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Abstract. Finding optimal survival strategies of living systems embedded
in fluctuating environments generally involves a balance between phenotypic
diversification and sensing. If we neglect sensing mechanisms, it is known that
slow, resp. fast, environmental transitions favor a regime of heterogeneous, resp.
homogeneous, phenotypic response.

We focus here on the simplest non-trivial case, i.e. two randomly switching
phenotypes subjected to two stochastically switching environments. The optimal
asymptotic (long term) growth rate of this model was studied elsewhere; we further
expand these results by discussing finite time growth rate fluctuations. An exact
asymptotic expression for the variance, alongside with approximations valid in different
regimes, are tested numerically in details. Our simulations of the dynamics suggest
a close connection between this variance and the extinction probability, understood
as risk for the population. Motivated by an earlier trade-off analysis between average
capital growth rate and risk in Kelly’s gambling model, we study the trade-off between
the average growth rate and the variance in the present model. Despite considerable
differences between the two models, we find similar optimal trade-off curves (Pareto
fronts), suggesting that our conclusions are robust, and broadly applicable in various
fields ranging from biology/ecology to economics.
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1. Introduction

In unpredictably varying environments, it is advantageous for a population to accept
a reduction of its short-term reproductive success in exchange for longer-term risk
reduction. This phenomenon, called bet-hedging, protects individuals from potential
damages associated with environment variations [1, 2]. It is an important topic in
biology which is associated to a number of phenomena such as species polymorphism,
antibiotics resistance of bacteria [3] or the resistance of cancer cells to anti-cancer drugs,
and more generally to the phenomenon of cell variability [4] and adaptation by the
immune system. In all these examples, a dynamic phenotypic heterogeneity at the
single cell level brings a fitness advantage at the population level when the environment
is fluctuating [5]. Bet-hedging is also a widely studied phenomenon in ecology. For
instance, plants use it to delay germination as a form of insurance policy against
potentially damaging environment fluctuations [6]. It is important both in spatially
homogeneous or heterogeneous environments. In the latter case, it may correspond to
a strategy for a given population to colonize an heterogeneous environment [7].

In the literature, an important distinction is made between stochastic bet-hedging,
in which the biological system switches stochastically between two phenotypic states at
constant rates independent of the environment, and the case of sensing, where the
biological system adapts the switching rates to the environment, using information
extracted from the environment and relying on a form of memory [8]. The case of
adaptive strategies using memory in temporally correlated environments is challenging to
describe theoretically but there is constant progress even in this difficult case [9, 10, 11].
In this context, fluctuation relations have been derived for biological populations, which
can sense and extract information dynamically from fluctuating environments [12, 13].
These works identified a thermodynamic structure in population dynamics and put
forward a deep connection between fitness and information, which underlies the universal
adaptation properties of living systems.

Stochastic bet-hedging is perhaps best illustrated theoretically using Kelly’s model,
originally introduced in the context of gambling models such as horse races [14]. Kelly
proposed a criterion to determine how to place optimally the bets of the gambler so as
to maximize the long term growth rate of its capital. The criterion has been used for
gambling and for applications in money investment [15]. Being based on information
theory, the criterion is general and is also broadly applicable to resource allocation
problems in biology, such as the problem of spatial allocation of enzymes within a
cell [16]. In practice, Kelly’s strategy is known to be risky, because it implies wild
fluctuations of the growth rate of the capital, which most gamblers are not comfortable
with. The reason is that Kelly’s model focuses on long term growth but neglects short
term risk, which could be very relevant for gamblers and biological populations [17]. A
more acceptable solution is an optimization of the mean fitness/growth rate combined
with a minimization of the variance, i.e. the risk. In a recent work also inspired by
Stochastic Thermodynamics, we have revisited the trade-off between mean growth rate
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and variance for Kelly’s horse race model, and we have studied the Pareto front formed
by the corresponding optimal strategies [18].

In this paper, we go significantly beyond Kelly’s model, by studying a model of
a biological population in a fluctuating environment. We assume that the fitness of
individuals depends on the environment, and that individuals can switch stochastically
between two phenotypic states, at constant rates independent of the environment
[19, 20], so that there is no sensing and no memory. We explain why despite these
simplifying assumptions, this problem is still considerably more difficult to tackle than
Kelly’s original model. To make progress, we introduce a new measure of risk for
the population, namely the variance of the finite time growth rate. We first derive an
approximate expression of the variance of the finite time growth rate in the limit in which
environment fluctuations are slow with respect to phenotypic transitions [8]. Then, we
study the general case of arbitrary environment fluctuations and an arbitrary number
of discrete phenotypic states, thanks to results derived by one of us in a companion
paper [21]. We test both expressions of the variance using numerical simulations in the
particular case of two phenotypic states and two environments.

In the literature, many different trade-offs have been considered in this context of
populations growing in varying environments. In a classic representation, the growth
rate is optimized in the space spanned by the different achievable fitnesses for each
separate environment [22, 9]. Another possibility is to look at the distribution of
phenotypes in the optimal strategy [23]. Here, we study instead the Pareto-optimal
trade-off in terms of the average and the variance of the growth rate. This trade-off is
essentially the one between growth rate and risk, which is well documented in economics
or in gambling models [15], and which is also relevant for biological and evolutionary
processes [24, 25, 26, 27]. Using numerical simulations, we also show that the variance
of the growth rate is an acceptable measure of risk for the population, because strategies
with a high growth rate variance are the ones with a higher probability of extinction.

