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ABSTRACT 

Analysis and interpretation of neuroimaging datasets has become a multidisciplinary endeavor, relying not 

only on statistical methods, but increasingly on associations with respect to other brain-derived features 

such as gene expression, histological data, and functional as well as cognitive architectures. Here we 

introduce BrainStat - a toolbox for (i) univariate and multivariate general linear models in volumetric and 

surface-based brain imaging datasets, and (ii) multidomain feature association of results with respect to 

spatial maps of post-mortem gene expression and histology, as well as task-based fMRI meta-analysis, 

canonical resting-state fMRI networks, and resting-state derived gradients across several common surface 

templates. The combination of statistics and feature associations into a turnkey toolbox offers to streamline 

analytical processes and accelerate cross-modal. The toolbox is implemented in both Python and MATLAB, 

two widely used programming languages in the neuroimaging and neuroinformatics communities. 

BrainStat is openly available and complemented by an expandable documentation.  
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INTRODUCTION 

Neuroimaging enables brain-wide measures of morphology, microstructure, function, and connectivity in 

individuals as well as large cohorts (Casey et al., 2018; Glasser et al., 2013; Royer et al., 2021). Through 

an increasing array of powerful image processing techniques (Cameron et al., 2013; Esteban et al., 2019; 

Fischl, 2012; Kim et al., 2005), these data can nowadays be brought into a standardized frame of reference 

including stereotaxic voxel spaces, such as the commonly used MNI152 space (Collins et al., 2003; Dadar 

et al., 2018), surface-based space such as fsaverage, MNI152-CIVET surfaces or grayordinates spearheaded 

by the Human Connectome Project (Fischl, 2012; Glasser et al., 2013; Kim et al., 2005; Lyttelton et al., 

2007; Marcus et al., 2011), as well as parcellation schemes (Desikan et al., 2006; Glasser et al., 2016; 

Gordon et al., 2016; Schaefer et al., 2017). Registering neuroimaging data to a common space allows for 

the application of statistical analyses, including mass-univariate generalized linear and mixed-effects 

models that carry out parallel statistical tests at each measurement unit. Usually, such analyses need to be 

carried out using multiple tools and programs, reducing the reproducibility of workflows, and increasing 

the risk of human error. With the current paper, we present BrainStat, a unified toolbox to implement these 

analyses in a cohesive and transparent framework. 

The analytical workflows of neuroimaging studies increasingly rely on the availability of previously 

acquired datasets of other modalities. When mapped to the same reference frame as the neuroimaging 

measures, these datasets can be used for contextualization of findings and aid in interpretation and 

validation of results. For example, results may be contextualized within established motifs of the brain’s 

functional architecture such as intrinsic functional communities based on resting-state fMRI (Yeo et al., 

2011) or functional gradients (Margulies et al., 2016), both allowing for the interpretation of findings based 

on the established brain’s functional architecture. Another common method for contextualization is 

automated meta-analysis with Neurosynth (Yarkoni et al., 2011), NiMARE (Salo et al., 2020), or BrainMap 

(Laird et al., 2005). These tools offer the ability to carry out ad hoc meta-analyses across potentially 

thousands of previously published fMRI studies. Correlating a statistical map with a database of brain 

activation maps related to cognitive terms, so-called meta-analytical decoding, offers a quantitative 

approach to infer plausible cognitive processes related to a spatial statistical pattern. Finally, post mortem 

datasets of transcriptomics (Hawrylycz et al., 2012) and histology (Amunts et al., 2013) mapped to a 

common neuroimaging space enable associations of neuroimaging findings with gene expression and 

histological patterns (Markello et al., 2021; Paquola et al., 2021). Such findings can provide information 

on molecular and cellular properties in the brain that spatially co-vary with an observed statistical map. By 

combining these feature association techniques, the functional, histological, and genetic correlates of 
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neuroimaging findings can be inferred. BrainStat provides an integrated decoding engine to run these 

feature association techniques.  

Our toolbox is implemented in both Python and MATLAB, two common programming languages in the 

neuroimaging research community. We have compartmentalized the toolbox into two main modules: 

statistics and contextualization. BrainStat relies on a simple object-oriented framework to streamline the 

analysis workflow. The toolbox is openly available at https://github.com/MICA-MNI/BrainStat with 

documentation available at https://brainstat.readthedocs.io/.  

