of cardiac
333	damage, as reflected in plasma troponin levels, is highly predicted of morbidity and mortality
334	after SARS-COV-2 infection ^{45–47} . It is still unclear if the pathology observed in the heart is due to
335	a direct cytotoxic effect of the virus or secondary to the systemic inflammation. Some evidence
336	of direct infection by SARS-CoV-2 in the human heart has been reported, suggesting that a
337	direct effect is possible ^{48,49} , although other post-mortem studies have not detected infected
338	cardiomyocytes in COVID-19 patients ^{44–46} . Thus, the implications of our findings in iPSCMs on
339	human cardiac disease should be interpreted cautiously. We used these studies primarily as
340	molecular and structural validation of our predictive algorithm. The use of hPSC-CMs also offers
341	a powerful tool for pharmacological and drug screening, in addition to disease modeling.
342	
343	In summary, we provide a validated, computationally derived, comprehensive atlas of the
344	putative 3CLpro degradome, overcoming limitations in sensitivity inherent to experimental
345	approaches. Our findings provide a powerful tool to aid investigations into the virus-host

	346	interactions mediated by	y 3CLpro,	the targ	et of highly	/ efficacious	therapy	against	COVID-19.	. In
--	-----	--------------------------	-----------	----------	--------------	---------------	---------	---------	-----------	------

- 347 light of the structural conservation of the 3CL protease across coronavirus species, such
- 348 investigations will likely also apply to future coronavirus outbreaks.
- 349

350 Acknowledgements

- 351 ZA was supported by NIH/NHLBI (HL152446). NY was supported by NIH training grant
- 352 5T32AR053461. Q.M was supported by NIAMS T32 training grant (AR 53461-12). SM was
- 353 supported by post-doctoral fellowship from the Institute for Stem Cells and Regenerative
- 354 Medicine (University of Washington). This work was also supported by R01 HL128362 and R01
- 355 HL146868 to C.E.M.; the Robert B. McMillen Foundation and the State of Washington
- 356 philanthropical support to the UW Institute for Stem Cell and Regenerative Medicine. We
- 357 would also like to acknowledge the staff of the University of Washington BSL-3 facility, as well
- 358 as our Environmental Health and Safety staff, who provided assistance during experiments and

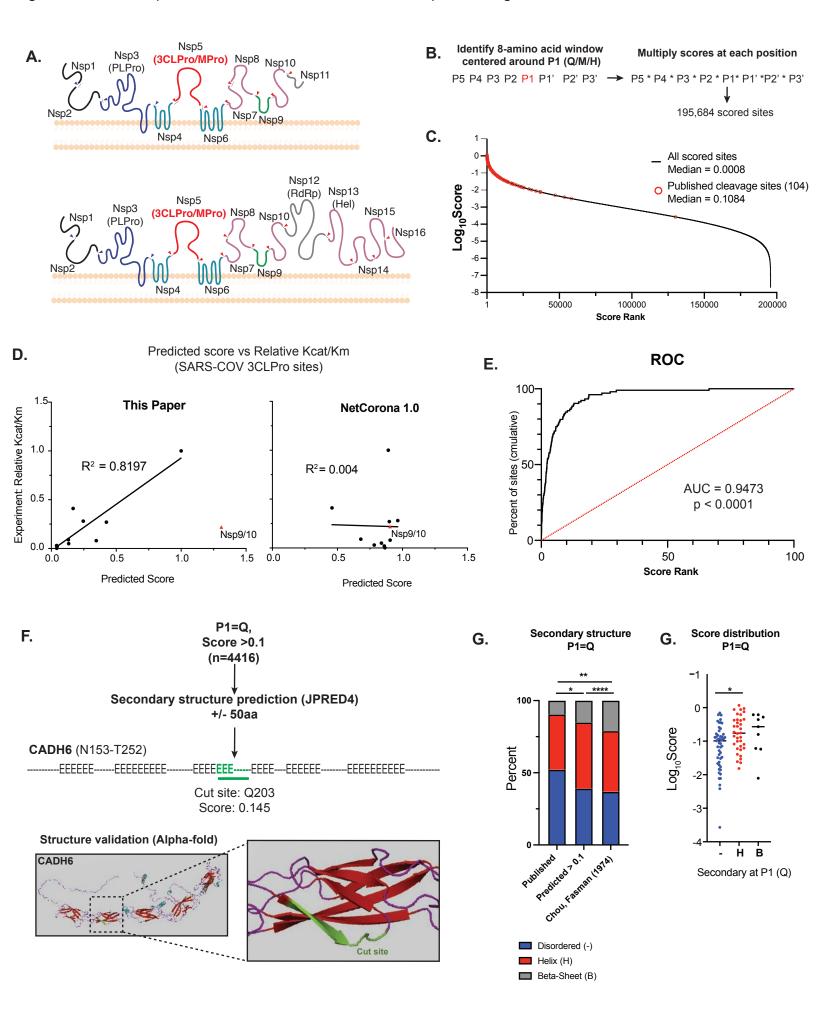
asso ensured our safety.

