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Abstract— Objective: The Temporal Response Function (TRF) is a linear model of neural activity time-locked to continuous stimuli, 2 
including continuous speech. TRFs based on speech envelopes typically have distinct components that have provided remarkable 3 
insights into the cortical processing of speech. However, current methods may lead to less than reliable estimates of single-subject TRF 4 
components. Here, we compare two established methods, in TRF component estimation, and also propose novel estimation algorithms 5 
that utilize prior knowledge of these components, bypassing the full TRF estimation. Methods: We compared two established 6 
algorithms, ridge and boosting, and two novel algorithms based on Subspace Pursuit and Expectation Maximization, which directly 7 
estimate TRF components given plausible assumptions regarding component characteristics. Single-channel, multi-channel, and 8 
source-localized TRFs were fit on simulations and real magnetoencephalographic data. Performance metrics included model fit and 9 
component estimation accuracy. Results: Boosting and ridge have comparable performance in component estimation. The novel 10 
algorithms outperformed the others in simulations, but not on real data, possibly due to the plausible assumptions not actually being 11 
met. Ridge had marginally better model fits on real data, but also more spurious TRF activity. Conclusion: Results indicate that both 12 
smooth (ridge) and sparse (boosting) algorithms perform comparably at TRF component estimation. The SP and EM algorithms may 13 
be accurate, but rely on assumptions of component characteristics. Significance: This systematic comparison establishes the suitability 14 
of widely used and novel algorithms for estimating robust TRF components, which is essential for improved subject-specific 15 
investigations into the cortical processing of speech.  16 
 17 

Index Terms — MEG, EEG, auditory, deconvolution, reverse correlation, attention, cocktail party, matching pursuit, ERP 18 
 19 

I. INTRODUCTION 20 

HE human brain time-locks to features of continuous speech, extracting meaningful information relevant to comprehension. 21 

Magnetoencephalography (MEG) and electroencephalography (EEG) are suitable methods to measure these time-locked 22 

responses, due to their high temporal resolution. Traditional methods for analyzing auditory responses involve averaging 23 

over multiple trials of repeated stimuli to estimate Evoked Response Potentials (ERPs) [1], [2]. But exploring the complex 24 

mechanisms involved in speech processing requires non-repetitive, continuous speech stimuli of long duration, and averaging 25 

over trials is no longer feasible. One method of analyzing responses to continuous stimuli uses linear models called Temporal 26 
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Response Functions (TRFs), that estimate the impulse response of the neural system to continuous stimuli [3], [4]. TRFs based 27 

on neural recordings using magnetoencephalography (MEG) have response components such as the M50 (~50 ms latency), 28 

M100 (~100-150 ms) and M200 (~200-250 ms) that are analogous to well-known auditory ERP components, the P1, N1, and P2 29 

components of electroencephalography (EEG), and which have been utilized to investigate selective attention [3], [5], [6], 30 

linguistic processing [7]–[9], and age-related differences in the auditory system [10]. However, though estimated TRFs display 31 

these canonical components at the group-average level, individual TRFs are much noisier and do not always have well-defined 32 

components. It is essential to detect robust response components on a per-subject level, both to identify task effects and for 33 

biomedical applications such as smart hearing aids. Hence, the suitability of various TRF methods for component estimation 34 

must be determined. 35 

Variations of regularized regression and machine learning methods for estimating TRFs have been previously compared for 36 

decoding subject attention in a multi-talker scenario [6], [11], [12]. However, it is unclear how they compare to commonly used 37 

sparse TRF estimation techniques such as boosting [13], [14]. Furthermore, a focus on model fits for attention decoding may not 38 

be suitable for studies interested in accurate estimation of TRF components. 39 

In this work we perform a systematic comparison of TRF algorithms in terms of estimating TRF components. Two widely 40 

used TRF estimation algorithms are ridge regression [12], [15] and boosting [3], [13], [14]. The former uses ℓ! regularization 41 

which leads to smooth TRFs with broad components, while the latter greedily adds values to the TRF, thereby prioritizing 42 

sparsity in the TRF and leading to narrower, sharper components. However, it is not clear which of these methods is more 43 

accurate in estimating TRF component latencies and amplitudes.  44 

Both ridge and boosting are agnostic to the morphology of neural responses. Since canonical auditory response components 45 

are often present in TRFs to the speech envelope, it is reasonable to incorporate this information during estimation. Several 46 

methods have been proposed for directly estimating latencies and amplitudes for M/EEG evoked responses (but not for TRFs). 47 