RESULTS 

The main functionality of BrainStat is demonstrated through two tutorials. The first tutorial explains the 

statistics module, which allows for the implementation of linear models on neuroimaging data. The second 

tutorial showcases the context module, which computes feature associations with several published 

databases. Note that MATLAB live scripts and Jupyter notebooks tutorials of these modules are also 

available at https://brainstat.readthedocs.io/. 

Tutorial 1: Statistics Module 

Before describing the statistics module, we first provide a brief overview of general linear models (GLMs). 

GLMs take the form of 𝑌 = 𝑋𝐵 + 𝑍𝛾 + 𝑒, where Y is an n-by-m response matrix, n is the number of 

samples (e.g., subjects), m is the number of brain locations (e.g. voxels, vertices, parcels), X and Z are a 

fixed and random effects predictor matrices, respectively, B and 𝛾 are model coefficients of the fixed and 

random effects, respectively, and e is a matrix of errors. Although fixed and random effects have been 

defined differently throughout the literature (Gelman, 2005), within BrainStat, fixed effects are assumed to 

be invariant for all groups within a population whereas random effects can differ between groups of a 

population. For example, consider an experiment where we model the effect of age on cortical thickness. If 

we assume that an additional year of age has the same effect on cortical thickness independent of whether 

the subject is 25 or 35 years old, then we may model this as a fixed effect. If we suspect that this relationship 

may differ across sexes, then we could add an additional fixed effect for sex as well as an interaction effect 

between age and sex. Baseline cortical thickness may also differ across individuals. To account for this, a 

random effect for subject could be added which allows for a random intercept for each subject, and an 

interaction effect between subject and age to allow for random slopes. Combining fixed and random effects 

allows GLMs to perform many common statistical procedures including: (M)AN(C)OVA, multiple 

regression, and repeated measures models (Friston, 2005; Nichols & Holmes, 2002). As such, GLMs 

provide a powerful framework for statistical analysis. 
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The statistics module of BrainStat is inspired by SurfStat (Chung et al., 2010; Worsley et al., 2009), a 

previously developed MATLAB package for the statistical analysis of neuroimaging data. The intent of the 

statistics module is to simplify the implementation of the general linear model and their multiple 

comparison corrections in neuroimaging data. The first step a user takes in the statistics module is to define 

the model. Given a user-specified Y, X, and Z, BrainStat may use one of two approaches to estimate model 

coefficients. If the model contains only fixed effects (i.e., the user provided only Y and X), the problem 

boils down to solving an ordinary least squares problem for each brain location, with the coefficients 

computed as 𝐵 = 𝑝𝑖𝑛𝑣(𝑋) ∙ 𝑌, where pinv() denotes the Moore-Penrose pseudoinverse. BrainStat also 

accepts multivariate response data in fixed effects models (e.g., including thickness, curvature, T1w/T2w 

intensity). To do this, the user may provide Y as a n-by-m-by-variate matrix. In this case, model coefficients 

are estimated for each variate separately. If the user provides a mixed effects model (i.e., Y, X and Z are 

provided), then the coefficients are computed using a restricted maximum likelihood procedure (Chung, 

2013). Variables of interest in a fixed or mixed model are defined in a contrast vector; this vector may be 

based on categorical variables (e.g., male/female), continuous variables (e.g., age) or interactions (e.g., 

age*sex). After defining the model and specifying the contrast interrogating the model, BrainStat computes 

the model test-statistics. If BrainStat is provided with univariate response data (e.g., cortical thickness), 

then a student t-test is used; if multivariate response data (e.g., curvature and cortical thickness) is provided, 

then Hotelling’s T2 is used to determine the t-statistic. Lastly, the t-statistic may be used to derive p-values. 

BrainStat provides two options for multiple comparison corrections: false discovery rate (Benjamini & 

Hochberg, 1995) and random field theory (Worsley et al., 1999). The false discovery rate procedure controls 

the proportion of false positives in the data, however it works only at the single-measurement level (i.e. 

vertex, voxel, parcel). Random field theory corrects for the probability of ever reporting a false positive. It 

allows for both peak-wise and cluster-wise p-values, however it requires data with a known topological 

structure (e.g., cortical surface; lattice derived from a volume).  

