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 2

Abstract 25 

Phenotypic plasticity is the property of a given genotype to produce multiple phenotypes in 26 

response to changing environmental conditions. Understanding the genetic basis of 27 

phenotypic plasticity and establishing a predictive model is highly relevant for future 28 

agriculture under changing climate. Here, we report findings on the genetic basis of 29 

phenotypic plasticity for 23 complex traits using a maize diverse population, planted at five 30 

sites with distinct environmental conditions and genotyped with ~ 6.60 million SNPs. We 31 

found that altitude-related environmental factors were main drivers for across site variation in 32 

flowering time traits but not plant architecture and yield traits. For 23 traits, we detected 109 33 

QTLs, of which 29 was for mean, 66 was for plasticity, and 14 for both parameters, besides, 34 

80% of the QTLs were interreacted with the environment. The effects of several QTLs 35 

changed in magnitude or sign, driving variation in phenotype plasticity, and we further 36 

experimentally validated one plastic gene ZmTPS14.1 whose effect was likely mediated by 37 

the compensation effect of ZmSPL6 which was from the downstream pathway probably. By 38 

integrating genetic diversity, environmental variation, and their interaction in a joint model, 39 

we could provide site-specific predictions with increased accuracy by as much as 15.5%, 40 

3.8%, and 4.4% for DTT, PH, and EW, respectively. Overall, we revealed a complex genetic 41 

architecture involving multiallelic, pleiotropy, and genotype by environment interaction 42 

underlying maize complex trait mean and plasticity variation. Our study thus provided novel 43 

insights into the dynamic genetic architectures of agronomic traits in response to changing 44 

environments, paving a practical route to precision agriculture. 45 

 46 

Keywords: Complex traits, Phenotype plasticity, QTL by environment interaction, 47 
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Introduction  49 

Upon climate change, plants display plastic response, where a single genotype produces 50 

multiple phenotypes through changes in gene expression, physiological and morphological 51 

levels11,2. Such plastic response (phenotype plasticity) was also described as genotype by 52 

environment interaction (G-by-E)3-5, with organisms changing their performance across 53 

environments, releasing heritable variation6-9 that are highly relevant in complex trait 54 

variation and adaptation4,10-12. In the context of crop breeding, one strategy is to minimize 55 

plasticity or G-by-E interaction by using the best linear unbiased prediction value (BLUP), 56 

making developed cultivar broadly applicable to a wide range of environments13. 57 

Alternatively, performance could be maximized in individual environments by enriching site-58 

specific beneficial alleles that are either neutral or unfavourable at other sites12,14. This is 59 

similar to what natural selection have acted on wild populations, where local adaptation has 60 

resulted in genotypes with optimized phenotypes at their native environments that are often 61 

maladapted in new environments15-18.  62 

Increased plasticity may represent the future of crop breeding and biodiversity management 63 

in the light of climate change, as such strategy confers high resilience genotypes for future 64 

challenges while achieving optimal phenotype locally. To achieve this goal, efforts have been 65 

made to study the genetic architecture of plasticity 19-22 and dissect the underlying QTLs4,11,23-
66 

26. Studies in maize have revealed both similarity and difference in the genetic architectures 67 

of trait mean and plasticity24,25, suggesting breeders could manipulate trait mean and 68 

plasticity semi-independently to meet the challenge of feeding the growing population. 69 

Further investigations demonstrated the role of plastic QTLs in heterosis and adaptation from 70 

tropical to temperate zone, paving the way to genomic-promised crop improvement by 71 

manipulating the phenotypic plasticity27,28.  72 

Despite the insights gained through these efforts, several questions remain elusive. First, 73 

there is a lack of understanding of the dynamics of complex traits genetic architectures across 74 

environments, such as the impact of specific environmental factors on range-wide complex 75 

trait variation, how dynamic are the genetic architectures of agronomic traits over major 76 

production zone? What alleles are favoured at each production site? Whether they have 77 

genetic effects on multiple traits with antagonistic pleiotropy? How much genetic gain could 78 

be achieved by exploiting these alleles? 79 
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Second, in Fisher’s decomposition of phenotype mean, the environmental effect is a 80 

combinatory effect from multiple environmental factors, such as temperature, day length, and 81 

soil conditions, etc. With an increased ability to quantify air and soil conditions using 82 

developments in remote sensing, it is of great interest to decompose the combinatory 83 

environment effects into effects from concrete environmental factors and study their impact 84 

on complex trait variation and prediction. Last but not least, plasticity was often treated as a 85 

composite index19-22, neglecting the fact that plasticity is environment-dependent, being 86 

variable when quantified using different combinations of environments. With a growing 87 

number of environments that we could investigate, it is worthwhile to differentiate plasticity 88 

quantified using an overall index and refine plasticity measures from specific combinations 89 

of environments.  90 

To provide a deeper insight into these questions, we developed the Complete-diallel plus 91 