2. Definition of the model

Let us consider a biological population of individuals which exhibit only two phenotypes
A and B, which can randomly switch between them. To simplify let us also assume that
the environment has only two discrete states 1 and 2 [5, 2]. We denote the population
vector, which describes the number of individuals in each phenotype (A or B) at a given
time t by N(t) = (NA(t), NB(t))T , where T denotes the transpose. The subpopulation of
individuals with phenotype A grows when placed in the environment i with the growth
rate kAi, while the other subpopulation with phenotype B grows with rate kBi. There
is no population noise, the dynamics of the system is deterministic in each separate
environment and individual growth rates can take positive or negative values [8].

When both growth rates take positive values, the evolution of the two
subpopulations is equivalent to that of two species (also called A and B), which grow
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according to autocatalytic reactions. The corresponding chemical reactions are

A
kA1→ 2A, (1)

B
kB1→ 2B, (2)

for the growth of the phenotypes (A,B) in environment 1 and similarly,

A
kA2→ 2A, (3)

B
kB2→ 2B, (4)

for the growth in environment 2. Environmental transitions, which are stochastic, can
be described by the reversible reaction :

S1

κ1
�
κ2

S2, (5)

where S1 (resp. S2) represents environment 1 (resp. 2).
For applications, we shall assume in addition that phenotype A is more adapted to

environment 1 than phenotype B, so that kA1 ≥ kB1; while phenotype B is more adapted
to environment 2, so that kA2 ≤ kB2 [19]. Let Qt be the marginal probability of the
environment at time t. Since the evolution of the system and environment states form a
Markov process in continuous time, this probability distribution admits the stationary
measure defined by Q(1) = κ2/(κ1 + κ2), for the probability of the environment to be
in the first state and Q(2) = κ1/(κ1 + κ2) for the other state. The different periods
of environment i, denoted τi are assumed to be i.i.d. exponentially distributed random
variables.

Independently of the state of the environment, individuals can switch their
phenotype. These phenotypic transitions can be described chemically by the reversible
reaction :

A
π1
�
π2

B, (6)

which is always present irrespective of the state of the environment. These rates π1

and π2 represent the strategy of the individual, similar to the betting strategy in Kelly’s
horse races. Note that there is no sensing, which means that these rates are independent
of the state of the environment.

All these reactions can be summarized by the vector equation

d

dt
N(t) = MS(t)N(t), (7)

with matrices

MS1 =

(
kA1 − π1 π2

π1 kB1 − π2

)
and MS2 =

(
−π1 + kA2 π2

π1 kB2 − π2

)
. (8)

The finite time averaged population growth rate is defined as

Λt =
1

t
ln
N(t)

N(0)
, (9)
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in terms of the total population N(t) = NA(t) + NB(t), and the long term population
growth rate is

Λ = lim
t→∞

Λt. (10)

When the environment remains constant, i.e. when S(t) = Si for all times, the total
population grows exponentially with a growth exponent equal to the top eigenvalue of
the matrixMSi

, while the distribution of phenotypes is determined by the corresponding
eigenvector, denoted qi.

2.1. Main quantities of interest

In the general case of a switching environment, it is more difficult to obtain an analytical
expression of the growth rate, because one needs to evaluate a product of a large number
of random matrices of the type

P (t) =
∏

n

exp(τnMSn), (11)

where the product is over the various alternating environments of duration τn such that∑
n τn = t. The quantity we are interested in is called the Lyapunov exponent in the

literature, which corresponds precisely to the growth rate defined previously :

Λ = lim
t→∞

1

t
ln ||P (t)N(0)||, (12)

an expression which is known to be independent of the choice of norm denoted || · ||
for the matrices and independent of N(0), an arbitrary vector describing the initial
condition [28] . Another important property of that Lyapunov exponent is that it is a
self-averaging quantity, therefore there is no need to average over the ensemble of random
matrices : Λ = 〈Λ〉. Although there is no simple method to compute that Lyapunov
exponent exactly in the general case where the matrices do not commute (except in the
case of 2 x 2 matrices as done in [19]), there are a number of useful approximations,
which generalize to arbitrary dimensions.

For real application, demographic fluctuations are important because in the end,
one is always interested in finite populations in a finite time [17, 24]. These effects
cannot be predicted from Λ alone; one should consider instead the finite time growth
rate Λt and its fluctuations characterized by the variance Var(Λt). To evaluate this
variance numerically, one needs to carry out a sufficiently large number of independent
simulations, all starting with the same initial conditions. A quantity similar to the
variance Var(Λt) (and higher moments too) has been considered in the mathematical
literature on large products of random matrices [28, 29].

Another important quantity in this context is the instantaneous growth rate µ(s),
defined as

µ(s) =
d

ds
(lnN(s)), (13)

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.18.476793doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.18.476793
http://creativecommons.org/licenses/by-nd/4.0/


Pareto-optimal trade-off for phenotypic switching of populations in a stochastic environment6

so that Λt reads :

Λt =
1

t

∫ t

0

µ(s) ds. (14)

Since instantaneous growth rates decorrelate exponentially fast, the central limit
theorem imposes a scaling of Var(Λt) in 1/t as t → ∞. Therefore, our main focus
is the evaluation of limt→∞ tVar(Λt), a self-averaging quantity, which we denote (by
abuse of notation)

Var(Λ) = lim
t→∞

tVar(Λt). (15)

3. Kussel-Leibler approximation

In the so-called adiabatic approximation, one assumes that environment periods are
long enough so that the population has time to reach an equilibrium distribution (given
by the top eigenvector in that environment) before the environment switches again.
Such an approximation was introduced by Kussel-Leibler (KL) to evaluate the long
term population growth rate in a fluctuating environment and the optimal phenotypic
strategy, in terms of the characteristic switching dynamics of the environment [8].

