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Abstract

Distinct gene expression patterns within cells are foundational for the diversity of functions and unique

characteristics observed in specific contexts, such as human tissues and cell types. Though some biological

processes commonly occur across contexts, by harnessing the vast amounts of available gene expression data,

we can decipher the processes that are unique to a specific context. Therefore, with the goal of developing a

portrait of context-specific patterns to better elucidate how they govern distinct biological processes, this work

presents a large-scale exploration of transcriptomic signatures across three different contexts (i.e., tissues, cell

types, and cell lines) by leveraging over 600 gene expression datasets categorized into 98 subcontexts. The

strongest pairwise correlations between genes from these subcontexts are used for the construction of

co-expression networks. Using a network-based approach, we then pinpoint patterns that are unique and

common across these subcontexts. First, we focused on patterns at the level of individual nodes and evaluated

their functional roles using a human protein-protein interactome as a referential network. Next, within each

context, we systematically overlaid the co-expression networks to identify specific and shared correlations as

well as relations already described in scientific literature. Additionally, in a pathway-level analysis, we overlaid

node and edge sets from co-expression networks against pathway knowledge to identify biological processes

that are related to specific subcontexts or groups of them. Finally, we have released our data and scripts at

https://zenodo.org/record/5831786 and https://github.com/ContNeXt/, respectively and developed ContNeXt

(https://contnext.scai.fraunhofer.de/), a web application to explore the networks generated in this work.
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1. Introduction
While gene expression profiling has markedly improved our understanding of the molecular underpinnings of

biological processes, the knowledge we acquire from a particular study performed within a given context may

not generalize to another. For instance, accumulating evidence shows that average gene expression varies

extensively across cell lines or tissues of the same organism (Sonawane et al., 2017; Whitehead and Crawford,

2005) as well as across species (Romero et al., 2012). Context-specificity has also been noted when

investigating the reproducibility of protein-protein interactions (PPIs) across conditions in literature-curated PPI

databases in Stacey et al. (2018), finding no evidence for the occurrence of anywhere from 19 to 55% of

interactions reported in these databases. These findings, however, are not altogether surprising given that PPI

databases often store interactions that occur across various experimental conditions and contexts which may fail

to be observed if either of these were to vary. Crucially, it is often these context-specific differences which are

responsible for the variability of functions and unique characteristics of diverse cell types and tissues and their

investigation is thus fundamental in understanding human biology.

Gene expression patterns that are specific to certain cell types or tissues can help us to better understand

normal human physiology (e.g., which biological processes occur in specific cell types or tissues) as well as

development biology (e.g., which genes are expressed in specific cell types or tissues at various developmental

stages), and several studies have investigated differences in these two contexts. Specifically, Pierson et al.

(2015) and Dobrin et al. (2009) analyzed gene expression patterns at the tissue-level, revealing function-specific

patterns and subnetworks associated with obesity. Similarly, McKenzie et al. (2018) analyzed co-expression

changes in different cell types of the brain, discovering significant cell type-specific expression signatures, while

also finding well-known cell type marker genes among the most enriched genes across cell types.

Another relevant context is cell line information, as these are widely used for the study of biological

processes. In particular, cancer cell lines, such as HeLa, are frequently employed, having had many interactions

characterized on them and representing the foremost models for the study of cancer biology as well as numerous

other disease and normal conditions. Nonetheless, even cell lines classified to the same tissue can exhibit

significant differences in gene expression (Lee et al. 2018). For example, a study by Yu et al. (2019) found that

certain cell lines may not resemble the primary cells from which they originated. The discrepancies in regulation

patterns across specific cell lines deem it necessary to employ tools such as the CellExpress system (developed

by Lee et al. (2018) which enables the analysis of over 4,000 cancer cell lines for differences in gene expression

levels) and resources such as the TCGA-110-CL cell line panel (Yu et al. 2019) to identify which cell lines are

more suitable for a given study.

Biological networks of different types can be used to represent patterns characteristic to a particular context.

These context-specific networks can be categorized based on whether they are directly derived from knowledge

or data. Rachlin et al. (2005) and Stacey et al. (2018) are two illustrations of knowledge-driven approaches

where authors generated context-specific PPI networks by respectively leveraging information about biological

processes from GO (The Gene Ontology Consortium et al., 2021) and co-occurrence literature. Similarly, the

analysis of transcriptomic data through the construction of gene co-expression networks (Langfelder et al.,
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2008) can also serve to better understand context-specific patterns within datasets (Oldham et al., 2008;

Farahbod and Pavlidis, 2020). Finally, hybrid approaches, as demonstrated by Kitsak et al. (2016), have

leveraged gene expression data from 64 different tissues and mapped genes expressed in specific tissues to a

protein-protein interactome, revealing that these context-specific genes tend to be located in close proximity

within the interactome. Furthermore, in Sonawane et al. (2017), the authors describe a method to combine gene

co-expression data with PPIs as well as interactions between transcription factors (TFs) and gene targets to

identify tissue-specific network nodes and edges. Their study reveals that TF expression is less indicative of

tissue specificity than the genes which encode for them and suggests this specificity arises from altered TF gene

targeting rather than increased targeting. It is important to note that while transcriptomic experiments are often

used as a proxy to reflect protein expression, the correlation between the two is often below 0.5 on average

(Nusinow et al., 2020; Trapotsi et al., 2022). Nevertheless, correlations between differentially expressed genes

(DEGs) and their protein products have been shown to be significantly higher than in non-DEGs, which

suggests that stronger transcriptomic signals are reflected in protein translation (Koussounadis et al., 2015).