360

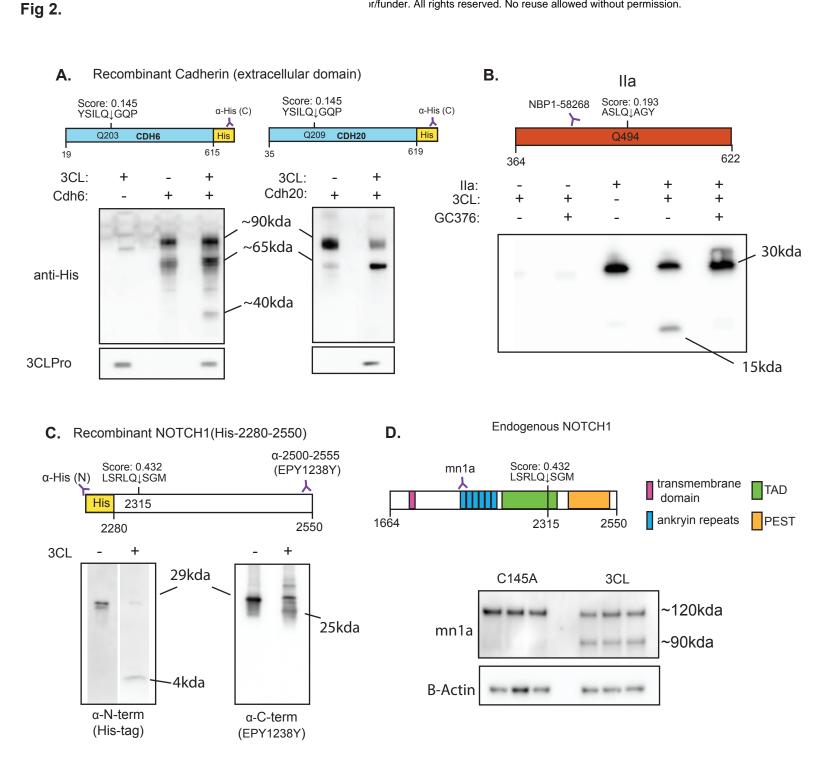
361

- 362 Conflicts of interest
- 363 The authors declare no conflicts

364


366	Mor	ks Cited
367	wor	<u>ks Cited</u>
	1	Dang E. Du. H. & Cardnar, L. An interactive web based dashbaard to track COVID 10 in
368	1.	Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in
369	2	real time. <i>Lancet Infect. Dis.</i> 20 , 533–534 (2020).
370	2.	Polak, S. B., Van Gool, I. C., Cohen, D., von der Thüsen, J. H. & van Paassen, J. A
371		systematic review of pathological findings in COVID-19: a pathophysiological timeline and
372	2	possible mechanisms of disease progression. <i>Mod. Pathol.</i> 33 , 2128–2138 (2020).
373	3.	Guan, W. et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J.
374 275	٨	Med. 382 , 1708–1720 (2020).
375	4.	Wiersinga, W. J., Rhodes, A., Cheng, A. C., Peacock, S. J. & Prescott, H. C.
376		Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019
377	-	(COVID-19): A Review. <i>JAMA</i> 324 , 782–793 (2020).
378	5.	AlSamman, M., Caggiula, A., Ganguli, S., Misak, M. & Pourmand, A. Non-respiratory
379	c	presentations of COVID-19, a clinical review. <i>Am. J. Emerg. Med.</i> 38 , 2444–2454 (2020).
380	6.	Davis, H. E. <i>et al.</i> Characterizing long COVID in an international cohort: 7 months of
381	_	symptoms and their impact. <i>EClinicalMedicine</i> 38 , 101019 (2021).
382	7.	Nasserie, T., Hittle, M. & Goodman, S. N. Assessment of the Frequency and Variety of
383		Persistent Symptoms Among Patients With COVID-19: A Systematic Review. JAMA Netw.
384	-	<i>Open</i> 4 , e2111417–e2111417 (2021).
385	8.	Gordon, D. E. <i>et al.</i> A SARS-CoV-2 protein interaction map reveals targets for drug
386	-	repurposing. <i>Nature</i> 583 , 459–468 (2020).
387	9.	Wang, R. et al. Genetic Screens Identify Host Factors for SARS-CoV-2 and Common Cold
388		Coronaviruses. Cell 184, 106-119.e14 (2021).
389	10.	Schneider, W. M. et al. Genome-Scale Identification of SARS-CoV-2 and Pan-coronavirus
390		Host Factor Networks. Cell 184, 120-132.e14 (2021).
391	11.	Badorff, C. <i>et al.</i> Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal
392		disruption in an acquired cardiomyopathy. <i>Nat. Med.</i> 5 , 320–326 (1999).
393	12.	Lim, BK. et al. Inhibition of Coxsackievirus-associated dystrophin cleavage prevents
394		cardiomyopathy. J. Clin. Invest. 123 , 5146–5151 (2013).
395	13.	Robinson, K. S. <i>et al.</i> Enteroviral 3C protease activates the human NLRP1 inflammasome
396		in airway epithelia. Science 370 , (2020).
397	14.	Nie, Z. <i>et al.</i> Human immunodeficiency virus type 1 protease cleaves procaspase 8 in
398		vivo. J. Virol. 81 , 6947–6956 (2007).
399	15.	Strack, P. R. <i>et al.</i> Apoptosis mediated by HIV protease is preceded by cleavage of Bcl-2.
400		Proc. Natl. Acad. Sci. U. S. A. 93 , 9571–9576 (1996).
401	16.	Morazzani, E. M. et al. Proteolytic cleavage of host proteins by the Group IV viral
402		proteases of Venezuelan equine encephalitis virus and Zika virus. Antiviral Res. 164, 106–
403		122 (2019).
404	17.	Hegyi, A. & Ziebuhr, J. Conservation of substrate specificities among coronavirus main
405	_	proteases. J. Gen. Virol. 83, 595–599 (2002).
406	18.	MacDonald, E. A. et al. Recognition of Divergent Viral Substrates by the SARS-CoV-2 Main
407	_	Protease. ACS Infect. Dis. 7, 2591–2595 (2021).
408	19.	Shitrit, A. <i>et al.</i> Conserved interactions required for inhibition of the main protease of
409		severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Sci. Rep. 10, 20808