3.1. Mean growth rate

Their general expression of this long-term growth rate in the particular case of two
environment states and two phenotypic states takes the form :

ΛKL =
∑

i=1,2

Q(i)λi + 2κ log qT
1 · q2, (16)

where λi is the top eigenvalue of the matrix MSi
, qi the corresponding top eigenvector;

κi = 1/〈τi〉, i = 1, 2 are the inverse of the average periods of each environment; and
κ = κ1κ2/(κ1 + κ2) = 1

2
T−1
env, where Tenv = 1

2
(〈τ1〉+ 〈τ2〉) is the average time span of an

environment.
The first term in the r.h.s. of Eq. 16 corresponds to the average growth rate, where

the average is taken with respect to the stationary measure Q, which is equivalent to
an average over the fractions of times spent in each of the two states, in the limit where
these times become infinite. The second term in the r.h.s. of Eq. 16, which is negative,
is a penalty due to transitions between the two environments. This term features the
overlap between the two dominant eigenvectors, which arises due to the change of base
in going from the top eigenvector of one environment to the top eigenvector of the other.
For this reason, this term depends on q = qT

1 ·q2; it would vanish if the two matricesMS1

and MS2 commuted. In practice however, this is never the case, and this contribution
due to the change of basis is the main reason for the difficulty in obtaining an exact
expression of the grow rate.

Simple explicit formulas follow from a Taylor expansion in the case where the
switching rates πi are small compared to the differential growth rates |kAi − kBi|.
Assuming that the growth matrix is diagonal, i.e. that only one phenotype grows in one
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environment but not in the other, in other words when kA1 = k1 > 0, kB1 = 0, kA2 = 0

and kB2 = k2 > 0, the top eigenvalues for the two environments i = 1, 2 are λi ' ki− πi
to first order in πi/ki, and q ' π1π2/k

2, where k = k1k2/(k1 + k2). Therefore, when
ki � πi, the above expression simplifies into :

ΛKL =
∑

i=1,2

(
Q(i)(ki − πi) + κ log(

πi
k

)
)
. (17)

In addition to the condition ki � πi, the KL approximation requires that the second
term in Eq. 16 be small with respect to the first term, which leads to the condition
log(k/πi) � k/κ. In the case where kB1 and kA2 are not zero, this criterion is still
approximately correct provided one uses for k1, resp. k2, the relative growth rate
kA1 − kB1, resp. kA2 − kB2.

By optimizing ΛKL with respect to πi, one finds

πi =
κ

Q(i)
= κi. (18)

Thus, the optimal strategy corresponds to switching rates that match the environment
rates. By reporting these optimal transition rates in Eq. 17, one finds that the optimal
growth rate is

Λmax,KL =
∑

i=1,2

(
Q(i)ki + κ log(

κi
k

)− 1
)
. (19)

It is easy to see that this growth rate is maximum [8], because

Λmax,KL − ΛKL = κ
∑

i=1,2

(
πi
κi
− 1− log(

πi
κi

)

)
≥ 0. (20)

This condition of optimality πi = κi is very similar to Kelly’s criterion [14], which leads
to the maximum of the capital growth rate in the betting game. As shown by Kussel-
Leibler, this condition remains true in the general case where all the growth rates take
non-zero values.

3.2. Variance of the growth rate

Within the KL approximation, the growth rate in the limit of a large number of
environmental epochs only depends on the fraction of time spent in the first environment
r and on the total number of transitions 2N between the two states. The joint
distribution of r and N , namely f(r,N) is easily expressed in terms of the product
of two Poisson distributions of parameters κ1rt and κ2(1− r)t. One can check that this
distribution is maximum when N ' κt and r ' Q(1). Then, we rely on a Gaussian
approximation of that distribution close to the maximum to evaluate the variance, which
becomes more and more accurate as N becomes large. Details of this calculation are
provided in appendix A. We find that for large t, under the same approximations leading
to (17):

VarKL(Λ) ' κ1κ2

(κ1 + κ2)3

[
2(δλ)2 + (κ2

1 + κ2
2) ln(q)2 + 2(κ1 − κ2)δλ ln(q)

]
, (21)
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where δλ = λ1 − λ2.
In the section on numerical results 6.1, this expression will be tested and compared

with other expressions of the variance of the growth rate.

4. Approximation for fast environmental changes

We now study a different approximation, which is in some sense opposite to the adiabatic
approximation considered in the previous section, namely the approximation of fast
environmental changes. Below, we use the piecewise-deterministic Markov process
(PDMP) rewriting of the model introduced by Hufton et al. [20], and focus on the case
of two environment states and two phenotypic states [19] where explicit computations
are available. For a more general discussion of the PDMP at high frequency, where
discrete transitions are fast, we refer the reader to Ref. [30].

4.1. Average growth rate

Hufton and Lin introduced the relative fraction of phenotype A in the population
φ = NA/(NA + NB), which evolves deterministically in each environmental epoch
according to a differential equation. Fixed points of the dynamics are denoted φ±1
in the first environment and similarly φ±2 in the second one; explicitly,

φ±σ =
∆σ − π1 − π2 ±

√
(∆σ − π1 − π2)2 + 4π2∆σ

2∆σ

, (22)

with ∆σ = kAσ − kBσ for σ = 1, 2. The + superscript indicates the solution which is
a stable fixed point, while the − superscript denotes the unstable one. As discussed in
the introduction, we assume that phenotype A is more adapted to environment 1 than
phenotype B, so that kA1 ≥ kB1; while phenotype B is more adapted to environment 2,
so that kA2 ≤ kB2; this means that ∆1 ≥ 0 and ∆2 ≤ 0 [19].