To illustrate our previous example, we downloaded cortical thickness and demographic data of 70 

participants, 12 of whom were scanned twice, of the MICs dataset (Royer et al., 2021) (Figure 1A). We 

ran a linear model with age and sex as well as their interaction effect as fixed effects, and subject as a 

random effect (Figure 1B). These are set up using the FixedEffect and MixedEffect (named as such as it 

may contain both random and fixed effects) classes. Next, we defined the contrast as -age, i.e., positive t-

values denote decreasing cortical thickness with age. This model was fitted on cortical thickness data using 

a one-tailed test. The t-values, clusterwise and peak p-values derived from random field theory, as well as 

the vertexwise p-values derived with a correction for false discovery rate were plotted in Figure 1C. We 

found that, in the MICs dataset, there is evidence for an effect of age on cortical thickness at the cluster 

level based on random-field theory, but no evidence for significant peaks within these clusters and little 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.18.476795doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.18.476795
http://creativecommons.org/licenses/by/4.0/


 

 6 

significance at a vertex-level. This suggests that the effect covers large regions, rather than local foci. 

Although we used a liberal cluster-defining threshold (p<0.01) for this illustration, we generally recommend 

a more stringent threshold (p<0.001) (Eklund et al., 2016; Woo et al., 2014). This example demonstrates 

how multiple levels of statistical complexity are supported by the BrainStat model. 

 

Figure 1. Example Python code for fitting a fixed effect general linear model of the effect of age on cortical thickness with 

BrainStat. (A) The MICS data included with BrainStat contains cortical thickness and demographics data. The demographics 

data contains hashed subject IDs (SUB_ID), visit number (VISIT), z-scored age on the day of scanning (AGE_AT_SCAN), and 

sex (SEX). (B) We create a linear model in the form of 𝑌 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑎𝑔𝑒. Note that the intercept is included in the model 
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by default. Third, we initialize the model with an age contrast and request both p-values corrected with random field theory (i.e., 

“rft”) as well as those corrected for false discovery rate (i.e., “fdr”). Lastly, we fit the model to the cortical thickness data. 

Equivalent MATLAB code can be found in Supplementary Figure 1 (C) Negative t-values (blue) indicate decreasing cortical 

thickness with age, whereas positive t-values (red) depict increasing cortical thickness with age. Significant peak-wise and 

cluster-wise p-values (p<0.05) are shown for a random field theory (RFT) correction (cluster defining threshold p<0.01) as well 

as vertex-wise p-values (p<0.05) derived with false discovery rate (FDR) correction. Code for plotting the figure can be found 

in Supplementary Figure 3.  

Tutorial 2: Context Module 

The context module bridges the gap between the statistical maps obtained from with the statistics module 

and external open-access datasets. As of version 0.3.3, this module consists of four submodules: (i) 

transcriptomics/ gene expression, (ii) task-based fMRI meta-analysis, (iii) resting-state fMRI connectomics, 

and (iv) post-mortem histology/cytoarchitecture. The transcriptomics submodule extracts genetic 

expression from the Allen Human Brain Atlas (Hawrylycz et al., 2012) for any given cortical parcellation. 

The meta-analytic submodule tests for associations between brain maps and meta-analytic task-fMRI maps 

associated with particular terms (Salo et al., 2020; Yarkoni et al., 2011). The resting-state module 

contextualizes neuroimaging findings using canonical networks (Yeo et al., 2011) and functional gradients 

(Margulies et al., 2016). The histological submodule fetches cell-body-staining intensity profiles from the 

BigBrain atlas (Amunts et al., 2013) at 50 different depths to extract cytoarchitectural axes (Paquola et al., 

2019, 2021; Vos de Wael et al., 2020).  

Transcriptomics 

The Allen Human Brain Atlas (Hawrylycz et al., 2012) is a database of microarray gene expression data of 

over 20,000 genes derived from post-mortem tissue samples obtained from six adult donors. This resource 

may be used to derive associations between neuroimaging data and molecular factors (Arnatkeviciute, 

Fulcher, Bellgrove, et al., 2021) and thus yield insights into the mechanisms giving rise to anatomical and 

connectomic markers. For example, such data may be used to study associations between genetic factors 

and functional connectivity (Cioli et al., 2014; Krienen et al., 2016; Richiardi et al., 2015), anatomical 

connectivity (Goel et al., 2014; Park, Bethlehem, et al., 2021), as well as alterations of connectivity in 

disease (Park, Hong, et al., 2021; Romme et al., 2017). The genetic decoding module of BrainStat uses the 

abagen toolbox (Markello et al., 2021) to compute genetic expression data for a given parcellation. Using 

default parameters, abagen performs the following procedure. First it fetches and updates the MNI 

coordinates of tissue samples of all six donors using coordinates provided by the alleninf package 