The earliest ERP latency estimation methods involved cross correlation with average response templates [16]. More recent 48 

algorithms have utilized techniques such as Independent Component Analysis [17], [18], wavelet decomposition [19], maximum 49 

likelihood estimation [20], [21], autoregressive models [22], Expectation Maximization (EM) [23], Matching Pursuit [24] and 50 

Bayesian methods [25], [26].  51 

In this work, we propose novel TRF component estimation algorithms that utilize prior knowledge of the characteristics of 52 

neural responses (i.e., component latency ranges), and directly estimate component latencies, amplitudes and topographies. The 53 

first proposed algorithm estimates single-channel TRF component latencies and amplitudes using Subspace Pursuit (SP) [27]. 54 

The second algorithm extends this method for multi-channel TRFs using SP and Expectation Maximization (EM) [23], [28],  and 55 

also directly estimates sensor topographies or cortical source distributions of TRF components. The SP algorithm is widely used 56 

for sparse signal recovery and is typically capable of recovering components in an efficient manner. The EM algorithm is a 57 

maximum likelihood method that is able to incorporate ‘hidden’ variables and is widely used in signal estimation [29]. Pursuit 58 

algorithms and EM have been used for single trial evoked response estimation [23], [24], and here, we employ natural extensions 59 

of these algorithms for TRF component estimation. 60 

A simulation study, and an application of these algorithms to a real dataset, are reported and their performance is compared 61 

using single-channel, multi-channel, and source localized TRFs. Performance metrics include the correlation between the actual 62 

and the predicted signal, which is the conventional measure of model fit, as well as several other measures including accuracy of 63 

detecting peak amplitudes and latencies. Other considerations such as spurious TRF activity and missing components are also 64 

examined. In summary, this work discusses the strengths and weaknesses of widely used algorithms and proposes novel methods 65 

for TRF component estimation that may provide robust and interpretable time-locked response components.  66 
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II. METHODS 67 

A. Established Algorithms for TRF estimation 68 

The TRF estimation problem is given by the convolution 69 

" = $ ∗ & + ( (1) 

Where " ∈ ℝ"	is the vector of the single-channel measured signal (e.g., at one sensor) for , time points, & ∈ ℝ" is the 70 

predictor variable (e.g., the speech envelope), $ ∈ ℝ# is the corresponding TRF over - time lags, and ( ∈ ℝ" is the noise. This 71 

can be reformulated as a regression as follows 72 

" = .$ + ( (2) 

Where . ∈ ℝ"×# is the Toeplitz matrix formed by lagged predictor values. The well-known ridge regression algorithm has 73 

been widely used to solve this problem [15]. Another commonly used technique is the boosting algorithm, a sparse estimation 74 

technique which solves the TRF problem using a greedy coordinate descent [13], [14]. In brief, this algorithm starts from an all-75 

zero TRF and incrementally adds small, fixed values to the TRF to decrease the mean square error (MSE) at each iteration. The 76 

iterations are stopped when the Pearson correlation between the actual and predicted signals does not improve. A dictionary of 77 

basis elements (e.g., Hamming windows) is used for the incremental additions to the TRF. Both ridge and boosting can be used 78 

independently at each sensor to estimate TRFs for multi-channel data. 79 

 80 

B. Proposed SP algorithm for TRF estimation 81 

The SP algorithm searches for TRF components within predefined latency windows and directly estimates them. Assuming 82 

there are / components (e.g., / = 3 for M50, M100, M200 components), the TRF model is now given by a modified version of 83 

(1). 84 

" = ∑ 2%.3%
&
%'( + (  (3) 

Where 2% ∈ ℝ and 3% ∈ ℝ# are the amplitude and waveform for the 4)* component. The component waveforms 3% are selected 85 

according to the component latency 5% from a basis dictionary (e.g., hamming windows) that span the TRF lags (i.e., 3% is column 86 

number 5% of the basis dictionary matrix). The SP algorithm directly estimates the amplitudes 2% 	and latencies 5%. The complete 87 

algorithm is given in Algorithm 1. 88 

The SP algorithm estimates very sparse TRFs composed of only the required number of components, and can also be applied 89 

independently at each sensor for multi-channel TRFs. 90 

 91 

 92 

 93 

 94 

 95 

 96 

 97 

 98 

 99 
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Algorithm 1: SP for TRF estimation 

Inputs: Measured signal !"ℝ!, predictor matrix $"ℝ!×#, number of components %	and corresponding latency windows '$ 

1:  Initialize the set of TRF components to the empty set; (% = ∅.  