One of the challenges in conducting these hybrid approaches (i.e., approaches that combine data- and

knowledge- derived networks) is the limited availability of context-specific resources on a large-scale (e.g.,

hundreds of experiments conducted within the same or similar conditions or context-specific interactomes).

While there are several co-expression databases dedicated to storing context-specific information, such as

species (Obayashi et al., 2019 and Lee et al., 2020), the vast majority of transcriptomic datasets are not

annotated with context information and thus, cannot be systematically leveraged to conduct contextualized

analyses on a large-scale. Nonetheless, the Gemma system (Lim et al., 2021) has been made available to provide

thousands of curated datasets; thus, more easily enabling data reuse and secondary analyses.

In this work, we apply a network-based approach to investigate transcriptomic patterns observed in a

variety of subcontexts classified under three major biological contexts (i.e., tissues, cell types, and cell lines) by

leveraging over 600 gene expression datasets (Figure 1A). To do so, we first construct co-expression networks

that capture the strongest gene expression correlations observed in each subcontext (Figure 1B). Subsequently, a

series of network-based analyses are conducted to enable the exploration of the similarities and differences

across co-expression networks and provide insights on gene co-expression patterns across contexts (Figure 1C).

Furthermore, we study the consensus between patterns identified in the co-expression network and a human

protein-protein interactome as well as pathways knowledge. Finally, we present ContNeXt, a web application

we have developed to enable researchers to explore and reuse our work.
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Figure 1. Conceptualization of the presented study. A) Over 600  context-specific transcriptomic datasets are collected and classified into
98 subcontexts (e.g., heart, astrocyte, and HeLa cell) under 3 major contexts (i.e., tissues, cell types, and cell lines), leveraging the Gemma
database (Zoubarev et al., 2012; Lim et al., 2021) B) Co-expression networks comprising the most strongly correlated edges observed in
each subcontext are generated. C) Network analyses provide insights on both common and unique patterns across the multiple contexts
studied.

2. Methodology
2.1. Gene expression datasets

We identified publicly available transcriptomic datasets from each of the three contexts evaluated (i.e., tissues,

cell types, and cell lines) using Gemma, a manually curated database containing metadata for over 10,000

datasets (Zoubarev et al., 2012; Lim et al., 2021) (Figure 1A). This metadata is programmatically accessible

through Gemma’s API (https://gemma.msl.ubc.ca/resources/restapidocs) and is annotated using different

ontologies. Specifically, for each of the three contexts of interest, the following ontologies were used: i)

UBERON for tissues (Mungall et al., 2012), ii) Cell Ontology (CL) for cell types (Diehl et al., 2016), and iii)

Cell Line Ontology (CLO) for cell lines (Sarntivijai et al., 2014).
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Leveraging the metadata from Gemma, we were able to classify the samples from each dataset to their

corresponding context(s). To guarantee the quality of the annotations, we conducted an additional manual

curation step where we confirmed that the Gemma sample annotations matched an ontology term for the given

context present in the metadata, if available. Additionally, we filtered out samples that were not control or

reference samples as our work focuses on comparing a normal physiological state in a variety of contexts.

Finally, Gemma also includes annotations on dataset quality and samples that were annotated as unusable were

excluded from our study.

After the initial annotation and curation steps, we implemented scripts for the downloading and processing

of datasets found in Gene Expression Omnibus (GEO) (Edgar et al., 2002). While GEO incorporates several

platforms, each measures different transcripts and requires a dedicated pipeline, and merging data from several

platforms is a complicated task which can introduce biases from probe sequences, arrays, or laboratory effects.

Furthermore, conducting analyses combining raw data from multiple platforms can also introduce biases (Rung

and Brazma, 2013). Thus, our work focuses on the most commonly used platform for humans, the Affymetrix

GeneChip Human Genome U133 Plus 2.0 Array platform (accession on GEO: GPL570). Out of 10,388 datasets

in Gemma as of 22/04/2021, 9,778 were filtered out while 610 remained for any one of the three contexts. In

total, the tissue context was divided into 46 subcontexts, while the cell line and cell type contexts each contained

22 and 30 subcontexts, respectively (see Supplementary Tables 1-3).

2.2. Generating co-expression networks from gene expression data
Co-expression networks were constructed using the WGCNA package in R (Langfelder et al., 2008). We

followed the same procedure outlined in our previous work (Figueiredo et al., 2021) to define the co-expression

networks (Figure 1B). This procedure focuses on the 1% highest similarity in the topological overlap matrix

(TOM) to define the co-expression network for each subcontext; thus, facilitating the comparison of networks of

the same size using a conservative cut-off in benchmark studies (Perkins and Langston, 2009). Given the

platform used in this study, the most similar 1% in the TOM corresponds to 2,036,667 edges. We would like to

note that the 1% cut-off is required as otherwise the networks would be fully connected, while we intend to

focus only on the edges representing the most relevant transcriptomic patterns observed within each context. As

edges representing a high topological overlap are also highly correlated in the TOM, we interchangeably refer to

these edges as correlations for simplicity. Although this is not precise, the TOM value is based on the signed

correlation but also takes the connectedness of nodes into account.