Unbalanced Breeding-derived Inter-Cross (CUBIC) population of 1404 advanced inter-cross 92 

lines from 24 representative breeding founders29 and studied the variation of 23 key 93 

agronomic traits at five sites spanning China’s major summer maize production zone (Fig. 94 

1A) from northeast at Jilin (JL; N 43° 42′, E 125°18′) to central plains at Henan (HN; N 35° 95 

27′, E 114° 01′). We revealed major contributions from the latitude-related environmental 96 

factors to across site phenotypic variation for flowering time traits but not for others. And we 97 

dissected the within and across environment variation to 109 QTLs with complex genetic 98 

architectures involving multiallelic, pleiotropy, and genotype by environment interaction. In 99 

particular, we found that extensive QTL by environment interaction and dynamic in mean 100 

QTL effects across environments was driving the variation in phenotype plasticity. A joint 101 

model with site-specific predictions and higher accuracy was developed by integrating 102 

genetic diversity, environmental variation, and their interaction, paving a way to genomics-103 

directed maize improvement.  104 

 105 

Results 106 

The impact of clinal variation in environmental factors on the mean and plasticity of 23 107 

maize complex traits  108 

We surveyed the performance of 23 traits across five sites spanning Chinese major summer 109 

maize production zone with longitudinal variation from E114° 01′ (Henan; HN) to E125° 18′ 110 

(Jilin; JL) and latitudinal variation from N 43° 42′ (JL) to N 35° 27′ (HN; Fig. 1A). Across 111 
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the five sites, daily highest temperature (TemH), daily temperature difference (TemD), and 112 

day length (DayL) varied significantly (Fig. 1B, C). Nearly all the traits (22 out of 23, except 113 

for Leaf number below ear, LNBE) were significantly correlated with latitude at the five sites, 114 

suggesting a general contribution from spatially variable environmental factors to maize 115 

agronomic trait variation (Fig. 1D-F; Figure S1; Table S1, S2). Flowering time traits (days to 116 

tassel DTT; days to silking, DTS; days to anthesis, DTA) displayed the strongest latitudinal 117 

variation with trait median measured at JL being ~1.5 times larger than that at HN (Figure S1; 118 

Table S2). Unlike flowering time, clinal variation in plant architecture traits (Plant height, PH; 119 

Ear height, EH; Ear leaf width, ELW) and yield traits were weaker, being more distinctive 120 

between the northern (JL, LN, and BJ) and southern (HB and HN) sites (Fig. 1B, C; Figure 121 

S1).  122 

To explore how the 23 traits responded to the across-site environmental perturbation, we first 123 

rank-transformed each trait measured at individual sites and quantified the phenotype 124 

plasticity as coefficient variation of rank (VarR) across the five sites. All the 23 traits 125 

displayed variation in phenotype plasticity (Fig. 1G), and yield traits were more plastic than 126 

flowering time and plant architecture traits. Contributions from environment (E) and 127 

genotype by environment interaction (G-by-E) varied significantly among the three 128 

categories of traits. For example, TemH was the major driver for (median = 84.2%) across-129 

site variation of flowering time traits (DTT, DTA, and DTS; Fig. 1I), while its contribution to 130 

the variation of remaining traits was much lower (Fig. 1I; media=9%). In contrast, G-by-E 131 

made a higher contribution (median = 32.8%; Fig. 1I) to the across site variation of yield 132 

traits, being consistent with the observation that the proportions of non-additive variance for 133 

yield traits were also higher than that for flowering and architecture traits (Fig. 1H). 134 

Altogether, these results illustrated a general contribution from environment factors (TmpD, 135 

TmpH, and DayL) and their interaction with genotype to the variation of maize complex 136 

traits, where the contribution from G-by-E was more prominent for yield traits, indicating the 137 

importance and potential value of studying plasticity for yield improvement.  138 
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 139 