2:  Set the residual to the measured signal +% = !		 

3:  repeat for , = 1,2,…  

4:      repeat for 1 = 1, . . , %	  

5:             Find the best component latency  

3$
∗ = argmax

'∈)!		
	|< +%, $3+ >| 

                where 3' is the basis component with latency < 

6:      Add the % new components to the set (= = (,-. ∪ {3$
∗}  

7:      Estimate amplitudes AB = (D!D)-.D!! 

                  where D has columns {$3	|	3 ∈ (=} 

8:      Update the component set  

												(, = {%	components with the largest amplitudes  

                         for each '$} 

9:      Re-estimate amplitudes A, = (G!G)-.G!! 

                  where G has columns {$3	|	3 ∈ (,} 

10.    Calculate the new residual +, = ! − GA,	 

11.    If I+,I > I+,-.I stop iterations and set (, = (,-.	&	A, = A,-. 

Output: amplitudes A, = [L., … , L/], components 3$ ∈ (, and TRF N = ∑ L$3$
/
$0. .    

 100 

C. Proposed EM-SP algorithm for TRF Estimation  101 

The EM-SP algorithm is an extension of the SP algorithm for multidimensional TRFs. In addition to directly estimating 102 

amplitudes and latencies, this algorithm also directly estimates sensor topographies or source distributions for multi-channel 103 

TRFs. This algorithm uses EM to iteratively estimate component topographies in the E-step, and latencies using SP in the M-104 

step. Given a predefined number of components and corresponding latency windows, the EM-SP multi-channel TRF model is 105 

given by a modified version of (3).    106 

6 = ∑ 7%8.3%9
+

% +:  (4) 

Where 6>ℝ,×" is the measured data over ? sensors and , time points, 7%>ℝ, is the spatial topography of the 4)* component, 107 

3%>ℝ# is the temporal waveform of the 4)*  component, .>ℝ"×# is the predictor matrix, and :>ℝ,×" is the measurement noise. 108 

The component latency is given by 5% and is related to (4) by the fact that @% corresponds to column number 5% in the TRF basis 109 

dictionary matrix. We assume the following priors, 110 

7%~B(C,E)  

:~B(F, G"×" ⊗I)  
(5) 

Where the temporal noise covariance is assumed to be the identity matrix and the spatial noise covariance is given by 111 

I	>	ℝ,×,. For the EM algorithm, we consider the spatial topographies K = L7%M as the ‘hidden’ variables. The remaining 112 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2022. ; https://doi.org/10.1101/2022.01.18.476815doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.18.476815
http://creativecommons.org/licenses/by-nc/4.0/


 5 

parameters that need to be estimated are Θ = L	C, E, I, 5%M. Detailed derivations of the algorithm are provided in supplementary 113 

materials. Here, we summarize the main steps of the algorithm. 114 

The Q-function is given by taking the expectation over the posterior probability O(K|6, Θ). 115 

 PQΘSΘ(2)T = !
4 log|W

-.| + /
4 log|Y

-.| − .
4 Z[[\

!W-.\] + Z[]\!W-.Q∑ ^[_$] $̀
!

$ Ta −
.
4 	Z[]∑ ∑ $̀

!`5^]_$_5
!a$5 W-.a     

																								−
.
4∑ Z[Q^]_$_$

!aY-.T$ − 2b6Y-.^]_$a  +b!Y-.b  
(6) 

In the Expectation step, the posterior means of the spatial topographies are estimated.  116 

_c$ = Q $̀
!