To run WGCNA, we used the raw expression data in the form of .CEL-files. Each dataset was individually

pre-processed with the RMA function of the oligo R package to conduct background subtraction and quantile

normalization. Next, we merged all samples from different datasets that belong to the same subcontext and

applied batch correction using ComBat (Johnson et al., 2007). Regarding the mapping of the probes to genes, if

there were multiple probes mapping to the same gene, we kept the most variable probe.
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2.3. Protein – protein interaction network

We built a human protein-protein interactome as described in our previous work (Figueiredo et al., 2021) as a

knowledge template to compare against the co-expression networks generated. The interactome comprises

interactions from well-established databases, including KEGG (Kanehisa et al., 2021) and Reactome (Jassal et

al., 2020). This network aims at representing the set of interactions that can occur in a physiological context,

though it is worth mentioning that each of these interactions may not necessarily be occurring in a particular

context at any given time.

2.4. Analyses

2.4.1. Controllability analysis

One of the more advanced techniques in analyzing networks is examining its controllability. We employed an

algorithm developed by Liu et al. (2011) which explores control theory to study the controllability of a directed

network and thus identify driver nodes (i.e., the set of nodes that can offer control over the whole network) in

order to classify each node and edge in a network as indispensable, dispensable, or neutral. Ideally, minimizing

the number of driver nodes offers adequate control over the network regarding the given biological system’s

dynamics. Using this algorithm, both nodes and edges can be classified as indispensable, dispensable, or neutral

if their removal creates the need to increase, decrease, or cause no change in the number of driver nodes,

respectively, so that controllability is maintained.

2.4.2. Pairwise co-expression network similarity
To evaluate similarity across co-expression networks, we calculated the overlap of edges across each pair of

co-expression networks within a given context. Since all co-expression networks have the same number of

edges, the number of shared edges between networks is readily comparable without the need to normalize

values.

2.4.3. Similarity between co-expression networks and the interactome

We assessed the similarity of each co-expression network to the human interactome by calculating the number

of shared edges. Here, it is important to note that edge directionality is ignored in the interactome since

co-expression networks are inherently undirected. Furthermore, we evaluated the significance of the overlap by

comparing the interactome to 1,000 permuted co-expression networks. Permuted versions of the co-expression

networks were created using the XSwap algorithm (Hanhijärvi et al., 2009) (source code available at

https://github.com/hetio/xswap), which ensures that the permuted versions preserve the structure of the original

network (i.e., all edges are shuffled while maintaining the degree of each node).

2.4.4. Pathway – co-expression network similarity

To investigate the correspondence of transcriptomic signatures from co-expression networks with pathway

knowledge, each of the context-specific co-expression networks were overlaid with pathways from KEGG
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(Kanehisa et al., 2021). The KEGG database was exclusively employed as it contains a feasible number of

pathways for analysis (i.e., less than 350). For each gene set of a given pathway P from KEGG, we calculate

every pairwise combination of nodes ( ) in P to determine the fraction of node combination pairs in that𝐶
𝑛

𝐶
𝑛

exist as an edge in a given co-expression network where n’ is the set of nodes in the𝑁 = (𝑛',  𝐸
𝑁

)

co-expression network and is the set of edges which connect the nodes n’. We term this the edge overlap,𝐸
𝑁

where . The proportion of that is in𝑒𝑑𝑔𝑒 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = |{ ∀ 𝑒
𝑢,𝑣 

𝑠. 𝑡.  (𝑢, 𝑣) ∈  𝐶
𝑛 

⋀ 𝑢,  𝑣 ∈  𝑛' ⋀ 𝑒
𝑢,𝑣

∈  𝐸
𝑁

}| 𝐶
𝑛

the edge overlap is the pathway-network similarity (Equation 1). Using the pathway-network similarity, we

create a similarity matrix with each network of a given context against every pathway from KEGG. This matrix

is subsequently used to create a heatmap and hierarchical clustering of the co-expression networks is performed

using Euclidean distances of their similarities to pathways.

𝑝𝑎𝑡ℎ𝑤𝑎𝑦 − 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑃, 𝑁) =  𝑒𝑑𝑔𝑒 𝑜𝑣𝑒𝑟𝑙𝑎𝑝
|𝐶

𝑛
|

Equation 1. Similarity between a pathway and co-expression network.

2.5. Implementation

Scripts to retrieve and process the datasets as well as to deploy the web application are available at

https://github.com/ContNeXt. We have also provided comprehensive documentation to modify the filtering

steps and add extensions to the scripts. For network analysis and visualizations, we used the Python NetworkX

library (Hagberg et al., 2008) (https://networkx.github.io/), and Matplotlib, and seaborn, respectively. The

processed data used in this work is available at Zenodo at https://zenodo.org/record/5831786.

3. Results
In Section 3.1, we provide an overview of the co-expression and PPI networks, while in Sections 3.2-3.4, we

outline each of the analyses conducted, specifically at the protein-, network-, and pathway- levels (Figure 2).

Finally, Section 3.5 presents ContNeXt, a web application developed to explore the results of this work.
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Figure 2. Overview of analyses conducted across all subcontexts in three different contexts (i.e., tissues, cell lines, and cell types). At
the protein-level, patterns surrounding each single node are investigated (Section 3.2). The network-level analysis focuses on the relations
between nodes (or node pairs) (Section 3.3) and the pathway-level analysis leverages defined node and edge sets to gain insights on
context-specific co-expression networks (Section 3.4).

3.1. Overview of co-expression networks and interactome

From 364, 222, and 103 (at times overlapping) datasets that were categorized into 46 distinct tissues, 30 distinct

cell types, 22 distinct cell lines, respectively, we systematically constructed co-expression networks

corresponding to each of these contexts. Figure 3 summarizes the size of each corresponding co-expression

network. We find that across different contexts, the collected data, which depends on the study objectives, is

biased towards certain groups of related subcontexts. For instance, in the tissue context, a large number of

subcontexts belong to tissues of the nervous system, while in the cell type context, the majority of subcontexts

are related to the immune system. This bias can especially be seen in the cell line context, where nearly all cell

lines are derived from cancer cells. Finally, we investigated the correlation between the number of samples or

datasets used to generate the co-expression networks and the size of the networks as a potential source of bias.