(https://github.com/chrisgorgo/alleninf). Next, it performs an intensity-based filtering of the probes to 

remove those that do not exceed background noise. Subsequently, for probes indexing the same gene, it 

selects the probe with the highest differential stability across donors. The tissue samples are then matched 
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to regions in the parcellation scheme. Expression values for each sample across genes and for each gene 

across samples are normalized using a scaled robust sigmoid normalization function. Lastly, samples within 

each region are averaged within each donor, then averaged across donors. For details on the procedures 

with non-default parameters please consult the abagen documentation (https://abagen.readthedocs.io/). In 

Python, BrainStat calls abagen directly, and as such all parameters may be modified. In MATLAB, where 

abagen is not available, we included genetic expression matrices precomputed with abagen with default 

parameters for many common parcellation schemes. In Figure 2 we show an example of fetching the 

genetic expression for a previously defined functional atlas (Schaefer et al., 2017), and correlating this to a 

the t-statistic map shown in Figure 1. The expression derived from this module can then be used in further 

analyses, for example by deriving the principal component of genetic expression and comparing it to 

previously derived statistical maps.  

 

Figure 2. (A) BrainStat uses data from the Allen Human Brain atlas (Hawrylycz et al., 2012), provided by the Allen institute, 

and processed with abagen (Markello et al., 2021) to derive transcription levels of several thousands of genes. Shown are the 
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locations of all probes, as well as the expression of a single gene (WFDC1) within 100 functionally defined regions (Schaefer 

et al., 2017). (B) Example Python code for computing the genetic expression based on a surface parcellation, plotting the matrix, 

and plotting a scatter plot with the WFDC1 gene. (C) The genetic expression matrix depicts the genetic expression, normalized 

to a range of [0, 1], of all parsed genes across all parcels. Black rows denote regions without samples. (D) Correlation between 

the t-statistic map plotted in Figure 1 and the WFDC1 gene expression. MATLAB code for retrieving and plotting genetic 

expression can be found in Supplementary Figure 5. 

Meta-analytic decoding 

The meta-analytic decoding submodule of BrainStat uses data derived from Neurosynth and NiMARE (Salo 

et al., 2020; Yarkoni et al., 2011) to decode a statistical map in terms of its cognitive underpinnings. In 

short, a meta-analytic activation map is created for many (cognitive) terms, and these maps may be 

correlated to a given statistical map to identify terms with the strongest relationship to the statistical map. 

This approach allows for the identification of indirect associations to cognitive terms used across a wide-

range of previously published task-based functional neuroimaging studies, without relying on cognitive 

tasks acquired in the same cohort. Indeed, meta-analytic decoding has been used by several groups to 

evaluate the cognitive associations of their neuroimaging findings [e.g., (Chang et al., 2013; Margulies et 

al., 2016; Paquola et al., 2019; Vogel et al., 2020; Vos de Wael et al., 2018)].  

For each term in the Neurosynth database, we computed which studies used the term with a frequency of 

at least 1 in 1000 words (default parameter in NiMARE). Next, the meta-analytic maps were computed for 

these labels using a multilevel kernel density Chi-square analysis implemented in NiMARE (Salo et al., 

2020; Wager et al., 2007). For any user-provided surface-based statistical map, we interpolate the map from 

surface space to volume space. Lastly, for every meta-analytic map in the database, using every voxel that 

exists within both the meta-analytic map as well as the statistical map we compute a product-moment 

correlation. An example of retrieving correlations with meta-analytic terms for the t-statistic map derived 

earlier (Figure 1) is shown in Figure 3.  
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Figure 3. (A) Using the NiMARE toolbox (Salo et al., 2020) and the Neurosynth database (Yarkoni et al., 2011) we derived 

feature maps for every feature name in the Neurosynth database. We show an example association map for the terms “memory” 

and “reward”. (B) Example Python code for computing the correlations between the t-statistics plotted in Figure 1 and every 

term in the Neurosynth database, and plotting these correlations as a word cloud. (C) The resultant word cloud from the code in 

Figure 3B. Code for the MATLAB meta-analytic decoder can be found in Supplementary Figure 6. 

Resting-state motifs  

The functional architecture of the brain at rest has been described both as a set of discrete networks [e.g. 