$̀W-. +Y-.T
-.
(W-.(\ − ∑ _c5`5

!
57$ ) $̀ +Y-.b)  (7) 

For the Maximization step, we use the Conditional Maximization method [30] whereby we sequentially maximize over each 117 

one of the parameters	Θ = LC, E, I, 5% , M, while holding the others fixed at their previous values.  118 

b = 1/%∑_c$ 	  (8) 

Y =
.
/8∑Qf$ + _c$_c$

! − b_c$
! − _c$b! + bb!T  (9) 

W =
.
! \\

! − \Q∑_c$ $̀
!T

!
− Q∑_c$ $̀

!T\!  

																					+∑ h $̀
!

$̀Qf$ + _c$_c$
!T

!
+∑ $̀

!`5_c5_c$
!

57$ i$   
(10) 

The latencies 5% 	can be estimated in a similar manner to the single channel SP algorithm using a linear search to maximize 119 

RS T8\ − ∑ _U9`9
:

9≠< 9
"
I-(7U%&%

"V	over the component basis. The complete EM-SP algorithm is provided below.  120 

All four algorithms can also be used to simultaneously fit TRFs to multiple predictors (e.g., foreground and background 121 

envelopes) by concatenating the W predictor matrices  X. ∈ ℝ"×# along the columns, resulting in a new predictor matrix X ∈122 

ℝ"×#/. In this work, we jointly fit TRFs to two predictors (corresponding to foreground and background speech envelopes) 123 

using a concatenated predictor matrix.  124 

 125 

 126 

 127 

 128 
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Algorithm 2: EM-SP 

Inputs: Multi-channel data \ ∈ ℝ8×!, $ ∈ ℝ!×#, the number of components %	and latency windows W$ 

1:  Initialize parameters _c$ 	and  Θ% = l<$
%, b%, Y%, W%m.	 

2:  repeat for Z = 1, 2, ... 

3:     E-step: Estimate the spatial topographies _c$ using (7) 

4:     CM-steps: Estimate parameters b2, Y2, W2 using (8)-(10) 

        CM-step: Estimate the latencies <$2 using SP as shown below 

5:     Initialize residual \=% = \ and component set (% = ∅ 

6:     Normalize the spatial topographies _c$ = _c$/max(S_c$S) 

7:     repeat for iterations , = 1,2,…  

8:          repeat for components 1 = 1, . . , %	  

9:                Find the best component latency  

3$
∗ = argmax

'∈)!
Z[Q(\=,-.)!W-._c$($3')!T 

                       where 3' is the basis component with latency < 

10:         Add the % new components to the set (= = (,-. ∪ {3$
∗}  

11:         Estimate amplitudes AB = (D!D)-.D!! 

                  where ! = nop(W-
"
#\)	is the vectorized whitened data  

                  and D has columns qnop(W-
"
#_c$Q$3$T

!
)	r 	3$ ∈ (=} 

12:         Update (, = {%	components with the largest amplitudes  

                                       for each '$} 

13:          Re-estimate amplitudes A, = (G!G)-.G!! 

                  where G has columns 	qnop hW-
"
#_c$Q$3$T

!
i	r3$ ∈ (,s 

14.         Calculate the new residual \=, = \− ∑ L$_c$Q$3$T
!

$ 	 

                  where L$ are the values in A, 

15.        If I\=, I > I\=,-.I stop iterations, let (, = (,-.	&	A, = A,-. 

16.      Update the spatial topographies _c$ = L$_c$ 

Output: The estimated TRF N = ∑ _c$3$
!/

$0. , spatial topographies _c$ ,	 and components 3$ with latencies 

<$ 		and amplitudes 	L$ = maxQS_c$ST. 

  137 

D. Simulation Study 138 

Simulations were constructed to match typical cocktail party speech experiments which have two simultaneous speech 139 

streams. Accordingly, the 1-10 Hz band-passed envelopes of two speech stimuli (foreground and background) at 100 Hz 140 

sampling rates were used as predictors. These envelopes were repeated three times, in line with experiments having multiple 141 

trials of repeated stimuli to extract consistent responses using spatial filters such as Denoising Source Separation (DSS [31]; 142 

details given below).  These predictors were convolved with ground truth simulated TRFs to form  one-dimensional responses at 143 

100 Hz sampling rate for 30 pseudo-subjects comparable to a single-sensor M/EEG response or the first auditory response 144 

component after DSS.  145 

For each simulated subject, the ground truth simulated TRF was formed by placing hamming windows of 50 ms width at 146 

latency ranges 30-80 ms, 90-170 ms and 190-250 ms corresponding to typical latencies of the M50, M100 and M200 147 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2022. ; https://doi.org/10.1101/2022.01.18.476815doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.18.476815
http://creativecommons.org/licenses/by-nc/4.0/