We found no such dependency between the number of samples or datasets and the network size

(Supplementary Figure 1).

Figure 3. Distribution of network size for each of the three contexts. Distributions of network size are given as the number of nodes in
each subcontext. In the tissue context, the cortex of cerebral lobe network had the fewest number of nodes (i.e., 6,514), while the placenta
network had the largest number of nodes (i.e., 20,171) across not only all networks of the tissue context, but also across all other contexts. In
the cell type context, the fibroblast network had the least number of nodes (i.e., 7,767), while the stem cell network had the highest number
of nodes (i.e., 20,158). In the cell line context, the HepG2 cell line network had the least number of nodes (i.e., 6,460), while the Huv-ec-c
cell line network had the largest number of nodes (i.e., 18,758). Generally, the networks within each context tended to vary greatly in size.
For example, the tissue context includes networks ranging in size from 6,514 to 20,171 nodes.

With 8,601 nodes and 199,535 edges, although the size of the human interactome is on the same scale as

other published human interactomes in recent studies (Luck et al., 2020; Vinayagama et al., 2016), the number

8/23

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.18.476735doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.18.476735
http://creativecommons.org/licenses/by/4.0/


of nodes (proteins) is less than half of the largest co-expression network. This was to be expected, as the

majority of proteins measured in transcriptomic experiments have not yet been investigated in the literature and

little is known of their functionality. Nodes of the interactome can be visualized in the web application (see

Section 3.5) along with their neighbors, betweenness centrality, degree centrality, controllability classification,

and information on whether the node is a housekeeping gene.

In order to discern unique features of context-specific co-expression networks which could be of biological

significance, we first sought to identify genes known to arise from generic processes whose patterns are more

likely to be stable and unaffected by any given context or condition. In particular, we investigated the presence

of these, so called, housekeeping genes in each of the co-expression networks, noting that these genes are

indicative of shared biology given their role in cell maintenance, and therefore, exhibit constant expression

levels across all cells and conditions (Eisenberg and Levanon, 2003). Thus, by better understanding which genes

have critical roles in basic cell maintenance, we could better direct our focus in determining genes of interest.

The housekeeping genes dataset made available from Eisenberg and Levanon (2003) consisted of 3,804 genes

(Supplementary Table 4), 1,723 of which were present in the interactome (20% of the overall interactome).

To analyze the structural properties of the interactome, we employed an algorithm (see Methods) that has

been applied to identify the importance of nodes and edges in biological networks (Supplementary Text 1).

The results of the controllability analysis indicate that the interactome has 1,233 driver nodes with which the

network can be controlled. Overall, 74.6% of the nodes were classified as neutral, 16.17% dispensable, and

9.2% indispensable. A list of the full classifications can be seen in Supplementary Table 5, and a summary of

these nodes can be seen in Table 1. We observed that the indispensable nodes were highly connected, as

expected, had the highest average betweenness centrality, and a significant portion (i.e., ~25%) were

housekeeping genes. By comparison, neutral nodes were found to have half as many connections and an average

betweenness centrality 10 times lower than indispensable nodes. However, the proportion of neutral nodes that

were housekeeping genes were comparable to that of the indispensable nodes. By contrast, differences between

the dispensable and indispensable nodes were far more pronounced; the average degree of dispensable nodes

was only ~6, compared to ~107 for indispensable nodes, while the average betweenness centrality was more

than 1,000 times lower. Additionally, only ~8% of dispensable nodes were housekeeping genes, compared to

roughly a quarter for both indispensable and neutral nodes.

Total number Scaled
betweenness

centrality
mean

Scaled
betweenness

centrality
median

Scaled
betweenness

centrality
mode

Degree mean Degree median Degree mode Proportion
housekeeping

gene

Indispensable 793 0.024519 0.006825 0.002642 107.08 60 29 24.59%

Dispensable 1391 0.000019 0.00000 0.00000 6.44 4 1 7.84%

Neutral 6417 0.004090 0.001101 0.00000 47.56 31 13 22.11%

Table 1. Regarding the interactome controllability, 6,417 of the total nodes (74.6%) were classified as neutral; i.e., removing them will have
no effect on the number of driver nodes in the network, representing the largest proportion of nodes in the interactome. 1,391 (16.17% of the
interactome) nodes were dispensable, meaning their removal would decrease the number of driver nodes in the network. Lastly, 793 nodes
(9.2% of the interactome) were determined to be indispensable, which caused an increase in the need for driver nodes at their removal. In all
three categories (i.e., betweenness centrality, degree, and housekeeping gene proportion), indispensable nodes had the highest value,
followed by neutral, and dispensable with the lowest values. The indispensable nodes are listed in Supplementary Table 6. Betweenness
centrality scores were scaled between 0 and 1 to facilitate comparability.
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3.2. Analyses at the protein-level

We begin by exploring general trends for all co-expression networks of each context at the protein-level by

focusing on the most and least common proteins (i.e., present in all or exactly one network within a context). We

first used the results of the previously-mentioned controllability analysis of the interactome as well as

housekeeping genes and overlapped them with the most and least common proteins in each context. As

summarized in Table 2, of the most common nodes (i.e., proteins that could be found in each network within a

given context), we found that the cell type context had the largest number of proteins across all networks (301

proteins), while the tissue network had the fewest (22 proteins). Among the most common nodes, the ratio of

housekeeping genes was greater than the proportion of housekeeping genes present in the interactome (i.e.,

20%), comprising nearly 50% of the most common nodes in each of the contexts.