The stationary probability density distribution Pσ(φ) of the Markov process
describing the evolution of the relative fraction φ in a stochastically switching
environment can be solved exactly using the method of characteristics. The solution has
support on [φ+

2 , φ
+
1 ]; it depends on the two switching rates κσ and on the fixed points

φ±σ . With these notations, the stationary probability distributions read :

P1(φ) =
N
∆1

(
φ+

1 − φ
)g−1 ·

(
φ− φ−1

)−g−1 (
φ− φ+

2

)h ·
(
φ−2 − φ

)−h
, (23)

and
P2(φ) =

N
|∆2|

(
φ+

1 − φ
)g ·
(
φ− φ−1

)−g ·
(
φ− φ+

2

)h−1 ·
(
φ−2 − φ

)−h−1
, (24)

where g and h are positive exponents given by

g =
κ1

∆1

(
φ+

1 − φ−1
) , (25)

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.18.476793doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.18.476793
http://creativecommons.org/licenses/by-nd/4.0/


Pareto-optimal trade-off for phenotypic switching of populations in a stochastic environment9

and
h =

κ2

∆2

(
φ+

2 − φ−2
) . (26)

The integration constant N is fixed by the normalization condition

∫ φ+1

φ+2

[P1(φ) + P2(φ)] dφ = 1. (27)

Once that value of N has been determined, one obtains the two separate relations

∫ φ+1

φ+2

Pσ(φ)dφ = Q(σ), (28)

for σ = 1, 2, which may be view as the marginal distribution in σ of the joint distribution
Pσ(φ) over φ.

Note that P1 contains a singularity at φ = φ+
1 , and similarly for P2 at φ = φ+

2 . As a
result, integrals involving P1 and P2 can be difficult to evaluate numerically. Fortunately,
that difficulty can be overcome by using a change of variable, t = (φ+

1 −φ)g with integrals
involving P1 and t = (φ− φ+

2 )h for those involving P2. For instance, the integral of Eq
28 for σ = 1 is turned with this change of variable into the following integral free of
singularity :

N
∫ t1

0

dt

g∆1

(
φ+

1 − t1/g − φ−1
)−g−1 (

φ+
1 − t1/g − φ+

2

)h (
φ−2 − φ+

1 + t1/g
)−h

= Q(1), (29)

where t1 = (φ+
1 − φ+

2 )g.
This trick is useful to evaluate the normalization constant N but also the following

two integrals K1 and K2, from which the average growth rate Λ can be obtained. The
two integrals are

Kσ =

∫ φ+1

φ+2

Pσ(φ)φdφ, (30)

for σ = 1, 2.
Hufton and Lin also introduced the instantaneous growth rate, which they define

as [19] :
µ(σ, φ) := kAσφ+ kBσ(1− φ) = ∆σφ+ kBσ. (31)

and mention that it is possible to obtain an exact expression of the stationary
distribution of µ = µ(σ, φ), although they do not give it explicitly. Here is how
we obtain it. Let P(µ, σ) be the stationary distribution of the instantaneous growth
rate µ in the environment σ. This distribution can be obtained from that of Pσ by
changing variables from φ to µ at fixed value of the environment σ. One obtains
P(µ, σ) = Pσ(φ∗(µ))|dφ∗/dµ|, where φ∗(µ) = (µ− kBσ)/∆σ is the function that inverts
Eq. 31. Thus, we obtain

P(µ, σ) =
Pσ(φ∗(µ))

|∆σ|
, (32)
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with support µ ∈ [µ+
2 , µ

+
1 ], where µ+

σ = ∆σφ
+
σ + kBσ. The distribution of µ can then be

obtained by marginalizing over σ :

P(µ) =
∑

σ=1,2

P(µ, σ). (33)

This distribution is smooth when the environment changes quickly, but contains
singularities in the general case as shown in Fig 3 of [19].

The average growth rate of Eq. 35 is obtained from the first moment of that
distribution Λ = 〈µ〉, because of the following equalities :

〈µ〉 =

∫
P(µ)µdµ =

∫ ∑

σ=1,2

P(µ, σ)µdµ =

∫ ∑

σ=1,2

µ(σ, φ)Pσ(φ)dφ = Λ, (34)

where µ(σ, φ) is the function defined in Eq. 31. The average growth rate can then
be written explicitly in terms of the integrals introduced above as

Λ = kA1K1 + kB1(Q(1)−K1) + kA2K2 + kB2(Q(2)−K2). (35)

4.2. Variance of the instantaneous growth rate

The second moment of that distribution P(µ) represents the variance of the
instantaneous growth rate, which can be easily obtained in this framework :

Var(µ) =

∫
P(µ) (µ− 〈µ〉)2 dµ =

∫ ∑

σ=1,2

(µ(φ)− 〈µ〉)2 Pσ(φ)dφ, (36)

Explicitly, we have

Var(µ) =
∑

σ=1,2

[
k2
AσJσ + k2

Bσ (Q(σ)− 2Kσ + Jσ) + 2kAσkBσ (Kσ − Jσ)
]
− Λ2, (37)

which depends on additional integrals of the form

Jσ =

∫ φ+1

φ+2

Pσ(φ)φ2dφ. (38)

All these integrals can be written in a closed form, free of divergences, by using the
same trick introduced above.