 7 

components. The M100 component was given a negative sign, and the components were scaled and shifted according to 148 

randomized subject specific amplitudes and latencies. These amplitudes and latencies were later used as the ground truth for 149 

performance evaluation.  150 

Realistic noise was added to the simulated responses using the first DSS component of real MEG data collected from 30 151 

subjects listening to speech (previously published [32], [33]). DSS creates a series of spatial filters that extract the most 152 

consistent responses across repeated stimulus presentations (see [31] for details on DSS). This component was then also phase 153 

scrambled, preserving the spectral properties of MEG signals, to simulate noise added to the simulated response, at SNRs of -15, 154 

-20, -25 and -30 dB. 155 

The multi-channel simulation followed the same method for 157 simulated sensor signals, but in addition also used ground 156 

truth sensor topographies for each TRF component. These topographies were constructed to resemble typical auditory TRF 157 

components, with the addition of Gaussian noise to simulate individual variability. Real multi-channel MEG data was again 158 

phase scrambled and added as noise on a per channel basis using the method described above, at SNRs of -20, -25, -30 and -35 159 

dB (lower SNRs were used because unprocessed multi-channel data is typically noisier than the extracted auditory component).  160 

The DSS algorithm was also applied to the simulated multi-channel data and corresponding TRFs were calculated for the first 161 

6 DSS components. These DSS TRFs were projected back into sensor space for subsequent analysis and for computing 162 

performance metrics. 163 

The source space simulation was constructed using the Freesurfer ico-4 surface source space of the ‘fsaverage’ brain [34]. An 164 

ROI in temporal lobe with 245 sources that included auditory cortex was used for this simulation (‘aparc’ labels 165 

‘transversetemporal’ and ‘superiortemporal’). The three TRF components were simulated using dipoles in Heschl’s gyrus, 166 

Planum Temporale and Superior Temporal Gyrus in both hemispheres. These dipoles were projected onto the sensors using 167 

forward models from real data and back projected back onto source space with Minimum Norm Estimation (MNE) [35] using 168 

eelbrain [13], [36] and mne-python softwares [37] to simulate the source localization procedure. The back-projected source 169 

distributions of these simulated TRF components were also used as the ground truth for subsequent performance comparisons. 170 

The TRFs were then convolved with the predictors to form the responses at each of the 245 sources. Real MEG data was phase 171 

scrambled and added as noise to the response at each source at SNRs of -15, -20, -25 and -30 dB following the same procedure 172 

as above.  173 

 174 

E. Experimental Dataset 175 

MEG data collected in a prior study [32], [33] was used for evaluating the performance of the algorithms on real data. The 176 

study was approved by the IRB of the University of Maryland and all participants provided written informed consent prior to the 177 

start of the experiment. The dataset consisted of MEG data collected from 40 subjects while they listened to speech from the 178 

narration of an audiobook. Subjects listened to two speakers simultaneously in a cocktail party experiment, but were asked to 179 

attend to only one speaker. The data was from the condition where the foreground speaker was 3 dB louder than the background 180 

speaker. TRFs were estimated for the foreground and background envelopes. Whole head sensor space TRFs (157 sensors) were 181 

computed for each algorithm on three minutes of data. Additionally, TRFs were also computed for the first 6 DSS components. 182 

Finally, the MEG responses of this dataset were source localized using MNE and source space TRFs were also computed.  183 

 184 
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F. Algorithm Implementation 185 

The algorithms were implemented in python using scipy [38], and eelbrain (code available online upon acceptance). A basis 186 

dictionary with Hamming windows of width 50 ms was used for boosting, SP and EM-SP. The component latency windows for 187 

the SP and EM-SP algorithms were 30-80 ms, 90-170 ms and 190-250 ms. To avoid instability and convergence issues, the 188 

spatial covariance R for the EM-SP algorithm was assumed to be the identity matrix. The EM-SP was initialized using the 189 

extracted components from the SP algorithm applied at each sensor/source independently.  190 