Tissue context Cell type context Cell line context

Proteins in all co-expression
networks

22 2 indispensable
11 housekeeping

301 21 indispensable
180 housekeeping

185 15 indispensable
81 housekeeping

Proteins unique to one
co-expression network

0 0 indispensable
0 housekeeping

1 0 indispensable
0 housekeeping

106 0 indispensable
1 housekeeping

Table 2. Most and least common proteins per context. The most and least common proteins of the co-expression networks (i.e., in all or
exactly one network within a context) were overlapped with proteins given distinct classifications from the controllability analysis of the
interactome as well as with housekeeping genes. 22 proteins were identified as the most common proteins, that is, found in all 46
co-expression networks of the tissue context. Of the 30 co-expression networks of the cell type context, 301 proteins were found in all of
them, while among 22 co-expression networks in the cell line context, 185 proteins were identified in each network By comparison, no
proteins were found to be unique to a single co-expression network in the tissue context, while only one was found in the cell type context
belonging to the stem cell co-expression network. On the other hand, 106 least common proteins were found in the cell line context, only
one of which is a housekeeping gene and none of which are indispensable. A full list of the proteins found in all or in a single network per
context can be seen in Supplementary Table 7.

3.2.1. Overlap of co-expression networks with the interactome

While only considering the proteins present in the interactome as well as at least one co-expression network, we

conducted an in-depth investigation of whether proteins in the co-expression networks of a given context could

consistently be identified in the human interactome network. We first noted trends at the protein-level by

comparing the most and least common proteins across co-expression networks within a context against the most

and least connected proteins of the interactome. As the co-expression network and interactome sizes vastly

differed, we studied this overlap considering the top or bottom most proteins in proportions roughly equivalent

in size. We selected various cut-offs for each context, corresponding to the number of co-expression networks

(see Supplementary Text 2 for details on the cut-offs for each context). This ensured the inclusion of either the

maximal or minimal possible overlap of the common proteins of the co-expression networks and connected

proteins of the interactome, depending on whether our investigation focused on the most commonly or most

uniquely occurring proteins, respectively. A detailed list of the resulting overlaps can be seen in Supplementary

Table 8.

3.2.2. Most common proteins

First, we focus on the most common proteins. Among the most commonly occurring proteins in the tissue

context that overlapped with proteins from the interactome, a number of proteins belonged to the MAPK protein
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family (Supplementary Table 8). Proteins in this family are instrumental in transduction of extracellular signals

to cellular responses and complex cellular processes such as apoptosis, development, differentiation,

proliferation, and transformation (Zhang and Liu, 2002). While only the larger two comparisons in the tissue

context (Supplementary Figure 2; lower two diagrams) resulted in an overlap, a significant portion of these

overlapping proteins were also indispensable, or housekeeping. Within the large overlaps between the common

cell type proteins and most connected interactome proteins (Supplementary Figure 3), a larger proportion of

housekeeping genes was found than in any of the contexts studied, with more than half of each overlap being a

housekeeping gene (i.e., 50-67%), and more of the proteins are also indispensable.

In cell lines, we observed a substantial overlap of most common proteins that are also found in the

interactome overall, including when using the strictest cut-offs, however, significantly less were found to be

indispensable or housekeeping than in the tissue and cell type contexts (Supplementary Figure 4). We select a

proportional set from each context (400 of the most common proteins per context) to compare their overlaps

with the interactome (Supplementary Table 9A). The overlaps all had a similar number of proteins in them,

between 30 and 37 proteins. Across contexts, there was a similar proportion of the overlap which are

indispensable nodes of the interactome (~32% in tissues, 40% in cell types, and ~43% in cell lines). On the other

hand, the proportion of housekeeping genes varied more, with 43% of the proteins from the cell line overlap,

while tissues and cell types both had more than 60%. Overall, housekeeping genes seem to be best represented

in the co-expression networks. We observed a number of proteins in all of the context's overlaps belonging to

the Ribosomal protein (RP) family (Supplementary Table 9A), from both small and large subunits. RPs are

essential in protein synthesis (Yoshihama et al., 2002). The tissue overlap had one from large and one from

small subunit, the cell type overlap had four from large and one from small subunit, and the cell line overlap had

one small subunit RP. We also found that the average number of relations for the proteins in the interactome that

overlapped with the approximately top 400 most common proteins in the tissue and cell line networks (~73 and

~72 relations, respectively), was much higher than the average number of relations overall in the interactome

(~46 relations). This suggests that the common tissue- and cell line-wide proteins across the co-expression

networks are better represented in the scientific literature. In the cell type networks, this average was less high,

~60 relations, but still more than overall in the interactome.