(Smith et al., 2009; Yeo et al., 2011)] and as a set of continuous dimensions [also called gradients; 

(Margulies et al., 2016; Vos de Wael et al., 2020)]. The former highlights communities of regions with 

similar connectivity profiles, whereas the latter emphasizes gradual transitions between regions. Both 

approaches can be used to embed findings into the functional architecture of the human brain either by 

stratifying results in accordance with the functional architecture, or by assessing point-wise relationships 

to the gradients. Indeed, prior studies have assessed the relationship of the brain’s functional architecture 

to cortical dynamics (Wang et al., 2019), high level cognition (Murphy et al., 2019; Shine et al., 2019; 

Sormaz et al., 2018), hippocampal subfield connectivity (Vos de Wael et al., 2018), amyloid beta expression 

and aging (Lowe et al., 2019), microstructural organization (Huntenburg et al., 2017; Paquola et al., 2019), 

phylogenetic changes (Xu et al., 2020), and alterations in disease states (Caciagli et al., 2021; Hong et al., 

2019; Tian et al., 2019).  
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The resting-state decoding module relies on two separate datasets: macroscopic networks as provided by 

Yeo, Krienen, et al. (Yeo et al., 2011), and functional gradients derived from the Human Connectome 

Project S1200 dataset (Van Essen et al., 2013). Associations of markers with the Yeo-Krienen networks are 

computed, for example, by taking the average of all data points within each network. Example code for 

computing the mean and standard error of the t-statistic map plotted in Figure 1 within the Yeo-Krienen 

networks are shown in Figure 4. The t-statistics are highest in the ventral attention and limbic networks, 

and lowest in the sensory regions. The functional gradients included with BrainStat were computed by 

resampling the mean functional connectivity matrix of the S1200 release to fsaverage5 (to reduce 

computational complexity), and subsequently computing gradients with BrainSpace using the following 

parameters: cosine similarity kernel, diffusion map embedding, alpha=0.5, sparsity=0.9, and 

diffusion_time=0 (Vos de Wael et al., 2020). Example code for computing the correlations between the first 

functional gradient and the t-statistic map plotted in Figure 1 are shown in Figure 5. We find a low 

correlation (r=0.17) between these two maps. However, to test for significance of this correlation we need 

to correct for the spatial autocorrelation in the data (Markello & Misic, 2021). Three such corrections, 

namely spin test (Alexander-Bloch et al., 2018), Moran spectral randomization (Wagner & Dray, 2015), 

and variogram matching (Burt et al., 2020), are included in BrainSpace (Vos de Wael et al., 2020), a 

dependency of BrainStat. Examples of how to compute the p-value for this correlation in Python 

(Supplementary Figure 9) and MATLAB (Supplementary Figure 10) are included in the supplemental 

materials. 
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Figure 4. (A) Example Python code for computing the mean and standard error of the mean of the t-statistic map plotted in 

Figure 1 within the Yeo-Krienen networks and plotting these in a bar plot. Equivalent MATLAB code can be found in 

Supplementary Figure 7. (B) The Yeo-Krienen networks plotted to the cortical surface. (C) The bar plot of the mean and 

standard error of the mean of the t-statistic map within the Yeo-Krienen networks.  

 

 

Figure 5. (A) Example Python code for computing the correlation of the t-statistic map plotted in Figure 1 and the first 

functional gradient, and plotting it in a scatter plot. Equivalent MATLAB code can be found in Supplementary Figure 8. (B) 

The first gradient of functional connectivity. (C) The scatter plot generated in (A).  

Histology  

The BigBrain atlas (Amunts et al., 2013) is a three-dimensional reconstruction of a sliced and cell-body-

stained human brain. With a digitised isotropic resolution of 20 micrometers, it is the first openly available 

whole-brain 3D histological dataset. As such, it is well suited for relating neuroimaging markers to 

histological properties. This may be used, for example, for cross-validating MRI-derived microstructural 

findings (Paquola et al., 2019; Royer et al., 2020), defining regions of interest based on histological 

properties (Sitek et al., 2019), or relating connectomic markers to microstructure (Arnatkeviciute, Fulcher, 

Oldham, et al., 2021). The histology submodule aims to simplify the integration of neuroimaging findings 

with the BigBrain dataset. This submodule uses surfaces sampled from the BigBrain atlas at 50 different 

depths across the cortical mantle (Paquola et al., 2021). Covariance of these profiles, also known as 
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microstructural profile covariance (Paquola et al., 2019), is computed with a partial correlation correcting 

for the mean intensity profile. Principal axes of cytoarchitectural variation are computed from 

microstructural profile covariance using BrainSpace with default parameters (Vos de Wael et al., 2020). 