A nested 4-fold cross validation procedure was followed for all algorithms to allow for unbiased comparison. The data was 191 

divided into 4 splits, with 1 for testing, 1 for validation and 2 for training. The validation and training splits were permuted for 192 

each test split in a nested fashion. The training data was used to optimize the ridge TRF over several regularization parameters 193 

based on the model fit on the validation data. The boosting TRF was fit on the training data, and the validation data was used to 194 

check for convergence and terminate the algorithm. The SP and EM-SP TRFs were fit on the training data, and the model fit on 195 

the validation data was used to terminate the EM iterations. Finally, the overall model fit metric was calculated by convolving 196 

the average TRF over all training splits with the appropriate test predictor and computing the Pearson correlation between this 197 

predicted signal and the actual test signal.  198 

 199 

G. Performance Metrics 200 

The model fit was calculated as the Pearson correlation between the estimated and the predicted response (averaged over 201 

channels for multidimensional cases). A null model was constructed by fitting TRFs using circularly time-shifted predictors 202 

(shifts of 15 s) and the correlation of this null model was subtracted from the true model. This bias corrected model fit is reported 203 

for both simulations and real data.  204 

In addition to model fit, several other metrics of TRF component estimation were also calculated for the simulations (but not 205 

for real data, since the ground truth components were unknown). TRF components were detected using automatic peak selection 206 

in the appropriate latency windows (30-80 ms, 90-170 ms, 190-250 ms) and the following metrics were used; 1) Pearson 207 

correlation between the estimated and ground truth TRF, 2) Absolute error of individual component latency estimates 3) 208 

Absolute error of individual component amplitude estimates, 4) Spurious TRF activity given by the % power in the estimated 209 

TRF after 300 ms (note that there is no activity in the ground truth TRF after 300 ms), 5) Number of missing components (for 210 

single-channel simulations) 6) Individual component sensor topography estimation error 7) Individual component source 211 

distribution error.  212 

III. RESULTS 213 

A. Simulation: Single-Channel TRFs 214 

Single-channel TRFs were simulated, and the ridge, boosting, and SP algorithms were compared in terms of several 215 

performance metrics. The estimated TRFs for a representative subject are shown in Fig. 1. The conventional measure for 216 

evaluating the performance of TRF models is the correlation between the actual and the predicted responses. In this work we 217 

used a nested cross-validation procedure for all algorithms to reduce overfitting and a null model based on shifted predictors for 218 

bias correction. However, correlation between the actual and the predicted responses may not always be an appropriate measure 219 

of TRF component estimation, since it depends on a variety of factors including SNR and predictor characteristics. This metric 220 

may also not appropriately penalize latency errors or spurious activity in the TRF. Hence, we used several other metrics, 221 
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including as component latency and amplitude errors, to compare these algorithms in terms of TRF component estimation (see 222 

right column of Fig. 1).   223 

 224 

 225 
 226 

The SP algorithm performed the best in most measures, while ridge and boosting performed comparably. Spurious peaks after 227 

300 ms (when there was no activity in the ground truth TRF) could lead to difficulties in interpretation and to false positives 228 

when detecting TRF components in real data. Ridge had more spurious activity than boosting but was also able to detect more 229 

components than boosting. 230 

 231 

B. Simulation: Multi-channel TRFs 232 

Sensor space TRFs were simulated using realistic sensor topographies for TRF components, and the performance of each 233 

algorithm was compared (see Fig. 2). TRFs were estimated independently at each sensor for the boosting, ridge and SP 234 

algorithms, while the EM-SP algorithm directly estimated multi-channel component topographies. The EM-SP algorithm 235 

performed the best in most measures, while ridge and boosting performed comparably. The sensor topographies estimated by 236 

boosting and SP are worse than those estimated by ridge and EM-SP, which is to be expected given that the former are sparse 237 

algorithms that are fit at each sensor independently. 238 

 239 

 
Fig. 1. Performance comparison for single-channel simulations. (a) The fitted TRFs for a representative subject. The ground truth TRF is shown as a dotted 

green line over the estimated TRFs. Boosting seems to miss some components, while ridge has more spurious activity. (b) Algorithm comparison using the 

performance metrics. Violin plots over simulated subjects are shown, with the symbols indicating the mean. Within each SNR condition, the algorithms are 

plotted in ascending order of their means from left to right. SP does not have spurious activity after 300 ms or missing components by design and is not shown 

for the bottom two subplots. Ridge and boosting are comparable for most measures, while SP seems to outperform the others in higher SNR cases. 
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 240 
 241 