3.2.3. Least common proteins

Next, we investigated the least common proteins in the co-expression networks and their overlap with the least

connected proteins in the interactome. This time, the tissue context presented a more consistent overlap while

increasing the protein pool, but still a minimal overlap (Supplementary Figure 5). The overlap with the

interactome and the cell type context was about the same as in the tissue context (Supplementary Figure 6). In

the cell line context, we found a small, steadily increasing overlap with each interval comparison, which was not

the case in the most common proteins (Supplementary Figure 7). The overlap with the interactome in the

larger comparisons was roughly the same as in every other context. The minimal overlaps suggest that little is

currently known of these proteins. Additionally, we also selected proportional sets of the 400 least common

proteins in each context, also occurring the interactome overall against the 400 least connected nodes of the

interactome (Supplementary Table 9B). The sizes of the overlap didn't vary as much as in the most common
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and connected comparison, with each context having around 30 proteins in the overlap. As expected, with these

overlaps, either one or no proteins are also indispensable or housekeeping. We observe an overwhelming

number of proteins belonging to the ZNF protein family in each of the overlaps (i.e., 10/34 (29%) in tissues,

11/33 (33%) in cell types, and 4/27 (15%) in cell lines) (Supplementary Table 9B). While ZNFs are widely

found in the organism, they play critical roles in specific tissues, and in the development of many diseases

(Cassandri et al., 2017).

3.3. Analyses at the network-level

We first focused on analyzing edges of the co-expression networks, including the unique and most commonly

occurring edges within contexts. Additionally, we leveraged prior knowledge from a referential human

interactome and studied the correspondence of edges from this network against the strongest pairwise

correlations of the co-expression networks. Subsequently, we validated these findings by conducting an

equivalent comparison against randomly generated versions of the co-expression networks. Finally, we

conducted a similarity analysis on the network edges within each context.

3.3.1. Unique and most commonly occurring edges

We first assessed whether there were any edges specific to particular tissue networks, identifying 45,963,343

unique edges in total (i.e., 49% of all edges). We also identified 34,584,720 unique edges in the cell type context

(i.e., 57% of all edges) and 31,941,789 unique edges in the cell line context (i.e., 71% of all edges). These

proportions are similar to findings by Stacey et al. (2018) who found that over half of edges in several PPI

databases are context-specific. Figure 4 illustrates the frequency of unique and common edges in all networks

within a context. We find that edges which are common to at least 25% of networks within a context are rare

(i.e., between 0.07% and 0.16%), while those which are in at least 75% of networks are nearly negligible (i.e.,

33 edges in total for tissues, 9 for cell types, and 4 for cell lines). As only the 1% strongest correlations were

selected for each network, it was foreseen that a large number of edges in our resulting co-expression networks

would be specific to a single subcontext. Although these unique edges are interesting to explore for a given

subcontext (green portions in Figure 4), given the sheer volume of unique edges, their investigation was outside

of the scope of this work.
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Figure 4. Frequency of edge occurrence across networks within a context. Proportions of edges are given as those that are unique, or
common to varying degrees, in networks within the A) tissue, B) cell type, and C) cell line context. From the total set of edges that occur
across all networks within each context, the fraction of edges that are unique (i.e., appear in at most one network within a given context) are
shown in green. From this total set of edges, the fraction of those which appear in at least 25% of networks within a given context are
magnified in a consecutively smaller pie chart (i.e., predominantly in red). Similarly, those which appear in at least 50% of networks within
a given context are magnified and illustrated in a pie chart predominantly in blue. Finally, of this latter group of edges, the fraction of edges
that are most common (i.e., appear in at least 75% of all networks within a given context) are highlighted in purple.

We hypothesize that these common edges correspond to basal correlations that are not specific as they

appear in the majority of networks within one or more contexts. Thus, we analyze the most frequently occurring

edges in each of the three contexts. Unsurprisingly, the two housekeeping genes of the tubulin alpha families

(i.e., TUBA1C and TUBA1B) are nearly always found to be connected to each other (in 83 out of 98 networks),

regardless of context. Additionally, IFITM2 and IFITM3, proteins of the interferon-induced transmembrane

family, which play a key role in immune system functions, are also often seen connected to each other in 84 out

of 98 networks. Members of the human leukocyte antigens (HLA) protein family are also often interconnected

across the cell type and cell line contexts. This is in line with Crow et al. (2019) who found that certain gene

modules are predictably found across biological conditions, such as those of the immune response. In our

previous paper (Figueiredo et al., 2021), we found that of the most common edges among 63 major diseases,

members of the Metallothionein (MT) family of proteins, were in nearly half of these edges. Similarly, here

again we observed that a large number of MT proteins share neighbors across networks in every context.

Of the most common edges throughout all contexts (see Supplementary Text 3), none were indispensable

within the interactome. When widening our search to the top 100,000, we found only seven, three, and one edge

in the tissue, cell type, and cell line contexts to be indispensable in the interactome, respectively. Next, these

most common edges found in the majority of networks of a given context were compared to the interactome

network to identify concordance between the two. We performed a range of comparisons on the most common

edges by focusing only on the top 1,000 to 10,000 edges, in increments of 1,000. Then, the most common edges

in each co-expression network were compared to the interactome. Overall, we found little overlap in the most

common edges. In the tissue context, we found an overlap of only 5% in the top 1,000 most common edges

against the interactome, with this overlap decreasing to 4% when considering the top 10,000 most common
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edges. In comparison these proportions ranged from ~7% to 3% in the cell type context between the top 1,000

and 10,000 most common edges, and 4% to 2% in the cell line context.