An example of this is shown in Figure 6. We find a correlation between the first eigenvector and the t-

statistic map of r=-0.30. Again, significance of this correlation should be tested with a correction for spatial 

autocorrelation as shown in Supplementary Figure 9 and Supplementary Figure 10. 

 

Figure 6. (A) Selected sagittal and coronal slices from the BigBrain atlas. (B) Example Python code for computing gradients of 

microstructural profile covariance for the Schaefer-400 parcellation and correlating these to the t-statistic map plotted in Figure 

1. Histology profiles, as computed in the BigBrainWarp toolbox, are loaded. From these profiles, a microstructural profile 

covariance matrix is built, and used to compute gradients of histology. The gradient and t-statistic map are correlated and plotted 

in a scatter plot. Equivalent MATLAB code can be found in Supplementary Figure 11. (C) Gradients derived from the 

microstructural profile covariance of the BigBrain atlas. (D) The scatter plot of the t-statistic map and the first gradient of 

microstructural profile covariance.  

Spatial-autocorrelative statistical tests 

The previous paragraphs have discussed multidomain feature associations between a user-provided 

statistical map and features derived from other databases. In most cases, users may wish to test whether 

these associations are statistically significant. Most standard statistical tests assume that measurements are 

independent of each other or have a known dependence structure. However, this assumption is violated in 

MRI data due to its spatial autocorrelation; spatially proximal measurements hold information on each 

other. Consequently, the effective degrees of freedom are lower than would be expected based on the 
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number of measurements. To account for this, any statistical test should correct for this. This may be done 

by generating surrogate datasets that maintain the same spatial autocorrelation but are otherwise random. 

A statistic (e.g., correlation) may then be computed between the empirical/surrogate data and the predictor 

variable (e.g., functional gradient). The percentile of the empirical statistic within the distribution of 

surrogate statistics may then be used to compute the p-value. Several procedures have been proposed for 

this in recent years, most notably spin-test (Alexander-Bloch et al., 2018), Moran spectral randomization 

(Wagner & Dray, 2015), and variogram matching (Burt et al., 2020). Spin-test requires that the data exists 

on a mesh with a corresponding sphere (e.g., fsaverage). The data is rotated on the sphere to create surrogate 

data. However, if large parts of the mesh contain no data, then spin-test will be unable to generate good 

surrogate data. To simplify the usage of spin-tests, spheres of several common surface templates are 

included with BrainStat in the function fetch_template_surface. Moran spectral randomization and 

variogram matching both quantify the spatial autocorrelation in the data and generate new data with similar 

spatial autocorrelation. These procedures are far more computationally expensive than spin-test, but they 

only require a distance metric between all pairs of measurements (e.g., Euclidean distance). Functions for 

all these spatial autocorrelation corrections are included with BrainSpace (Vos de Wael et al., 2020), a 

dependency of BrainStat (for examples see Supplementary Figure 9 and Supplementary Figure 10). 

Additionally, if multiple p-values are computed with corrections for spatial auto-correlation, then a 

correction for multiple comparisons [e.g., false discovery rate (Benjamini & Hochberg, 1995)] should still 

be performed.  

DISCUSSION 

The analysis of brain imaging data demands tools for uni- and multivariate statistical inference, and 

increasingly leverages data from multiple resources to facilitate interpretation and contextualization of 

significant results. Although many tools have been made available by the neuroimaging community to 

perform these steps (Larivière et al., 2021; Markello et al., 2021, 2022; Paquola et al., 2021; Salo et al., 

2020; Yarkoni et al., 2011), the integration of statistical inference and contextualization approaches 

currently requires in-house, often unpublished, tools. Here, we presented BrainStat, an integrated toolbox 

for the univariate and multivariate statistical analysis of brain imaging data and multidomain feature 

associations. The toolbox is programmed in both Python and MATLAB, two languages commonly used 

within the neuroimaging and network neurosciences communities. It is openly available through several 

hosting services, described in an expandable documentation complemented by accessible tutorials, and 

published under a license permissive of free modification, redistribution, and usage (BSD-3).  