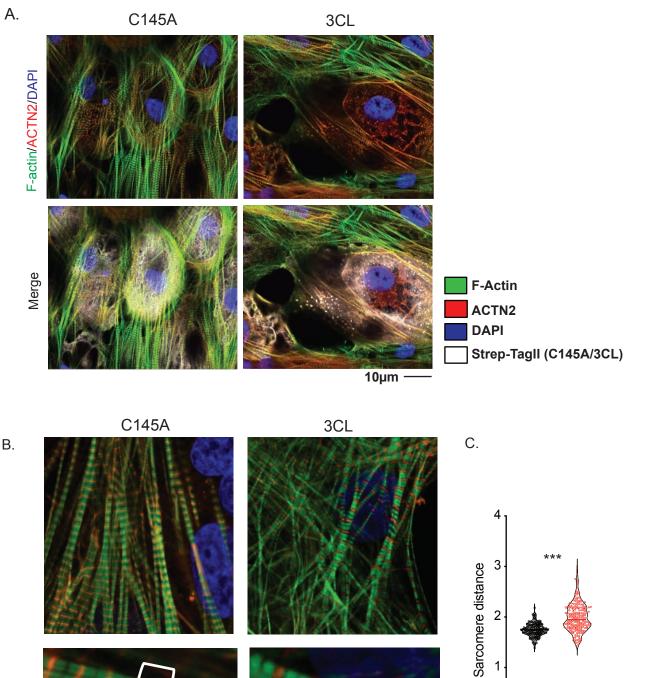
410		(2020).
410	20.	(2020). V'kovski, P., Kratzel, A., Steiner, S., Stalder, H. & Thiel, V. Coronavirus biology and
411	20.	replication: implications for SARS-CoV-2. <i>Nat. Rev. Microbiol.</i> (2020).
412		doi:10.1038/s41579-020-00468-6
415	21	
	21.	Osipiuk, J. <i>et al.</i> Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. <i>Nat. Commun.</i> 12 , 743 (2021).
415	22	
416	22.	Boras, B. <i>et al.</i> Preclinical characterization of an intravenous coronavirus 3CL protease
417	22	inhibitor for the potential treatment of COVID19. <i>Nat. Commun.</i> 12 , 6055 (2021).
418	23.	Zhang, S., Wang, J. & Cheng, G. Protease cleavage of RNF20 facilitates coronavirus
419	24	replication via stabilization of SREBP1. <i>Proc Natl Acad Sci USA</i> 118 , e2107108118 (2021).
420	24.	Moustaqil, M. et al. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical
421		modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease
422	<u> </u>	presentation across species. Emerg. Microbes Infect. 10, 178–195 (2021).
423	25.	Meyer, B. et al. Characterising proteolysis during SARS-CoV-2 infection identifies viral
424		cleavage sites and cellular targets with therapeutic potential. Nat. Commun. 12, 5553
425		(2021).
426	26.	Pablos, I. et al. Mechanistic insights into COVID-19 by global analysis of the SARS-CoV-2
427		3CL ^{pro} substrate degradome. <i>Cell Rep.</i> 37 , (2021).
428	27.	Kaushal, P. & Lee, C. N-terminomics – its past and recent advancements. J. Proteomics
429		233 , 104089 (2021).
430	28.	Angel, T. E. et al. Mass spectrometry-based proteomics: existing capabilities and future
431		directions. <i>Chem. Soc. Rev.</i> 41 , 3912–3928 (2012).
432	29.	Valerdi, K. M., Hage, A., van Tol, S., Rajsbaum, R. & Giraldo, M. I. The Role of the Host
433		Ubiquitin System in Promoting Replication of Emergent Viruses. Viruses 13, (2021).
434	30.	Tran, K., Mahr, J. A. & Spector, D. H. Proteasome subunits relocalize during human
435		cytomegalovirus infection, and proteasome activity is necessary for efficient viral gene
436		transcription. <i>J. Virol.</i> 84 , 3079–3093 (2010).
437	31.	Kiemer, L., Lund, O., Brunak, S. & Blom, N. Coronavirus 3CLpro proteinase cleavage sites:
438		possible relevance to SARS virus pathology. BMC Bioinformatics 5, 72 (2004).
439	32.	Chuck, CP. et al. Profiling of Substrate Specificity of SARS-CoV 3CLpro. PLoS One 5,
440		e13197 (2010).
441	33.	Zhang, L. et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design
442		of improved α-ketoamide inhibitors. <i>Science</i> 368 , 409–412 (2020).
443	34.	Perez-Bermejo, J. A. et al. SARS-CoV-2 infection of human iPSC-derived cardiac cells
444		reflects cytopathic features in hearts of patients with COVID-19. Sci. Transl. Med. 13,
445		(2021).
446	35.	Marchiano, S. et al. SARS-CoV-2 Infects Human Pluripotent Stem Cell-Derived
447		Cardiomyocytes, Impairing Electrical and Mechanical Function. Stem cell reports 16,
448		478–492 (2021).
449	36.	Li, Y. et al. SARS-CoV-2 induces double-stranded RNA-mediated innate immune
450		responses in respiratory epithelial-derived cells and cardiomyocytes. Proc. Natl. Acad.
451		<i>Sci.</i> 118 , e2022643118 (2021).
452	37.	Roe, M. K., Junod, N. A., Young, A. R., Beachboard, D. C. & Stobart, C. C. Targeting novel
453		structural and functional features of coronavirus protease nsp5 (3CLpro, Mpro) in the

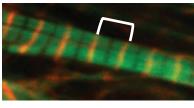

454 age of COVID-19. J. Gen. Virol. 102, (2021).