3.3.2. The strongest correlations tend to correspond with protein-protein interactions
more than expected by chance

In this section, we investigate whether the strongest correlations present in the co-expression networks

correspond to PPIs more often than what would be expected by chance. For this purpose, we permuted each

co-expression network for each context 1,000 times while maintaining the original graph structure (see

Methods). We next compared the overlap of edges between these permuted co-expression networks with the

human interactome (the results of the first 100 permutations can be seen in Supplementary Table 10). Our

results show that, on average, the original co-expression networks have 1.55 times as many edges in common

with the human interactome as compared to the permuted networks, which exhibited a comparatively low

variability in their overlap within a subcontext. Across all contexts, the maximum difference in overlap was for

the ovary subcontext, where the original ovary co-expression network had 3.3 times as many edges in common

with the interactome as compared to the permuted versions. In comparison, the saliva co-expression network

showed the smallest difference in edge overlap between the original and permuted co-expression networks, with

the overlap of the interactome with the original co-expression network having only 1.01 times as many edges as

the permuted versions on average. Thus, we find that co-expression patterns correspond with PPIs more than

expected by chance.

3.3.3. Edge-based similarity across co-expression networks

Next, we investigated edge similarity across networks within a given context. By comparing the co-expression

networks to each other rather than just the interactome, we could identify the networks that were most similar

edgewise. In the tissue context, two pairs of networks displayed the highest degree of similarity, namely the

brain and the cortex of the cerebral lobe, and the colon and the rectum (Figure 5A). This finding was not

surprising given that these pairs of tissues are anatomically related (i.e., both are of the brain or the colorectum).

The cell line context had a few standout pairs of networks which had the highest degree of similarity (Figure

5B). Specifically, the highest similarity was between two different human breast cancer cell lines:

MDA-MB-231 and MCF7. Additionally, the MCF7 cell line again had a high similarity with a human colon

cancer cell line, HCT 116. On the other hand, in the cell type context, rather than specific pairs showing the

highest similarity with each other, a few selected subcontexts had a high similarity with most of the other

networks overall (Figure 5C). These include the macrophage and peripheral blood mononuclear cell networks,

which had high similarity with more than half of the other networks.
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Figure 5. Pairwise co-expression network similarity across contexts. For each pair of co-expression networks within a given context,
edge overlap was calculated as a measure of similarity between networks for the A) tissue, B) cell line, and C) cell type contexts. A high
quality version of the figure is available at https://github.com/ContNeXt/scripts/blob/main/figures/figure5.pdf.

3.4. Mapping co-expression networks to pathway knowledge

Lastly, we attempted to establish patterns across co-expression networks at a pathway-level by overlaying

pathway knowledge with the co-expression networks. If a given pathway is related to a specific network (e.g.,

15/23

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.18.476735doi: bioRxiv preprint 

https://github.com/ContNeXt/scripts/blob/main/figures/figure5.pdf
https://doi.org/10.1101/2022.01.18.476735
http://creativecommons.org/licenses/by/4.0/


fatty acid metabolism pathway and the liver co-expression network), we would expect that the proteins in the

pathway would be strongly correlated in the co-expression network. Furthermore, we assume that, given a set of

highly co-expressed genes of which a majority are involved in a particular pathway, the remaining genes may be

functionally relevant to the pathway as well. We therefore seek to identify the pathways associated with

networks from each of the investigated contexts. Using the KEGG database (Kanehisa et al., 2021), we mapped

pathway knowledge to co-expression networks according to Equation 1 (see Methods).

We found several groups of tissues that had high similarities with pathways related to the given tissues

(Figure 6). For instance, the two tissue networks corresponding to cortex of cerebral lobe and brain shared a

large group of pathways exhibiting a high degree of similarity, including nine synaptic pathways (Figure 6;

green oval) (Supplementary Table 11). Furthermore, the three networks for liver, cortex of kidney, and kidney

also had the highest level of similarity with numerous pathways, including eight involving the regulation of fatty

acids as well as 11 involving amino acid metabolism and degradation (Figure 6; red oval) (Supplementary

Table 12). Not surprisingly, the adipose tissue network also showed the highest similarity with adipose-related

pathways, such as adipocytokine signaling pathway and regulation of lipolysis in adipocytes pathway.

Figure 6. Similarity between tissue-specific co-expression networks and KEGG pathways. The similarity between a particular pathway
and a co-expression network is defined as the percentage of pairwise combinations of proteins of a given KEGG pathway that can be found
in a co-expression network as edges. Light blue corresponds to a lower similarity, while dark blue corresponds to a high similarity. A high
quality version of this figure is available at https://github.com/ContNeXt/scripts/blob/main/figures/figure6_highquality.pdf and can also be
visualized in the web application.

In the cell type context, while no groups of network shared distinct pathways among them, we found three

cell types having distinct groups of pathways with very high similarity unique to a single network. For example,

a number of pathways showed a high degree of similarity to the neutrophil co-expression network

(Supplementary Figure 8; red oval), namely, 11 that regulate the immune response (Supplementary Table

13). Additionally, the co-expression network for hepatocytes, the primary cell type of the liver, had the highest

level of similarity with many pathways (Supplementary Figure 8; yellow oval), including six involving basic

liver function as well as many metabolic pathways, particularly 10 pertaining to amino acids metabolism and

seven for other specific molecules (Supplementary Table 14). Lastly, we found an additional group of

pathways that were exclusively similar to one network, namely the neuron (Supplementary Figure 8; green

oval). Specifically, this included five pathways related to neurotransmitter systems, long-term depression, and

pathways related to addiction (Supplementary Table 15).