Fig. 1 Environmental variation across China's major summer maize production zone 140 

and their impact on the across-site variation of maize complex traits. A) The five 141 

surveyed sites spanning China's major maize production zone, where 23 agronomic traits 142 

were phenotyped for 1404 inbred lines. B) Boxplot illustrating the highest daily temperature 143 

(TemH; coloured in cyan) and daily temperature difference (TemD; coloured in tomato) from 144 

sowing to flowering at the five sites. C) Boxplot of the day length (DayL) from sowing to 145 

flowering at the five sites. D) Boxplot of Days to tassel (DTT; coloured in tomato), E) Ear 146 

weight (EW; coloured in green) and F) Plant height (PH; coloured in cyan) measured at the 147 

five sites. G) Boxplot of the phenotype plasticity measured as a coefficient variation of the 148 

rank across s (Materials and Methods). The 23 traits (labelled in x-axis) were grouped into 3 149 

categories, flowering traits highlighted in tomato, plant architecture traits labelled in green 150 

and yield traits labelled in blue. H) Bar plot of the proportion of non-additive variance 151 

(differences between broad-sense heritability, capturing the additive and non-additive effect, 152 

and narrow-sense heritability, capturing only the additive effect). Each vertical bar represents 153 

a trait, and the height of the bar is proportional to the difference between corresponding broad 154 

and narrow-sense heritability. I) Contribution from genotype, the three environmental factors 155 

(TemH, TemD and DayL), and their interactions to the across-site variation of the 23 156 

agronomic traits. Each vertical bar represents a trait with the corresponding trait name 157 

labelled in x-axis. The coloured segments within each bar represent the contribution from G, 158 

TemD, TemH, DayL, and their interaction with G as indicated in the legend. The height of 159 

the segment is proportional to the variance explained (PVE) by the corresponding variance 160 

component. 161 

 162 
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Dynamic and complex genetic architecture underlying maize agronomic traits mean and 163 

plasticity 164 

For each of the 23 traits, we derived two types of measures to quantify the phenotype 165 

plasticity, where type I included 10 measures30,31 calculated as pairwise difference among 166 

five sites to capture specific plasticity (SP), and type II included 4 measures representing 167 

overall plasticity (OP): coefficient of variation from raw (CV) 30, rank transformed data 168 

(VarR) 30, second principal component (PC2) 30, and Finlay–Wilkinson regression (FWR) 32 169 

( Figure S2; Materials and Methods). Together with trait mean value from five sites (Mean) 170 

and BLUP, these four types of measures (SP, OP, Mean, and BLUP) were used to scan for 171 

QTLs underlying trait mean and plasticity, using genome-wide association analysis with 6.6 172 

M genetic polymorphisms (Materials and Methods). In the following section, we first 173 

illustrated the results from DTT as an example and then expanded to results from all 23 traits. 174 

Hereafter, the 4 types of measures were referred to as DTTBLUP, DTTx (mean measured at site 175 

X), SP-DTTx-y (Specific plasticity measured as DTTx-DTTy, X and Y was site name), and 176 

OP-DTTz (Overall plasticity calculated using method z, z was described in Materials and 177 

Methods). 178 

Loci associated with the variation of mean and plasticity measures for days to tassel – 179 

Dynamic QTL effects across environments lead to variation in plasticity 180 

A total of 15 QTLs were identified, including 11 QTLs for SP/OP-DTT and 7 QTLs for 181 

DTTmean/DTTBLUP with 3 overlaps (Fig. 2A-D, QTLs were obtained by grouping independent 182 

SNPs within defined physical distance, Materials and Methods; Table S3, S4, S5). A majority 183 

of the QTLs were detected for DTTmean and SP/OP-DTT, while only 2 QTLs were detected 184 

for DTTBLUP, highlighting the added value to analyse DTTmean and the derived plasticity 185 

measurements individually (Fig. 2B). By contrasting genetic effects of QTLs across sites, two 186 

types of QTLs, whose effects changed in magnitude or direction, were detected with 187 

significant contribution to the variation of DTT plasticity. For example, different genotypes 188 

of QTL8 (chromosome 5: 6,462,711 bp, Fig. 2A-C, E, 667.2 kb upstream of ZmPHYC2, 189 

GRMZM2G129889, a homology of Arabidopsis thaliana PHYC33) showed a significant 190 

phenotypic difference for DTTHN (P = 1.2 x 10-7; Fig. 2D) and the specific plasticity 191 

measures, calculated as the difference between HN to the other sites (e.g. DTTHN-BJ; P = 5.3 x 192 