5. Exact solution

It is important at this point to appreciate the difference between the finite time growth
rate variance Var(Λt) and Var(µ). Recall that Λt =

∫ t
0
dt1µ(φt1), where φt1 is the fraction

of phenotype A in the population at time t1. It then follows that

Var(Λt) = 2

∫ t

0

dt1

∫ t1

0

dt2〈δµ(φt1)δµ(φt2)〉, (39)
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with δµ = µ − 〈µ〉 and the function µ(φ) is defined in 31. This expression makes
clear that time correlations of the instantaneous growth rate contribute to Var(Λt), but
not to Var(µ). This is also the reason why in practice the instantaneous growth rate
distribution P(µ) is found to be in general different from the distribution of Λt [19].

To address this issue, we use an exact expression of the asymptotic behavior of
Var(Λt) derived by one of us by a PDE approach in a companion paper [21], which
contains the approximations introduced above as particular cases. We mention here
only the final and main result of this work. In the framework introduced by Huffton
and Lin, this solution takes the following form : let

I(φ) :=

∫ φ

φ+2

dφ′ (P1(φ′)δµ(1, φ′) + P2(φ′)δµ(2, φ′)) , (40)

and
z(φ) :=

(v1P1)2(φ)

κ1P1(φ) + κ2P2(φ)
, (41)

where v1(φ) = ∆1φ(1− φ)− π1φ+ π2(1− φ).
Then, the asymptotic behavior of the finite time growth-rate variance tVar(Λt) at

large times t is

Var(Λ) = lim
t→∞

tVar(Λt) =

∫ φ+1

φ+2

dφ z−1(φ) I2(φ). (42)

This expression is tested in the next section with numerical simulations.

6. Numerical results

6.1. Growth rate as a function of the rate of change of the environment

In fig. 1, we show as a heatmap, the average growth rate for different switching rates
of the environment. We used the set of parameter values kA1 = 2, kB1 = 0.2, kA2 =

−2, kB2 = −0.2, which correspond to the ones used by Hufton and Lin in their figure 4
[19].

Three different switching rates have been used for environmental fluctuations, for
case (a) : κ1 = 0.01, κ2 = 0.03, for case (b) : κ1 = 0.1, κ2 = 0.3, for case (c) :
κ1 = 1, κ2 = 3.3. In each case, about 50 simulations of duration 100/κ1 have been
performed. In the case of Fig 1a and b, for a slow switching rate, the maximum value of
the growth rate is reached on isolated points in this diagram, i.e. for specific values of
π1 and π2. These values correspond well to the condition πi = κi predicted by the KL
approximation, where the phenotypic switching rates match that of the environment,
which is represented by a black dot on the figure.

Since the fastest growth rate is kA1, one could expect that the highest growth rate
should be obtained when the system spends most of the time with the phenotype A,
and the lowest growth rate when it stays with the phenotype B. The latter hypothesis
is confirmed by Fig. 1a, because the smallest value of the growth rate is indeed obtained
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Figure 1: Heatmap plot of the average long term growth rates for different values of the
phenotypic switching rates π1 and π2. Figure (a) corresponds to κ1 = 0.01, κ2 = 0.03,
(b) to κ1 = 0.1, κ2 = 0.3, (c) to κ1 = 1, κ2 = 3.3. The black dot in Fig (a) and (b)
indicate the point where the average growth rate takes its maximum value according to
the KL approximation.

in the top left part of the figure, i.e. when π1 is large and π2 is small, which corresponds
to conditions where the subpopulation with phenotype A turns instantaneously into
the phenotype B. The former hypothesis however is not confirmed, because the fastest
growth rate is not obtained for large π2 and finite π1, in that particular case, it is
obtained when both π1 and π2 are small, i.e. in the KL regime.

When the environment switches very fast, there is no isolated maximum in these
heatmap plots as shown in Fig 1c, in that case the optimum growth rate is reached on
the boundaries of the simplex in which π1 and π2 take their values. Thus, phenotypic
heterogeneity presents a fitness advantage only for slow environments (cases a and b),
which are accessible to the KL approximation. In contrast, when the variations of the
environment are fast (case c), phenotypic homogeneity is favored, which is a regime
beyond the validity of the KL approximation [19].

6.2. Validity of the various approximations

To check the various approximations more precisely, we compare in table 1 the average
and the variance of the growth rate obtained from simulations with their estimations
based on various approximation schemes. We used the same values of kA1, kB1, kA2, kB2

as above, together with four new sets of environmental and phenotypic transition rates,
which we call (d), (e), (f) and (g). The parameters are, for case (d) : κ1 = κ2 = 0.1 and
π1 = π2 = 0.064, case (e) : κ1 = κ2 = 1 and π1 = π2 = 0.24 and case (f) : κ1 = κ2 = 10

and π1 = π2 = 0.4, case (g) : κ1 = κ2 = 0.01 and π1 = π2 = 0.064.
The average growth rate Λ has been measured using numerical simulations,

which have been found to agree with Eq. 35. This confirms that correlations of
the instantaneous growth rate do not matter for the average growth rate. The KL
approximation is found to provide a good estimate of the average and variance of the
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growth rate when π1, π2, and κ are small compared to the growth rates of the phenotypes
in their respective environments, conditions which are satisfied for case (d) and (g) only.
In contrast for cases (e) and (f), the KL approximation breaks down and fails to provide
estimates for the average and variance of the growth rate.