Analogous to the cell type context, while related groups of networks from the cell line context were not

found to be similar to related groups of pathways (Supplementary Figure 9), several individual cell lines were
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observed to be highly similar to a group of pathways. However, these pathways were not necessarily unique to

the cell line, showing some similarity with other cell lines as well. Interestingly, we found a large group of

pathways (i.e., 70 in total) with consistently high similarity with nearly all cell lines, with the exception of the

THP-1 cell line (Supplementary Figure 9; green rectangle). These include 24 different signaling pathways

and 16 different cancer pathways (Supplementary Table 16). Notably, we found a group of pathways that were

distinctly similar to two cell lines (i.e., A549 and TK6). Specifically, 14 pathways showed a high degree of

similarity to the A549 cell line co-expression network (Supplementary Figure 9; yellow oval). This cell line

originated from adenocarcinomic human alveolar basal epithelial cells from lung cancer and is used as a model

for drug metabolism (Foster et al., 1998). Of these 14 pathways that, on average, showed the highest similarity

to this cell line relative to the others, eight were pathways involving metabolism and three were pathways

related to compound biosynthesis (Supplementary Table 17). Similarly, we identified a group of pathways

which showed a higher similarity to the TK6 cell line, originating from a human B lymphoblastoid cell

(Schwartz et al., 2004), over all other cell lines (Supplementary Figure 11; red oval), including five signaling

pathways (Supplementary Table 18).

3.5. ContNeXt – a web application to explore gene expression patterns
across contexts

To provide access to the co-expression networks and analyses presented in this work, we have developed

ContNeXt, a web application that facilitates the large-scale exploration and analysis of transcriptomic patterns

across multiple contexts. The main page of the web application allows users to search co-expression patterns for

a given node in a particular context or browse and query specific nodes in a certain subcontext (Figure 7A).

With interactive network visualizations, users can explore these patterns and employ functionalities such as

filtering or search boxes (Figure 7B). Similarly, the heatmaps presented in this work can be interactively

explored through the web application (Figure 7C). Finally, both the processed data and networks can be

downloaded directly from the web application.
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Figure 7. ContNeXt web application. A) Main page. Users can query for specific genes or directly explore the networks of a given context.
B) Network page. Users can explore and navigate through the neighbors of a specific gene for each network. C) Heatmap visualization.
Heatmaps presented in this work can be interactively viewed to investigate pairwise co-expression network -based similarity as well as
pathway- co-expression network -based similarity.
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4. Discussion
We have presented a large-scale network-based approach that aims at revealing common and specific biological

processes and mechanisms across contexts by identifying transcriptional patterns that are unique to various cell

types, tissues, and cell lines, as well as patterns which are consistent across them. In order to do so, we

constructed co-expression networks to capture the strongest correlations observed in 98 specific subcontexts

belonging to these three biological contexts (i.e., tissues, cell types, and cell lines) and conducted a series of

analyses at the protein, network, and pathway levels. Finally, we developed a web application to enable users to

query and display these networks and ultimately, explore shared and distinct co-expression patterns for multiple

contexts.

We believe that one strength of our work is its robustness, as we have systematically leveraged hundreds of

curated datasets, thereby ensuring a diverse sample of experiments conducted in similar settings whilst applying

a common preprocessing and analysis pipeline. However, although we applied a conservative

inclusion/exclusion criteria, we cannot assume that every dataset in the same (sub)context is equivalent and thus,

some of the patterns identified may be dataset-specific. To account for this factor and reduce noise and

variability across datasets, we focused on the 1% strongest correlations, keeping in mind that the choice of

cut-off can influence the resulting co-expression network (Yip and Horvath, 2007), and also constrained our

analysis to subcontexts with a large number of samples. Still, independently of this minimum criteria, there are

differences in the number of datasets per subcontext that could lead to variability for specific subcontexts with a

small sample size. Another limitation is that we have exclusively relied on the platform with a large number of

datasets in the Gemma database. Similarly, we also employed Gemma’s context annotations to classify the

datasets. While it is technically possible to include more platforms in our analysis as well as annotate datasets

from other databases, each additional platform would require its own independent processing pipeline and a

significant curation effort. Furthermore, in the cell line context, it is important to note that the majority of cell

lines originate from widely used immortal cancer cell lines, which might differ from the normal human cells

used for the cell type and tissue contexts. Finally, we would like to remark on two other limitations of our

analysis. Firstly, while we employed a large and high-quality version of the protein-protein human interactome,

some parts of the graphs are more dense than others as some proteins are under-studied (Schaefer et al., 2015).

Secondly, some of the analyses are influenced by the size of the co-expression networks (Figure 3), as the fewer

nodes a network has, the more dense it is due to the larger amount of connections between its nodes.

Lastly, we would like to mention some of the prospects we foresee for future work. Firstly, by shifting the

analysis towards single-cell experiment datasets, we can potentially identify more granular patterns.

Furthermore, single-cell RNA-seq data can be used to verify whether the observed tissue-specific transcriptional

patterns are indeed characteristic to specific tissues, or are influenced by their cellular composition, as observed

by Farahbod and Pavlidis (2020). While this large-scale exercise is not feasible at the moment due to the lack of

available data of this kind, we expect that it could be conducted in future. Secondly, disease-specific gene

expression datasets can be exploited to compare disease-specific signatures with the ones observed in a related

normal tissue or cell type in order to identify the biological processes and pathways that are dysregulated in the

disease context. Thirdly, as demonstrated by Azevedo et al. (2021) and Sealfon et al. (2021), machine learning
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models could be trained on the generated co-expression networks to classify signatures coming from new

samples into a particular context given its specific characteristics.

Data availability
All data supporting the conclusions of this article are available at https://zenodo.org/record/5831786 and scripts

can be found at https://github.com/ContNeXt/scripts. ContNeXt and its source code are available at

https://contnext.scai.fraunhofer.de and https://github.com/ContNeXt/web_app, respectively.
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