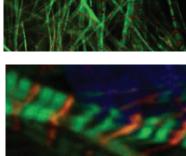
- 455 38. Grum-Tokars, V., Ratia, K., Begaye, A., Baker, S. C. & Mesecar, A. D. Evaluating the 3C-like
 456 protease activity of SARS-Coronavirus: recommendations for standardized assays for
 457 drug discovery. *Virus Res.* 133, 63–73 (2008).
- 458 39. Drozdetskiy, A., Cole, C., Procter, J. & Barton, G. J. JPred4: a protein secondary structure 459 prediction server. *Nucleic Acids Res.* **43**, W389-94 (2015).
- 460 40. Li, F. *et al.* Procleave: Predicting Protease-specific Substrate Cleavage Sites by Combining
 461 Sequence and Structural Information. *Genomics. Proteomics Bioinformatics* 18, 52–64
 462 (2020).
- 463 41. Timmer, J. C. *et al.* Structural and kinetic determinants of protease substrates. *Nat.*464 *Struct. Mol. Biol.* 16, 1101–1108 (2009).
- 465 42. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* 596,
 466 583–589 (2021).
- 467 43. Chou, P. Y. & Fasman, G. D. Conformational parameters for amino acids in helical, β468 sheet, and random coil regions calculated from proteins. *Biochemistry* 13, 211–222
 469 (1974).
- 470 44. Bailey, A. L. *et al.* SARS-CoV-2 Infects Human Engineered Heart Tissues and Models
 471 COVID-19 Myocarditis. *JACC. Basic to Transl. Sci.* 6, 331–345 (2021).
- 472 45. Majure, D. T. *et al.* Usefulness of Elevated Troponin to Predict Death in Patients With
 473 COVID-19 and Myocardial Injury. *Am. J. Cardiol.* **138**, 100–106 (2021).
- 474 46. García de Guadiana-Romualdo, L. *et al.* Cardiac troponin and COVID-19 severity: Results
 475 from BIOCOVID study. *Eur. J. Clin. Invest.* **51**, e13532 (2021).
- 476 47. Lombardi, C. M. *et al.* Association of Troponin Levels With Mortality in Italian Patients
 477 Hospitalized With Coronavirus Disease 2019: Results of a Multicenter Study. *JAMA*478 *Cardiol.* 5, 1274–1280 (2020).
- 479 48. Pesaresi, M. *et al.* SARS-CoV-2 identification in lungs, heart and kidney specimens by
 480 transmission and scanning electron microscopy. *Eur. Rev. Med. Pharmacol. Sci.* 24,
 481 5186–5188 (2020).
- 482 49. Clemens, D. J. *et al.* B-AB18-03 SARS-COV-2 DIRECT CARDIAC DAMAGE THROUGH SPIKE483 MEDIATED CARDIOMYOCYTE FUSION MAY CONTRIBUTE TO INCREASED ARRHYTHMIC
- 484 RISK IN COVID-19. *Hear. Rhythm* **18**, S35–S35 (2021).

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.17.476677; this version posted January 19, 2022. The copyright holder for this preprint Fig 1. Bioinformatic prediction of SARS is a bioinformatic president of the second s

486 Figure 1 487 A) Diagram of endogenous function of the SARS-CoV-2 3C-like protease (3CLPro). 3CLPro 488 cleaves at 11 sites within the 2 large polypeptides pp1a and pp1ab generated from the 489 overlapping reading frames ORF1a and ORF1ab (respectively). Cleavage by 3CLPro, as 490 well as the other viral protease papain-like protease (PLPro) liberates the nonstructural 491 proteins (NSPs) that are required for viral transcription, replication, suppression of host 492 immune responses and suppression of host gene expression. 493 B) Work-flow for bioinformatic identification and scoring of putative 3CLPro cleavage sites 494 withing the human proteome. Scores for each position along the cleavage site (P5-P3') 495 were obtained from experimental data from SARS-CoV 3CLPro (Chuck, et al 2010). First 496 P1 positions were identified (Q, M or H), and overall cleavage score generated by 497 multiplying scores for each amino acid around P1. Within each 8-amino acid window, 498 any position that contained an amino acid that scored a "ND" (no cleavage detected) in 499 Chuck, et al resulted in a score of 0. Overall, 195,684 scored cleavage sites (>0) were 500 detected across the human proteome. 501 C) Distribution of all scores (Log₁₀Score). Scores of published cleavage sites detected by our 502 prediction are highlighted in red. 503 D) Correlation of predicted score with experimentally-derived K_{cat}/K_m values for SARS-COV 504 3CLPro (Grums-Tokars, 2008). Scores generated in this study are shown on the left, and scores generated by NetCorona1.0 (Kiemer, 2004). Shown on the right. For R² 505 506 calculations, the cleavage site between NSP9 and NSP10 for both graphs. 507 E) Receiver operator curve analysis to assess predictive power of bioinformatic scoring 508 based on scores of published cleavage sites. Cumulative percentage of scores captured 509 plotted vs score rank (highest score = 1 to lowest score = 100), and area under the curve 510 (AUC) captured. 95% confidence interval determined by Wilson/Brown method. F) Secondary structure analysis of high scoring sites (>0.1) with P1 = Q. To increase 511 512 secondary structure accuracy, a 100aa window centered around P1 (Q) was identified. Resulting 100aa peptides were analyses by JPRED4 to predict secondary structure ("-" = 513 unstructured, "H" = alpha-helix, "E" = beta-sheet). When available, candidate cleavage 514 sites were verified by alpha-Fold structure. Highlighted is a predicted site in Cadherin-6 515 516 (CADH6). G) Fraction of each P1 (Q) that lies in each type of secondary structure (unstructured, 517 alpha-helix, beta sheet). Comparisons shown for predicted cleavage sites with score > 518 519 0.1 vs published cleavage sites (all scores) vs published secondary structure distribution 520 of all glutamines (Q). Statistical analysis of secondary structure distribution calculated 521 using Chi-squared goodness of fit. 522 H) Score distribution of published cleavage sites (P1=Q), striated by secondary structure. Statistical analysis calculated by one-way ANOVA with Holm-Sidak multiple comparison 523 524 test. 525 For all statistics shown, * = $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$, **** = $p \le 0.00001$ 526