GLMs are a core technique to neuroimaging data analyses. Indeed, many common univariate and 

multivariate statistical analyses, including t-tests, F-tests, multiple linear regression, and (M)AN(C)OVA, 
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can be considered special cases of the general linear model (Friston, 2005; Nichols & Holmes, 2002). As 

such, usage of general linear models is widespread throughout the neuroimaging literature [e.g., (Bernhardt 

et al., 2018; Clarkson et al., 2011; Truong et al., 2013)]. Despite the prevalence of GLMs, their 

implementation is not trivial. BrainStat’s statistics module aims to provide a flexible multivariate linear 

modeling framework for neuroimaging data (Worsley et al., 2009). The focus of this manuscript was to 

present the possibilities provided by BrainStat and outline an accessible tutorial for their usage within the 

toolbox. As such, we demonstrated a mixed effects models for testing the effects of age on cortical 

thickness. However, given the flexibility of GLMs, a large variety of models may be specified within the 

same framework. Furthermore, the flexible specification of a contrast simplifies interrogation of fitted 

models. Lastly, the included multiple comparisons corrections procedures, correction for false discovery 

rate (Benjamini & Hochberg, 1995) and random field theory (Worsley et al., 1999), allow for inference 

both at the voxel/vertex level, as well as cluster-level inference. Whilst our examples were performed with 

fsaverage5, a commonly used surface template, the same statistical models can be applied to other surface 

spaces, volumetric data, parcellated data, and non-topographic data. As such, the statistics module 

constitutes a flexible tool able to run a wide variety of statistical models on neuroimaging data.  

Recent years have seen an uptick in the usage of external datasets for the contextualization of MRI-derived 

results. These datasets may be leveraged for their unique advantages such as the unprecedented spatial 

resolution of the BigBrain histological atlas (Amunts et al., 2013), the vast number of studies included in 

the Neurosynth meta-analytical database (Yarkoni et al., 2011), and 3D maps of post-mortem human brain 

gene expression information aggregated in the Allen Human Brain Atlas (Hawrylycz et al., 2012). These 

external datasets allow for more comprehensive studies of brain organization and may advance our 

understanding of fundamental principles of brain organization (Hansen et al., 2021; Larivière et al., 2019). 

Indeed, prior studies have used these datasets to relate task meta-analyses, genetic expression, and histology 

to markers of morphology (Valk et al., 2020; Wagstyl et al., 2020; Whitaker et al., 2016), function 

(Benkarim et al., 2021; Krienen et al., 2016; Margulies et al., 2016; Paquola et al., 2019), and structural 

connectivity (Romme et al., 2017; Vos de Wael et al., 2021). Though numerous packages exist to enable 

these analyses (Markello et al., 2021; Paquola et al., 2021; Salo et al., 2020; Yarkoni et al., 2011), using 

and integrating these requires expertise and proficiency in their respective programming languages. 

BrainStat brings these tools together into a unified multi-language framework, thereby increasing their 

accessibility and streamlining the analytics processes of neuroimaging studies. Ultimately, we hope to 

reduce the barrier to entry of these techniques, reduce the chances of human error, and thereby accelerate 

cross-modal research in the neuroimaging community. 
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The context module provides a powerful framework to bridge gaps between microscale features and 

macroscale brain organization. However, any analyses performed with this module are subject to the 

limitations of the dataset used, as well as the limitations of cross-dataset comparisons. The Allen Human 

Brain Atlas and the BigBrain atlas consist of only six and one post-mortem subjects, respectively (Amunts 

et al., 2013; Hawrylycz et al., 2012). The functional gradients and networks included with BrainStat were 

all derived from neurotypical young adults (Van Essen et al., 2013; Yeo et al., 2011). As such, these data 

may not be guaranteed to generalize well to other age groups, or individuals with atypical brain 

organization. The Neurosynth database relies on the reporting of peak coordinates, as such its spatial 

resolution is limited by the resolution of its studies and the extent of clusters is unknown (Yarkoni et al., 

2011). Furthermore, none of these datasets may be manipulated by experimental design, as such no causal 

inference can be drawn. Despite these limitations, this module allows researchers to access microscale and 

macroscale brain features without incurring the costs of data acquisition. As such, the context module may 

serve three purposes in common data analyses: aiding in interpretation of results, exploratory analysis, and 

providing additional support for a priori hypotheses. 