Table 1: Comparison between different estimations of the average and variance of the
growth rate for four data sets. The star indicates results which are not meaningful
because the assumptions needed for the approximation are not met. In this table, ΛKL

corresponds to the theoretical growth rate evaluated from Eq. 16, Var(Λ) has been
evaluated from Eq. 42, Λ is obtained from Eq. 35, Var(µ) from Eq. 37 and finally
VarKL(Λ) from Eq. 21

Data Case d Case e Case f Case g
Λ 0.638 0.238 0.037 0.81
Var(Λ) 12.5 1.3 1.28 120.4
Var(µ) 1.4 1.37 1.24 1.24
ΛKL 0.57 * * 0.81
VarKL(Λ) 12.27 * * 121.07

In the regime of fast environment changes for cases (e) and (f), the variance of the
finite time growth rate agrees well with the variance of the instantaneous growth rate,
which is to be expected since the environment time correlations are very short compared
to other time scales.

For the general case, we have also checked that the theoretical expression of the
variance of Eq. 42 gives correct results in all cases (d) to (g). To illustrate this point
further, we provide an additional figure Fig 2 corresponding to the specific parameters of
case (e). In that figure, we compare the analytical expression with numerical simulations
for various duration times t. In practice the average of the variance is evaluated from a
number of independent simulations, whose number is also proportional to t. As shown
in the figure, there is a very good agreement provided the time t is sufficiently long. The
duration of that initial transient depends on the number of simulations as expected.

6.3. Pareto fronts

We now analyze the relation between mean growth rate Λ and the asymptotic behavior of
the finite time growth rate variance, which we denoted Var(Λ). As stated before, higher
growth rate can lead to higher fluctuations (or risk) and therefore a suitable balance
between average growth rate and variance may be advantageous. As in previous sections,
the values of (π1, π2) constitute the strategy of the individuals (or colonies) for given
environmental parameters. The optimal trade-off is given by the maximum growth
attainable for a fixed level of fluctuations, or conversely, by the minimum variance
possible for a fixed mean growth rate. The (π∗1, π

∗
2) that optimize the trade-off can be

found by minimizing the following objective function, which is a a linear combination
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Figure 2: Growth rate variance as function of simulation time t for parameter set
(e), with symbols corresponding to the numerical simulation and the dotted line
corresponding to the asymptotic theoretical prediction of Eq. 42.

of both quantities
J(π1, π2) = −αΛ + (1− α)

√
Var(Λ). (43)

In this objective function, the standard deviation is used as a measure of risk instead of
the variance in order to keep the risk tolerance parameter α dimensionless. Note that
the Pareto front and the trade-off are not affected by this choice, which means that
these features should be similar across different systems.

Minimization of function J for different α has been performed by a simulated
annealing algorithm. Starting from initial values for (π1, π2) a random move in this
2D space is either accepted if it decreases the objective function J , or accepted with
an exponentially decaying probability if it increases J . The exponential probability is
controlled by an effective temperature parameter that is progressively decreased (hence
annealing) making it harder and harder to accept an increasing move. These upward
moves allow the algorithm to escape local minima initially and proceed to the global
minimum.

Once the optimal values (π∗1, π
∗
2) are obtained, one can compute the values of Λ

and
√

Var(Λ) to which they correspond, thus building the efficient border or Pareto
front, represented in figure 3a. Any strategy on that front cannot be improved in terms
of one property (average or variance) while keeping the other constant, and therefore
represents the optimal trade-off. Some of these strategies are represented as colored
dots in the figure.

Environmental and phenotypic changes are associated with two characteristic time
scales Tenv and T . The first time scale Tenv = 1

2
(1/κ1 + 1/κ2) has been introduced

in section 3 and represents the average time span of an environment, while the second
time scale T = 1

2
(1/π1 +1/π2) characterizes phenotypic changes. We conjecture that the

ratio of these two time scales is a key parameter for the study of the growth rate, and

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.18.476793doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.18.476793
http://creativecommons.org/licenses/by-nd/4.0/


Pareto-optimal trade-off for phenotypic switching of populations in a stochastic environment15

that optimal average growth rates are found when this ratio is close to one. Indeed, the
Kussell-Leibler optimum (18) is obtained when the two time scales are of comparable
order of magnitude : Tenv ∼ T . This hypothesis is confirmed by plotting curves of
constant ratio T/Tenv in the plane of the mean growth rate and the standard deviation
as shown in Figure 3a. We then observe that all the curves converge to the right as this
ratio goes to 3.3, eventually reaching the Pareto front when the ratio approaches 3.3.

In figure 3b, we build a similar diagram for the instantaneous growth rate instead
of the long term growth rate. We observe that the right border of the cloud of points,
which forms the Pareto front has a similar shape as before. Indeed, with the chosen
parameters,

√
Var(Λ) is numerically close to

√
Var(µ), although this is of course not

always the case as shown in Table 1.
In both Pareto fronts, fluctuations of the growth rate become small when the

average of the growth rate also becomes small, similarly to what happens on the tradeoff
branch in Kelly’s model [18]. In that model, the origin of the diagram corresponds to
a ’null strategy’ where both the mean and the variance vanish. Here the origin does
not belong to the front, but in fact it does not matter because the absolute value of the
mean growth rate is not meaningful, only differences of the growth rate with respect to
some reference are significant.

Further, near the point of maximum growth rate, which is similar to Kelly’s point,
the slope of the front appears nearly vertical similarly to what we found in our previous
study of Kelly’s gambling [18]. This means that, by moving slightly along the front
away from this point, fluctuations can be decreased significantly without a large loss of
average growth rate loss. We address the significance of this statement by considering
the risk of extinction in the following section.