527 Figure 2


- 528 A) Western blot of in vitro cleavage of recombinant cadherin with purified 3CLPro. 1uM of 529 purified 3CLPro was incubated with 2ug of recombinant CDH6 or CDH20 (C-terminal His-
- Tag) in a 50uL reaction for 1hr. Shown are cleavage sites within the recombinant fragment,
- 530 with amino acid positions displayed for the full length proteins. Western blots showing
- 531 532 staining against the C-terminus (His-Tag) of each protein and 3CLPro. Recombinant proteins 533 are a mixture of glycosylated (~90kDa) and unglycosylated (~65kda), corresponding to
- 534 cleavage fragments of ~62kDa and 40kDa (respectively).
- 535 B) Western blot of *in vitro* cleavage of purified human alpha thrombin (IIa). Diagram shows amino acid position of unprocessed prothrombin. Position of cleavage site shown with 536 537 respect to epitope of antibody used for western blot. 1uM of purified 3CLpro was 538 incubated with 2ug alpha thrombin overnight under reducing conditions, with or without 539 the 3CLPro inhibitor GC376 (1uM).
- 540 C) In vitro cleavage of purified recombinant NOTCH1 fragment (aa2280-2550) with a N-541 terminal His-Tag. Reactions were done with 1uM of purified 3CLPro for 1hr. Diagram shows 542 position of cleavage within the NOTCH1 fragment, with amino acid positions corresponding 543 to the full length protein. Epitope regions showed for antibody with epitope C-terminal to 544 the cleavage site. Full length size is ~29kDa, with N and C-terminal fragments of 4kDa and 545 25kDa (respectively).
- 546 D) Cellular cleavage of NOTCH1. Western blots show lysates of hIPSC cardiomyocytes 547 expressing 3CLPro or catalytically inactive C145A variant for 48h. Cleavage site position 548 within the intracellular fragment of NOTCH1 shown, as well as epitope for antibody used in 549 western blot.
- 550

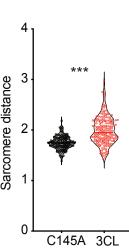

551 For all statistics shown, * = $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$, **** = $p \le 0.00001$ bioRxiv preprint doi: https://doi.org/10.1101/2022.01.17.476677; this version posted January 19, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Fig 3

F-Actin ACTN2

DAPI

Β.

552 Figure 3

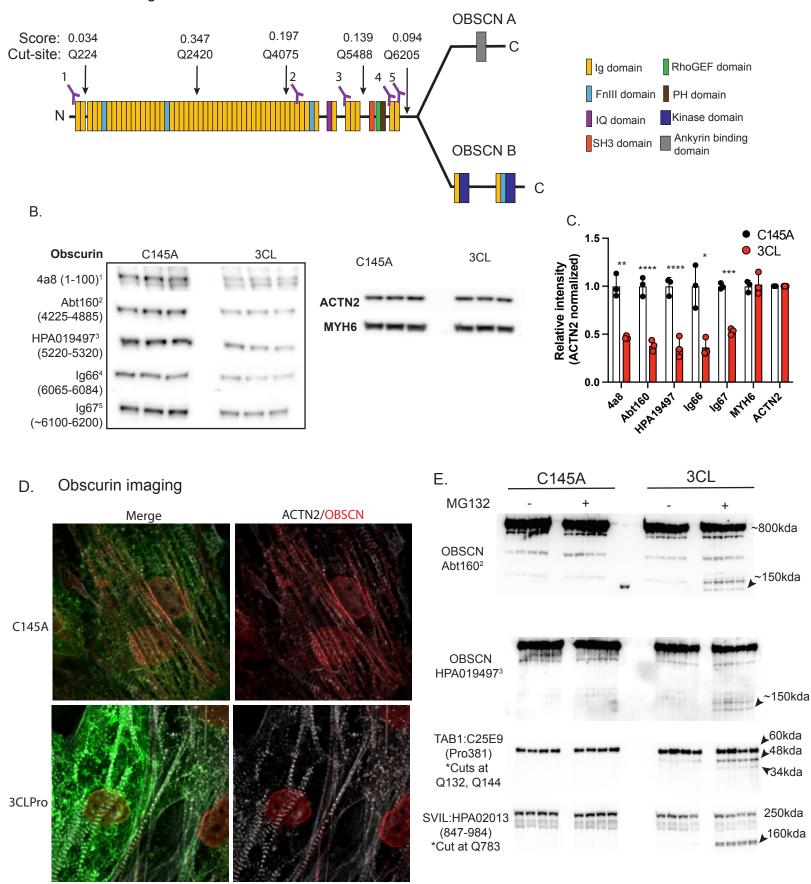
(*** p = XXX).