C. Simulation: Denoised TRFs using DSS 242 

The DSS algorithm was applied to the simulated sensor space TRFs to extract spatial filters corresponding to auditory 243 

response components. The algorithms were fit on the first 6 DSS components, and the resulting TRFs were projected back onto 244 

the sensor space for performance evaluation. Performance increased greatly over the sensor space TRFs in all cases (see Fig. 3). 245 

Ridge, boosting and EM-SP had comparable results. Interestingly, EM-SP did not have a significant advantage over the other 246 

algorithms, indicating that the established algorithms are just as suitable for low dimensional, denoised data.  247 

 248 

 
Fig. 2. Performance comparison for multi-channel simulations. (a) The fitted TRFs for a representative subject. The TRF at each sensor is plotted in gray, 

while the ℓ!-norm over sensors is plotted as a colored thick line. The ℓ!-norm of the ground truth TRF is shown as a dotted green line over the estimated TRFs. 

The sensor topography at the largest peak near 100 ms is shown as an inset. (b) Algorithm comparison using the performance metrics. Since there is no activity 

after 300 ms in the SP and EM-SP TRFs by design, they are not plotted in the spurious activity subplot. EM-SP outperforms the others in most measures. 

Although all methods find similar components, the sensor topographies for boosting and SP are worse than the others, perhaps because they are sparse 

estimation techniques. 
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 249 

D. Simulation: Source Localized TRFs 250 

Source space simulations were constructed with dipoles in auditory areas for each TRF component. These dipoles were 251 

projected onto sensor space using the forward model and source localized back to source space to simulate source localized 252 

MEG data. The algorithms were fit on these source localized signals and performance was compared using the same metrics (see 253 

Fig. 4). Results were similar to the sensor space simulation, with EM-SP outperforming the others, and ridge and boosting giving 254 

comparable results (with ridge typically performing marginally better than boosting for most measures except spurious activity). 255 

 256 

 
Fig. 3. Performance comparison after DSS denoising. (a). The fitted TRFs for a representative subject, similar to the previous figure. The TRFs were fit on the 

first 6 DSS components and then back-projected to sensor space. All the algorithms except SP result in reasonable TRF components and sensor topographies. 

(b). Algorithm comparison using the performance metrics. All the algorithms except SP perform comparably, while the latter performs the worst in most cases.   
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 257 
 258 

Overall, the simulation results indicate that both boosting and ridge are comparable, with ridge typically performing slightly 259 

better. Interestingly, SP outperformed ridge and boosting in the high noise single-channel simulations, while EM-SP 260 

outperformed the others by a large margin in the multi-channel and source-localized simulations. It should be noted that the 261 

component windows used for the simulation were identical to the component windows provided a-priori to SP and EM-SP, 262 

which may explain their better performance. Therefore, SP and EM-SP may be suitable for estimating TRFs in high noise 263 

conditions, assuming that the appropriate latency windows can be determined a-priori. Ridge also had lower spatial error 264 

compared to boosting (sensor topography and source distribution errors), perhaps because a sparse estimation technique like 265 

boosting cannot capture smooth spatial patterns as well as ridge. Conversely, ridge had much larger amounts of spurious activity 266 

compared to boosting. However, after applying the DSS algorithm, ridge, boosting and EM-SP once again showed comparable 267 

performance, highlighting the importance of denoising methods when estimating TRFs from noisy multidimensional data.  268 

 269 

E. Performance on Real Data 270 

The algorithms were compared on a real MEG dataset collected for a cocktail party experiment. Sensor space, DSS and source 271 

space TRFs are shown for a representative subject in Fig. 5. The only metric used was the correlation between the measured and 272 

predicted signals, since the other metrics cannot be calculated when the ground truth TRF components are unknown. 273 