6.4. Extinction

As an illustration of the mean-variance trade-off, we now include extinction in our model
and check whether larger fluctuations may indeed increase the probability of extinction
as implied in previous sections. We will compare Kelly’s point (giving optimal average
growth rate, in green in figure 3) against another point in the Pareto front (sub-optimal,
in red) giving slightly less growth rate but significantly lower variance, due to the
high slope of Pareto front. The actual predicted values computed with the theoretical
expressions are given in table 2:

Points only differ in the corresponding π values, the rest of the parameters are
equal kA1 = 2, kB2 = −0.2, kA2 = −2, kB1 = 0.2 and κ1 = κ2 = 1.0. We run 8000
simulations of evolution equations (7) with each set of parameters for a moderate time
Tmax = 500/κ1. The inset in figure 4 depicts the trajectory of logN(t), in green the
ones corresponding to optimal growth rate, the red corresponding to sub-optimal. In
the figure one can see that both growth rates are very similar as expected and that
fluctuations are slightly more intense in the optimal case. This can be checked by
averaging the growth rate in different realizations. Notice that 8000 trajectories were
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Figure 3: Mean-variance trade-off for the long term growth rate Λ (in (a)) or for the
instantaneous growth rate (in (b)) using parameters as in set (e) except for (π1, π2)

which are varied. In figure (a), filled (blue or other color) circles represent points in the
Pareto front computed by minimizing the objective function J(π1, π2;α). The dashed
blue line interpolates the front between the computed points. For four highlighted
points in the Pareto front, marked with green, red, magenta and maroon filled circles,
we provide their coordinates in table 2 . Solid thin lines: constant T lines, from left to
right T = 0.5 (orange), T = 1 (yellow), T = 2 (violet) and optimal T = 3.33 (green).
Colored dots are obtained by scanning (π1, π2), and the colors are chosen according to
the corresponding T value. Black dots have T < 0.5, orange dots have 0.5 < T < 1,
yellow dots have a 1 < T < 2 and so on.

Point Color (π1, π2) Λ
√

Var(Λ)

optimal green • (0.263,0.246) 2.39× 10−1 1.13
suboptimal red • (0.346,0.255) 2.35× 10−1 1.07
middle magenta • (0.569,0.207) 2.1× 10−1 0.91
null maroon • (6.894,0.001) 7.2× 10−5 0.20

Table 2: Some points in the Pareto front. Colored circles correspond to the symbols
used in figure 3 to indicate specific points.

depicted for each case although most of the green trajectories are not visible below the
red ones. Nevertheless, several extreme green trajectories are still visible around the
borders and cover a wider area indicating higher variance.

We now set a threshold for extinction E < 0 on the logarithm of the population.
If the trajectory of logN goes below this threshold at any time t during simulation,
the population is considered extinct in this realization. By computing the fraction
of realizations that would go below a given threshold, we estimate the probability of
extinction for both parameter sets as shown in figure 4. To describe extinction exactly,
a stochastic approach would be necessary but for all practical purposes, we consider a
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Figure 4: Probability of extinction as a function of threshold E for extinction for optimal
set of parameters (green) and sub-optimal (red). Inset: simulated trajectories for the
optimal set of parameters (green) and sub-optimal (red) and threshold value E = −3

(blue dashed line). All trajectories crossing the threshold at any time are considered
extinct.

population of sufficiently low values of N as extinct. We fix the initial population to be
equal to one for all realizations.

As expected, the greater the distance between initial population and threshold, the
lower the extinction probability. We observe that the probability of extinction is higher
for the optimal case than for the sub-optimal one. In the presence of extinction, a colony
with smaller growth rate could achieve higher fitness as measured by a lower extinction
probability due to its lower variance [31]. In this case, the successful colony trades some
growth rate for less risky fluctuations.

However, going further away from the optimum on the lower branch of the Pareto
front, the probability of extinction raises again, as checked with the maroon point in
figure 3. This confirms the existence of a trade-off between the growth rate and the
variability.

7. Conclusion

Kelly’s original paper contained two insights, the idea of the optimization of the long
term growth rate and its information theoretic interpretation. Despite its remarkable
successes in fields ranging from gambling to biology, Kelly’s model is limited because it
focuses on the long term growth rate and misses the short term risk, which is relevant
to gambling where it can cause ruin of the gambler and to biological populations where
it can lead to extinction.
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To address this issue, we have studied the variance of the finite time growth rate,
which needs to be distinguished from the instantaneous growth rate, because the later is
less relevant for the evolution of biological systems. In the case of two environments and
two phenotypes, we have derived various approximations for this quantity and tested
with simulations an exact, albeit complicated, expression valid for arbitrary durations
of the environment fluctuations.

Using this variance, we have built the corresponding Pareto front which
characterizes the trade-off between the average growth rate and the risk. We found
that this trade-off has similarities with the one we had analyzed previously in our
work on Kelly’s model [18], suggesting a form of universality for this trade-off. We
have also shown that the risk measured from the variance is indeed linked to the
extinction probability of the population. The known experimental observation that
bacterial populations faced with stressful conditions maintain a fraction the population
with a reduced growth as a form of ’insurance policy’ to avoid extinction [3] is compatible
with this trade-off.

It would be interesting to explore further extensions of our framework to cases
where sensing is present and where more phenotypic states are available. As a first step
towards including sensing, one of us recently studied adaptive strategies in Kelly’s model
[32]. If these ideas can be extended to the problem of populations facing unpredictable
environments, one may obtain from them an understanding of the adaptation process
at the information level, comparable to what has already been achieved for gambling
models. In practice, another complication arises in biological populations, namely that
diversification occurs both at the cellular level and at the population level; taking both
features into account in the same model will require yet another level of extensions of
the present framework.