553	A)	Sarcomere breakdown with overexpression of 3CLPro. hiPSC-CMs transduced with
554		adenovirus overexpressing Strep-Tagged 3CLPro or catalytically inactive C145A control
555		for 48h. Staining shows alpha-actinin (ACTN2), F-actin (phalloidin) and Strep-Tag. DAPI
556		counterstain.
557	B)	Increased sarcomere length with overexpression of 3CLPro. Sarcomeres are stained
558		with ACTN2 to mark Z-disks. Example image of sarcomeres with increased distance.
559	C)	Quantification of sarcomere distance. Sarcomere lengths (Z-disk to Z-disk length, as
560		stained by ACTN2) were quantified for ~200 sarcomeres (N=2/3 independent

experiments? or only 1 exp with 200 sarcomeres?). Statistics shown by Student's t-test

562 563

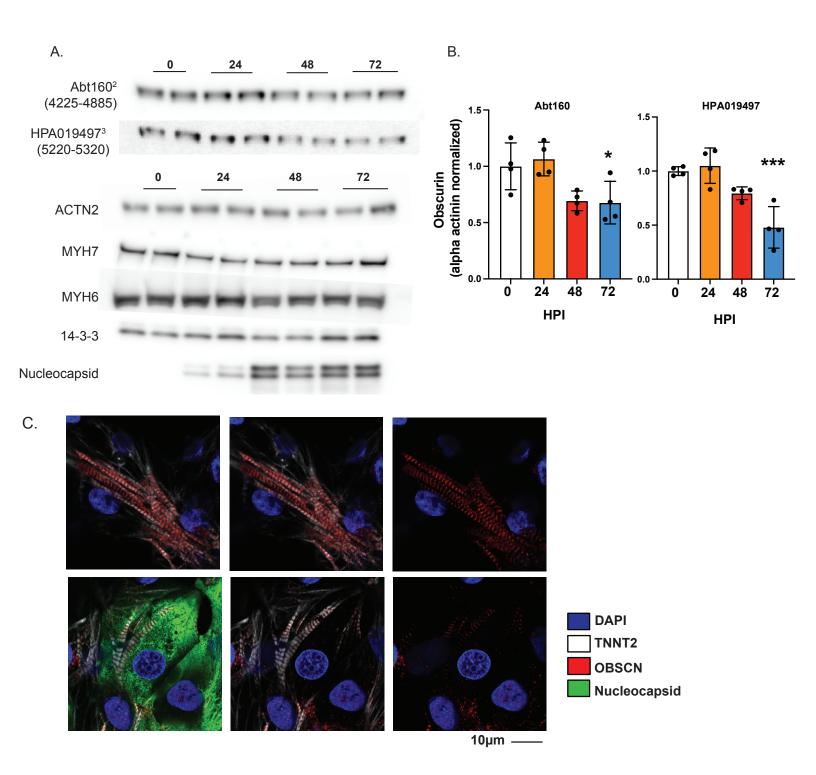
561


564 For all statistics shown, * = $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$, **** = $p \le 0.00001$

A. Obscurin cleavage sites

Strep-TaglI

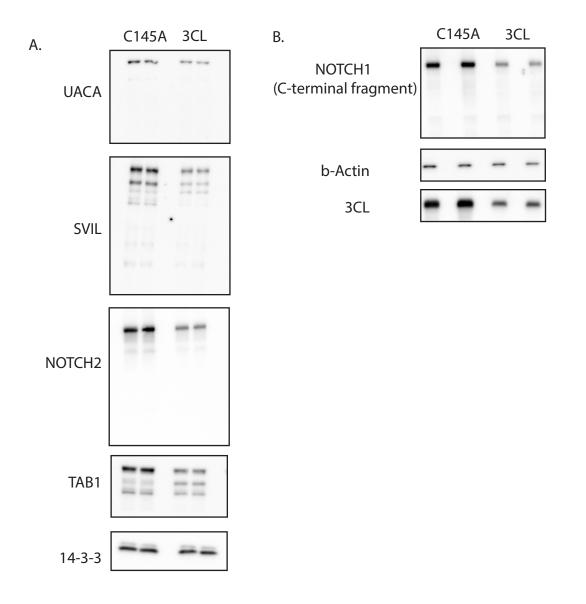
Obscurin ACTN2



10µm -

565	
566	Figure 4
567	A) Schematic of Obscurin (OBSCN) with overlayed predicted cleavage sites and protein
568	domain. Epitopes regions for antibodies used for this study shown (1-5).
569	B) Obscurin expression after 72h of 3CLPro or catalytically inactive C145A. Western blots
570	shown for all 5 OBSCN antibodies, as well as ACTN2 and MYH6 controls.
571	C) Quantification of blots shown in B , normalized by ACTN2 staining on the same
572	membrane. Statistics by Student's t-test.
573	D) Immunocytochemistry for OBSCN2 and ACTN2 after 48h overexpression of 3CLPro or
574	catalytically inactive C145A.
575	E) Expression of cleavage targets following expression of 3CLpro or catalytically active
576	C145A. Following 24h of overexpression, MG132 (1uM) or vehicle was added for 24h for
577	a total of 48h overexpression with or without MG132. Fragments are highlighted for
578	OBSCN, TAB1, and SVIL.
579	
580	For all statistics shown, * = p ≤ 0.05 , ** p ≤ 0.01 , *** p ≤ 0.001 , **** = p ≤ 0.00001

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.17.476677; this version posted January 19, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.