Theoretical and empirical studies have shown the importance of replicability in science (Ioannidis, 2005; 

Moonesinghe et al., 2007; Open Science Collaboration, 2015). The proliferation of open-access datasets 

(Di Martino et al., 2014; Miller et al., 2016; Royer et al., 2021; Van Essen et al., 2013) and software (Fischl, 

2012; Marcus et al., 2011; Paquola et al., 2021; Tournier et al., 2012; Vos de Wael et al., 2020) may increase 

reproducibility by allowing others to redo experiments with identical data and procedures, as well as 

reducing human error in the analysis (Milham et al., 2018; Poldrack et al., 2017). BrainStat may contribute 

to this process. By unifying statistical processing and multidomain feature association into a single package 

across two programming languages, the resulting code will require less customization and technical 

expertise from the end-user. Furthermore, BrainStat may increase the accessibility to all these methods for 

researchers in places that lack the institutional expertise to set up such integrated pipelines.   

METHODS 

Tutorial dataset 

We studied 70 healthy participants [30 females, age = 31.9 + 8.9 (mean+SD); 12 of them (5 female) came 

in for a second visit with age = 32.8 + 7.5] of the MICS dataset (Royer et al., 2021). Note that these data 

include subjects not part of the current MICS release. For each visit, two T1w images were derived with 

the following parameters: MP-RAGE; 0.8mm isotropic voxels, matrix = 320 x 320, 224 sagittal slices, TR 

= 2300ms, TE = 3.14ms, TI = 900ms, flip angle = 9°, iPAT = 2, partial Fourier = 6/8. Scans were visually 

inspected for motion artefacts. Processing was performed with micapipe (https://github.com/MICA-

MNI/micapipe). In short, cortical surface segmentations were generated from the T1w scans using 
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Freesurfer 6.0 (Fischl, 2012). Subject’s thickness estimates were transformed to the fsaverage5 template 

and smoothed with a 10mm full-width-at-half-maximum Gaussian kernel. 

CODE AVAILABILITY 

BrainStat is freely available through PyPi (https://pypi.org/project/brainstat/; installable with `pip install 

brainstat`), FileExchange (https://www.mathworks.com/matlabcentral/fileexchange/89827-brainstat; 

installable with the add-on manager in MATLAB), and GitHub (https://github.com/MICA-MNI/BrainStat). 

Documentation is available at https://brainstat.readthedocs.io/. At the time of writing (BrainStat version 

0.3.3), BrainStat supports Python 3.7-3.9 and MATLAB R2019b+ on Windows, macOS, and Linux. 

However, we advise users to consult the installation guide in our documentation for up-to-date 

requirements.  
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SUPPLEMENTAL FIGURES 

 

Supplementary Figure 1. MATLAB code for fitting a fixed effect linear model of the effect of age on cortical thickness with 

BrainStat.  
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Supplementary Figure 2. Example Python code for contrasts. that probe sex and sex/age interactions, respectively. Equivalent 

MATLAB code can be found in Supplementary Figure 12.  
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Supplementary Figure 3. Python code to plot the t-values and p-values derived from the code in Figure 1 to the surface. 
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Supplementary Figure 4. MATLAB code to plot the t-values and p-values derived from the code in Supplementary Figure 1 

to the surface. 
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Supplementary Figure 5. Example MATLAB code for computing the genetic expression of a surface parcellation, plotting the 

matrix, and plotting a scatter plot between the t-statistic computed in Supplementary Figure 1 and the WFDC1 gene expression. 
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Supplementary Figure 6. Example MATLAB code for computing the correlations of the t-statistics computed in 

Supplementary Figure 1 with meta-analytic analysis of task fMRI studies and plotting these as a word cloud. 
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Supplementary Figure 7. Example MATLAB code for computing the correlations of the t-statistics computed in 

Supplementary Figure 1 with meta-analytic analysis of task fMRI studies and plotting these as a word cloud. 
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Supplementary Figure 8. Example MATLAB code for computing the correlation of the t-statistic map and the first functional 

gradient and plotting these in a scatter plot. 
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Supplementary Figure 9. Example Python code for computing the significance of the correlation of the t-statistic map and the 

first functional gradient.  
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Supplementary Figure 10. Example MATLAB code for computing the significance of the correlation of the t-statistic map and 

the first functional gradient.  
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Supplementary Figure 11. Example MATLAB code for computing the correlation of the t-statistic map computed in 

Supplementary Figure 1 and the first microstructural profile covariance gradient and plotting it in a scatter plot. 
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Supplementary Figure 12. Example MATLAB code for contrasts that probe sex and sex/age interactions, respectively. 
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