We hope that in the future, quantitative predictions of our model could be tested
experimentally. Experiments on growing colonies with bacteria [33] or with yeasts [34]
hold great potential for this kind of tests, because on one hand, cell populations can be
monitored continuously on long times, and on the other hand, a fluctuating environment
(either periodic or stochastic) can be imposed externally on the system in a controlled
way.
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Appendix A. Variance in the KL approximation

Appendix A.1. Details on the derivation

Here, we provide a derivation of the formula of Eq. 21 for the variance in the KL
approximation. In the limit of a large time t, the two unknowns in this problem are the
number of transitions 2N , and the fraction of time spent in the environment state S1,
which we denote r. Since 0 < r < 1, P[τ1 + τ2 + . . . + τ2N = t, τ1 + τ3 + . . . + τ2N−1 =

rt] ≈ f(r,N), where

f(r,N) := e−κ1rt
(κ1rt)

N

N !
× e−κ2(1−r)t (κ2(1− r)t)N

N !
, (A.1)

corresponding to the product of two Poisson distributions of parameters κ1rt and
κ2(1 − r)t. When t is large, we have asymptotically in terms of the top eigenvalues
λi of matrices MSi

:

tΛ ≈ λ1 · rt+ λ2 · (1− r)t+N log(q). (A.2)
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(1) Let us first check that f(r,N) is maximum when r = r0 := Q(1) and N := N0 ∼
κT . Note that (N !)2 ≈ (2N)!

4N
, and the function N 7→ a2N

(2N)!
is maximum, equal to ≈ e2N

for a ∼ 2N , and thus f(r,N) is maximum for N ≈ N0(r) := t
√
r(1− r)κ1κ2. Then,

one finds that f(r,N0(r)) ≈ exp(Th(r)), with h(r) = 2
√
r(1− r)κ1κ2−κ1r−κ2(1− r),

function which is maximum for 1 − 2r = κ1−κ2√
κ1κ2

√
r(1− r). Then, noting that

√
r0(1− r0) =

√
κ1κ2

κ1+κ2
and 1 − 2r0 = κ1−κ2

κ1+κ2
, we obtain r = r0. After replacing r by

r0, we find as expected N0 = N0(r0) ∼ κt.

(2) Let us now carry out an expansion about that point in terms of x and y variables
such that r

r0
= 1 + x and N

N0
= 1 + y. At first order in x, y when x, y → 0,

Λ ∼ 〈Λ〉+
(
δλr0 κ log(q)

) ( x

y

)
, (A.3)

with δλ = λ1 − λ2. Let us write f(r,N) = P (x, y) with z =

(
x

y

)
. In the next point

(3), we show that P is Gaussian with P (x, y) ∼ Cst×e− 1
2

(Σ−1z,z) for a certain covariance
matrix Σ. As a result :

Var(Λ) =
(
δλr0 κ log(q)

)
Σ

(
δλr0

κ log(q)

)
. (A.4)

In the next point, we determine the matrix Σ.

(3) Let us perform an expansion to second order near z = 0,

e−κ1rt = e−κ1r0t × e−κ1r0tx, (A.5)

and similarly,
e−κ2(1−r)t = e−κ2(1−r0)t × e+κ2r0tx. (A.6)

Then,

(rκ1t)
N = (r0κ1t)

N0 × exp
{
N0(1 + y)(log(r0κ1t) + log(1 + x))−N0 log(r0κ1t)

}

≈ (r0κ1t)
N0 × eN0(y log(r0κ1t)+x) × exp

{
N0x(−x

2
+ y)}, (A.7)

and similarly

((1− r)κ2t)
N = ((1− r0)κ2t)

N0 × exp
{
N0(1 + y)(log((1− r0)κ2t) + log(1− r0

1− r0

x))

−N0 log((1− r0)κ2t)
}

≈ ((1− r0)κ2t)
N0 × e

N0(y log((1−r0)κ2t)− r0
1−r0

x) × exp
{
−N0

r0

1− r0

x(
1

2

r0

1− r0

x+ y)
}

Then,
N !

N0!
≈ eN0(1+y)(log(N0(1+y))−1)−N0(log(N0)−1)

≈ e−N0y eN0

{
(1+y)(log(N0)+log(1+y))−log(N0)

}

≈ eN0 ln(N0)y × exp
{1

2
N0y

2
}

(A.8)
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Taking the ratio (A.5)×(A.6)×(A.7)×(A.8)
(A.8)2

, one checks immediately that the terms of first
order in x, y cancel, and we get

P (x, y) ∼ Cst × eN0x(−x
2

+y)e
−N0

r0
1−r0

x( 1
2

r0
1−r0

x+y)
e−N0y2 (A.9)

whence (using r0
1−r0 = κ2

κ1
)

Σ−1 = N0

[
1 + (κ2

κ1
)2 κ2

κ1
− 1

κ2
κ1
− 1 2

]
(A.10)

It is simple to show that det(Σ−1/N0) = (1 + κ2
κ1

)2, then

Σ = N−1
0 (1 +

κ2

κ1

)−2

[
2 1− κ2

κ1

1− κ2
κ1

1 + (κ2
κ1

)2

]
(A.11)

After evaluating (A.4) with this covariance matrix and replacing r0 by κ2
κ1+κ2

, one finally
obtains the result Eq. 21 for the variance in the KL approximation.
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