Fig 5. Obscurin degradation in SAR-COV2 infection

- 581 Figure 5
- A) Western blots of WTC-11c hPSC-CMs infected with SARS-CoV-2 at 5 MOI (Multiplicity of infection) after 24, 48 and 72h.
- B) Quantification of OSCN staining normalized for ACTN2 (per blot). Shown are n=2 for
 each time point for 2 different hPSC-CMs cell lines (WTC-11c and H7) for a total of n=4.
 Statistics calculated by one-way ANOVA with Tukey's post-hoc test.
- 587 C) Immunocytochemistry for OBSCN in WTC-11c hPSC-CMs at 48 HPI with 5 MOI SARS-
- 588 CoV-2. TNNT2 used as a counterstain for sarcomeres, and nucleocapsid staining 589 performed to identify infected cells.
- 590
- 591 For all statistics shown, * = $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$, **** = $p \le 0.00001$

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.17.476677; this version posted January 19, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Supplemental Figure 1

- 593
- A) Western blots of candidate cleavage targets. 48h overexpression of 3CLPro or C145A in 594 595 293T cells.
- 596 B) Western blot for the C-terminal cleavage fragment of NOTCH1 following 48h 597 overexpression in 293T cells.

Methods

Bioinformatic prediction of 3CLpro cleavage sites

In brief, P1 positions (Q, M or H) were first identified across the human proteome. 8 amino acid peptides were generated centered at this position, corresponding to P5 – P3' positions in the 3CLPro consensus sequence. Scores were generated by multiplying the relative efficiency values published by Chuck, et al for the SARS-COV (2003) 3CLPro. All sites with a score > 0 (i.e., those that did not have an "ND" in any of the positions from P5- P3') were captured. The full code for this program will be shared upon publication.

In vitro cleavage assays

In vitro cleavage assays were performed with purified 3CLPro protein and assay buffer from BPS Bioscience. Protease was added at 1uM concentration, and recombinant protein targets at an approximate ratio of 2ug target/1ug 3CLPro. Recombinant proteins were purchased commercially: NOTCH1 (Origene, Cat# TP762041), CDH6 (ACROBiosystem, Cat# CA6-H5229), CDH20 (R&D, Cat# 5604-CA-050). Purified human alpha-thrombin was purchased from Haematologic Technologies (Cat# 50-883-435).

Cell Culture

For 3CLPro overexpression assays, human induced pluripotent (hIPSC) ventricular cardiomyocytes were purchased from NCardia. Cells were plated at ~150,000 cells/24-well on fibronectin coated (Sigma, F1131), glass bottomed nano-patterned plates or coverslips (CuriBio, ANFS-0024). Following 4 days of maturation, cells were transduced with adenovirus (Vector Biolabs) to induce expression of 3CLPro or catalytically inactive C145A, and lysates collected at 48 or 72h in TU buffer.

Human induced-pluripotent stem cells culture and differentiation

Human induced-pluripotent stem cells (WTC11c hiPSCs, gifted by Dr. Bruce Conklin, Gladstone Institutes, San Francisco) were maintained in complete mTeSR Plus (Stem Cell Technologies) and cultured on Matrigel-coated dished at 0.17mg/mL (Corning). WTC hiPSCc were passaged as small clumps for maintenance or single cell-like suspension for cardiac differentiation using Versene (Gibco) and mTeSR Plus supplemented with 10 μ M Y-27632 (Tocris). Cardiac differentiation was perfomed as previsoudly described (PMID: 33657418). Briefly, WTC hiPSCs were seeded at 1,000 cells/cm² using mTeSR1 Plus and 10 μ M Y-27632 on Matrigel-coated dishes. After 24 h, media was replaced with mTeSR Plus supplemented with 1 µM Chiron 99021 (Cayman) to prime the cells for differentiation. Mesoderm induction (Day 0) was performed with 3 μM Chiron 99021 in RPMI-1640 media (ThermoFisher) supplemented with 500 μg/mL BSA (Sigma-Aldrich) and 213 µg/mL ascorbic acid (Sigma-Aldrich), named RBA media. After 48 h (Day 2), cells were treated with RBA media supplemented with 2 μ M WNT-C59 (Selleckchem). On day 4, media was change with RBA only and cells were incubated for an additional 48 h. From day 6 until day 13, hiPSC-derived cardiomyocytes (hiPSC-CMs) were maintained in RPMI-1640 supplemented with B-27 supplement (ThermoFisher). Heat-shock was performed at 42C for 30 min and on day 14, hiPSC-CMs were dissociated using 0.5% Trypsin (Gibco) and cryopreserved in Cryostore CS10 (Sigma).

HiPSC-CMs infection

All experiments using live virus were performed in the Biosafety Level 3 (BSL-3) facility at the University of Washington in compliance with the BSL-3 laboratory safety protocols (CDC BMBL 5th ed.) and the recent CDC guidelines for handling SARS-CoV-2. Before removing samples from BSL-3 containment, samples were inactivated by Thiourea buffer or 4% paraformaldehyde, and the absence of viable SARS-CoV-2 was confirmed for each sample by plaque assays described in the next section.