 
Fig. 4. Performance comparison for source space simulations. (a) The fitted TRFs for a representative subject are shown, similar to the previous figure. The 

source distributions in the temporal lobe ROI at the largest peak near 100 ms are shown as insets. Boosting and SP result in much sparser source distributions, 

and all the algorithms except SP perform comparably in estimating the TRF components, although the ridge TRF has a lot more activity that may make it 

difficult to interpret in realistic situations where the ground truth is unknown. (b). Algorithm comparison using the performance metrics, similar to those shown 

in the previous figure. EM-SP outperforms the others in most cases.   
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Interestingly, ridge performs marginally better than the other three algorithms. However, it is unclear if correlation is the most 274 

suitable metric for evaluating the accuracy of estimating TRF components. The correlation values were distributed over a large 275 

range across subjects, possibly indicating a high degree of inter-subject variability in neural SNR for time-locked responses. 276 

Ridge resulted in smooth TRFs with several peaks and large amounts of non-zero activity which made them more difficult to 277 

interpret, especially for the sensor and source space TRFs. Boosting, though performing worse in terms of correlation, allowed 278 

for sparser TRFs with fewer peaks that were easier to interpret.  279 

 280 
The two proposed algorithms were restricted to finding exactly three TRF components, assuming fixed component waveforms 281 

and latency windows. The fact that EM-SP may have performed worse than ridge for real data, even though it outperformed the 282 

others in the simulations, indicates that these assumptions may not be valid for all subjects. This could be due to a variety of 283 

reasons including missing components due to anatomical or functional differences, and large individual variability in TRF 284 

components latencies, waveforms and peak widths. Indeed, a separate simulation analysis (not shown) with missing components 285 

and mismatched latency windows resulted in similar performance for EM-SP, with it no longer outperforming ridge and 286 

boosting. In any case, conventional post-hoc analysis of TRF components estimated using established algorithms is also typically 287 

performed under similar assumptions to those used for EM-SP (i.e., detecting TRF peaks using similar latency windows). 288 

However, even with these constraints, EM-SP was often able to recover TRF components and spatial patterns comparable to 289 

ridge.  290 

 291 

IV. CONCLUSION 292 

The TRF framework provides a significant advancement over trial averaged responses to repetitive stimuli, and allows for 293 

experiments with more naturalistic speech paradigms. Detecting robust TRF components is essential for reliable single-subject 294 

 
Fig. 5. Performance comparison on real MEG data. (a) The estimated sensor, DSS and source localized TRFs are shown for a representative subject. The 

sensor topographies and source distributions at the large peak near 100 ms are shown as insets. The sensor space EM-SP TRF has clear components and 

topographies, while the boosting TRF has overly sparse topographies and the ridge TRF has a lot of hard to interpret activity. Boosting, ridge and EM-SP show 

clear components and spatial patterns for the DSS and source localized TRFs. (b) Correlation between the measured and predicted signals is shown as a measure 

of model fit. Violin plots across subjects are shown for each algorithm in ascending order of their mean from left to right.  
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investigations that could inform diagnosis and treatment of hearing disabilities and lead to improvements in biomedical 295 

applications such as smart hearing aids. 296 

We compared TRF algorithms using metrics of both model fit and component estimation accuracy. Results from simulations 297 

indicate that boosting and ridge are comparable for most cases. Interestingly, for real data, ridge typically had better model fits. 298 

However, in general, ridge TRFs displayed more spurious peak-like activity, while boosting TRFs were sparse and its peaks 299 

more interpretable. Therefore, ridge may be suitable for studies focused on prediction accuracy, while boosting may be more 300 

appropriate for detecting easily identifiable TRF components. In this work, we restricted our analysis of established methods to 301 

these two algorithms that are the most widely used. Other variations on regularized regression, such as Lasso and Elastic Net, 302 

may provide improvements in TRF estimation [11].  303 

SP and EM-SP performed exceptionally in simulations, but seemingly underperformed on real data, possibly due to invalid 304 

assumptions. The a-priori parameters (latency windows) may need to be tuned for each predictor type or experiment, or even for 305 

each subject 306 

Modern TRF analyses involve multiple types of predictors (e.g., envelopes and phoneme onsets). Boosting and banded ridge 307 

regression may be suitable for these studies [9], [12], [40], [41]. However, the component characteristics of TRFs to these 308 

higher-level predictors must be determined before our proposed algorithms can be applied.   309 

In conclusion, our results indicate that SP and EM-SP may only perform well under realistic assumptions, while ridge and 310 

boosting perform comparably in most cases, with ridge typically having higher prediction accuracies, but also more spurious 311 

activity.  312 
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