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 257 
 258 

Overall, the simulation results indicate that both boosting and ridge are comparable, with ridge typically performing slightly 259 

better. Interestingly, SP outperformed ridge and boosting in the high noise single-channel simulations, while EM-SP 260 

outperformed the others by a large margin in the multi-channel and source-localized simulations. It should be noted that the 261 

component windows used for the simulation were identical to the component windows provided a-priori to SP and EM-SP, 262 

which may explain their better performance. Therefore, SP and EM-SP may be suitable for estimating TRFs in high noise 263 

conditions, assuming that the appropriate latency windows can be determined a-priori. Ridge also had lower spatial error 264 

compared to boosting (sensor topography and source distribution errors), perhaps because a sparse estimation technique like 265 

boosting cannot capture smooth spatial patterns as well as ridge. Conversely, ridge had much larger amounts of spurious activity 266 

compared to boosting. However, after applying the DSS algorithm, ridge, boosting and EM-SP once again showed comparable 267 

performance, highlighting the importance of denoising methods when estimating TRFs from noisy multidimensional data.  268 

 269 

#"! 8+02/01&6D+-/6-4+&(->&%&-270 

The algorithms were compared on a real MEG dataset collected for a cocktail party experiment. Sensor space, DSS and source 271 

space TRFs are shown for a representative subject in Fig. 5. The only metric used was the correlation between the measured and 272 

predicted signals, since the other metrics cannot be calculated when the ground truth TRF components are unknown. 273 

 
Fig. 4. Performance comparison for source space simulations. (a) The fitted TRFs for a representative subject are shown, similar to the previous figure. The 

source distributions in the temporal lobe ROI at the largest peak near 100 ms are shown as insets. Boosting and SP result in much sparser source distributions, 

and all the algorithms except SP perform comparably in estimating the TRF components, although the ridge TRF has a lot more activity that may make it 

difficult to interpret in realistic situations where the ground truth is unknown. (b). Algorithm comparison using the performance metrics, similar to those shown 

in the previous figure. EM-SP outperforms the others in most cases.   
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Interestingly, ridge performs marginally better than the other three algorithms. However, it is unclear if correlation is the most 274 

suitable metric for evaluating the accuracy of estimating TRF components. The correlation values were distributed over a large 275 

range across subjects, possibly indicating a high degree of inter-subject variability in neural SNR for time-locked responses. 276 

Ridge resulted in smooth TRFs with several peaks and large amounts of non-zero activity which made them more difficult to 277 

interpret, especially for the sensor and source space TRFs. Boosting, though performing worse in terms of correlation, allowed 278 

for sparser TRFs with fewer peaks that were easier to interpret.  279 

 280 
The two proposed algorithms were restricted to finding exactly three TRF components, assuming fixed component waveforms 281 

and latency windows. The fact that EM-SP may have performed worse than ridge for real data, even though it outperformed the 282 

others in the simulations, indicates that these assumptions may not be valid for all subjects. This could be due to a variety of 283 

reasons including missing components due to anatomical or functional differences, and large individual variability in TRF 284 

components latencies, waveforms and peak widths. Indeed, a separate simulation analysis (not shown) with missing components 285 

and mismatched latency windows resulted in similar performance for EM-SP, with it no longer outperforming ridge and 286 

boosting. In any case, conventional post-hoc analysis of TRF components estimated using established algorithms is also typically 287 

performed under similar assumptions to those used for EM-SP (i.e., detecting TRF peaks using similar latency windows). 288 

However, even with these constraints, EM-SP was often able to recover TRF components and spatial patterns comparable to 289 

ridge.  290 

 291 

IV. CONCLUSION 292 

The TRF framework provides a significant advancement over trial averaged responses to repetitive stimuli, and allows for 293 

experiments with more naturalistic speech paradigms. Detecting robust TRF components is essential for reliable single-subject 294 

 
Fig. 5. Performance comparison on real MEG data. (a) The estimated sensor, DSS and source localized TRFs are shown for a representative subject. The 

sensor topographies and source distributions at the large peak near 100 ms are shown as insets. The sensor space EM-SP TRF has clear components and 

topographies, while the boosting TRF has overly sparse topographies and the ridge TRF has a lot of hard to interpret activity. Boosting, ridge and EM-SP show 

clear components and spatial patterns for the DSS and source localized TRFs. (b) Correlation between the measured and predicted signals is shown as a measure 

of model fit. Violin plots across subjects are shown for each algorithm in ascending order of their mean from left to right.  
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investigations that could inform diagnosis and treatment of hearing disabilities and lead to improvements in biomedical 295 

applications such as smart hearing aids. 296 

We compared TRF algorithms using metrics of both model fit and component estimation accuracy. Results from simulations 297 

indicate that boosting and ridge are comparable for most cases. Interestingly, for real data, ridge typically had better model fits. 298 

However, in general, ridge TRFs displayed more spurious peak-like activity, while boosting TRFs were sparse and its peaks 299 

more interpretable. Therefore, ridge may be suitable for studies focused on prediction accuracy, while boosting may be more 300 

appropriate for detecting easily identifiable TRF components. In this work, we restricted our analysis of established methods to 301 

these two algorithms that are the most widely used. Other variations on regularized regression, such as Lasso and Elastic Net, 302 

may provide improvements in TRF estimation [11].  303 

SP and EM-SP performed exceptionally in simulations, but seemingly underperformed on real data, possibly due to invalid 304 

assumptions. The a-priori parameters (latency windows) may need to be tuned for each predictor type or experiment, or even for 305 

each subject 306 

Modern TRF analyses involve multiple types of predictors (e.g., envelopes and phoneme onsets). Boosting and banded ridge 307 

regression may be suitable for these studies [9], [12], [40], [41]. However, the component characteristics of TRFs to these 308 

higher-level predictors must be determined before our proposed algorithms can be applied.   309 

In conclusion, our results indicate that SP and EM-SP may only perform well under realistic assumptions, while ridge and 310 

boosting perform comparably in most cases, with ridge typically having higher prediction accuracies, but also more spurious 311 

activity.  312 
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