Frozen hiPSC-CMs were thawed in RPMI 1640 supplemented with B27 supplements, 10 μ M Y-27632 and 5% FBS. After 24 h, media was replaced with RPMI 1640 supplemented with B27 supplements only. A total of 200.000 hiPSC-CMs were seeded three days after thawing in Matrigel-coated 24-wells plate using RPMI 1640 supplemented with B27 supplements, 10 μ M Y-27632 and 5% FBS. Media was changed after 24 h and infection was performed as previously described (PMID: 33657418). Briefly, hiPSC-CMs were quickly washed with DPBS and incubated with SARS-CoV-2 at 5 multiplicity of infection (MOI) diluted in DMEM only (Gibco) for 1 h at 37 C. Mock-control hiPSC-CMs were treated with DMEM only. Media was then replaced with RPMI 1640 supplemented with B27 supplements and samples were collected at 48 h after infection. For MG132 treated samples, after viral absorption, media was replaced with RPMI 1640 supplemented with B27 supplements and 1 μ M of MG132 (DMSO was used for control).

SARS-CoV-2 preparation and titer.

SARS-Related Coronavirus 2, Isolate USA-WA1/2020 (SARS-CoV-2) was obtained from BEI Resources (NR-52281). Virus propagation and titer was performed in VERO cells (USAMRIID) as described in PMID: 33657418. Briefly, VERO cells were maintained in DMEM supplemented with 10% FBS, 100 U/mL penicillin, and 100 U/mL streptomycin and incubated with either 0.1 MOI (virus propagation) or serial dilution of conditioned media (titer) for 1 h at 37C in DMEM only media for viral absorption. For viral propagation, conditioned media was harvested and aliquots were store in -80C. For titer, 10-fold serial dilutions of conditioned media (either from VERO cells or hiPSC-CMs) were incubated on VERO cells for 1 h at 37C. A 1:1 mixture of cellulose suspension (Sigma) and DMEM containing 4% heat-inactivated FBS, L-glutamine, 1X antibiotic-antimycotic (Gibco), and 220 mg/mL sodium pyruvate was layered on top of the cells and incubated at 37C for 48 h. Cellulose layer was then removed and cells were stained with 10% paraformaldehyde and stained with 0.5% crystal violet solution in 20% ethanol. Plaques were counted, and the virus titer in the original sample was assessed as plaque-formation unit per mL (PFU/mL).

Lysate preparation and Western blotting

For western blotting of 293T cell lysates, traditional RIPA buffer was used to lyse cells. Lysates were normalized for cell concentration by BCA assay, and denatured by addition of Laemmli buffer (BioRad) at 95C for 5 minutes. Samples were then run on tris-glycine gels, followed by transfer onto PVDF membranes. Samples were blocked for 45 minutes with 5% milk in TBS + 0.1% Tween-20, and stained overnight at 4C in Pierce protein-free blocking buffer (Thermo-Scientific).

For cardiomyocyte lysates, cells at equivalent densities were first lysed in thiourea denaturing buffer (TU buffer: 8M urea, 2M thiourea, 50mM Tris-HCl pH 7.5, 3% SDS, 75mM DTT). Following incubation in TU buffer for 5 minutes, an equivalent volume of 50% glycerol was added to lysates for a final concentration of 4M urea, 1M thiourea, 25mM Tris HCl pH 7.5, 1.5% SDS, 25% glycerol and 37.5mM DTT and stored at -80C until western blotting. Samples were not heated so as to avoid urea decomposition, and subsequent carbamylation of proteins from cyanate ions. Phenol red powder was added directly to lysates for visualization These denaturing, highly reducing conditions were crucial for solubilization of sarcomeric proteins. Lysates were run directly on tris-glycine or tris-acetate gels, transferred to PVDF membrane, and stained as described above.

Imaging

Imaging was performed on a Zeiss LSM 710 confocal microscope at 63X. For sarcomere quantification, lengths of 400 sarcomeres were quantified for n=3 biological replicates. Images assignments were blinded during quantification.

Antibodies

The following antibodies were used for western blotting. Dilutions were 1:1000 unless specified otherwise.

Protein	Company	Cat#
Alpha actinin (EA-53)	Abcam	ab9465
Alpha actinin (EP2529Y)	Abcam	ab68167
MYH6	Sigma Aldrich	HPA001349
MYH7	Sigma Aldrich	M8421
Notch1	EmdMillipore	MAB5352, clone mn1a
Notch1	Abcam	ab52627, EP1238T
Notch2	CST	5732, clone D76A6
Obscurin	Gift from Dr. Kontragianni-Konstantapoulos	
Obscurin	Gift from Dr. Kontragianni-Konstantapoulos	
Obscurin	EmdMillipore	ABT160
Obscurin	EmdMillipore	MABT332, Clone 4a8
Obscurin	EmdMillipore	MABT126, clone 510A
Obscurin	Sigma (Prestige)	HPA019497
Obsl1	Abcam	ab204075
SARS-COV/COV2 3CLPro	Cell Signaling	51661
SARS-COV2 nucleocapsid	GeneTex	GTX135357
SARS-COV2 nucleocapsid	R & D Systems	MAB10474
StrepMAB classic	IBA LifeSciences	2-1507-001
StrepMAB classic-HRP	IBA LifeSciences	NC9789296
SVIL	Sigma (Prestige)	HPA020138
TAB1	CST	3226, clone C25E9
Thrombin	Novus Biologicals	NBP1-58268
Tnnt2 (13-11)	BD	564766

Tnnt2-647 conjugate UACA BD BethylLaboratories 565744 A301-383A

Statistics

Statistics were calculated with Prism9.