10-8; Fig. 2E), but had no effect at the remaining DTT mean and plasticity measurements (Fig. 193 

2C-E), indicating changes in the magnitude of genetic effects contributed to the variation of 194 
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DTT plasticity. In contrast, QTL14 (chromosome 9: 35,126,793 bp, Fig. 2A-C, F, 508.5 kb 195 

upstream of CONZ1, GRMZM2G405368, a homology of Arabidopsis thaliana CO34), was 196 

exclusively detected for several DTT plasticity measurements but not for any of the DTTmean 197 

and DTTBLUP. The genetic effects of QTL14, however, changed direction from positive 198 

(DTTHN, Additive effect = 0.6 ± 0.2 days; P =1.7 x 10-3; Fig. 2F) to negative (DTTHN, 199 

Additive effect = -0.5 ± 0.2 days; P = 7.3 x 10-3; Fig. 2F), leading to significant association 200 

with specific plasticity, DTTHN-BJ (Additive effect = 1.1 ± 0.2 days; P = 6.3 x 10-12; Fig. 2D) 201 

and overall plasticity, DTTpc2 (P = 4.1x10-9),
 

The detection of such loci highlighted the 202 

increased power by analysing plasticity measurements.   203 

Altogether, these results indicated that changes in magnitude and/or signs of genetic effects 204 

across sites caused variation in plasticity, which could be detected by GWAS on SP and OP 205 

measurements. The changing genetic effects highlighted the role of QTL by environment 206 

interaction in the variation of complex trait mean and plasticity.  207 

 208 

Fig. 2 Summary of the QTLs associated with the mean and plasticity measures for days 209 

to tassel (DTT). A) Manhattan plots overlaying genome-wide association scan results for the 210 

20 mean and plasticity measurements for DTT. The black horizontal dashed line indicated the 211 

Bonferroni-corrected genome-wide significance threshold derived as 0.05/Me (Me is the 212 
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 9

effective number of independent SNPs; Materials and Methods), and the vertical dashed 213 

black lines indicate the position of detected QTLs, labelled from 1 to 15. B) Venn diagram 214 

illustrating the overlap of QTLs detected for the 4 types of DTT measurements. C) QTLs 215 

associated with the DTT means measured at five sites and the DTTBLUP (y-axis). Each dot 216 

represents a SNP and the size of the dot is proportional to its -Log10 p value as indicated in 217 

the legend on the right. Loci with p-value passed genome wide significance threshold were 218 

coloured in tomato. D) QTLs associated with the DTT plasticity measurements (labelled in 219 

the y-axis). E) and F) Genotype-to-phenotype maps, highlighting the increased power to 220 

detect additional loci by analysing plasticity measurements, for DTTHN, DTTBJ, DTTHN-BJ, 221 

and DTTpc2 at two QTLs, one at chromosome 5: 6,462,711 bp and a second one at 222 

chromosome 9: 35,126,793 bp.  223 

 224 

Loci associated with the variation of remaining traits– A complex genetic architecture 225 

involving multiallelic, pleiotropy, and genotype by environment interaction underlay maize 226 

complex trait variation 227 

For the 23 traits, we identified 109 QTLs for the 4 types of measurements (Fig. 3A; Figure S3; 228 

Table S3, S4, S6), which overlapped partially, with 1.8%, 34.9%, 19.3%, and 21.1% of the 229 

QTLs being unique to BLUP, SP, OP and Mean measurements, respectively (Fig. 3B). As 230 

has been illustrated in the previous section, QTLs associated with SP measurements likely 231 

changed their genetic effects in sign or direction (Fig. 2E, F). This was supported by testing 232 

the interaction between the detected QTLs and the five sites, where 80.0% of the QTLs were 233 

found to be significantly interacting with the sites (Table S7; Materials and methods). This 234 

demonstrated the dynamic genetic effects of mean QTLs across sites and highlighted partial 235 

overlap for QTLs regulating mean and plasticity as reported in the previous studies24,25,27. 236 

One QTL, spanning 540 kb from chromosome 5: 6,382,800 bp to 6,923,292 bp, involved 7 237 

statistically independent SNPs (Cluster 1 in Fig. 3A, C, QTL 8 in Fig. 2A) and was detected 238 

for multiple trait means and plasticity measures at HN. A detailed exploration showed that 239 

multiple haplotypes were underlying this region with each of the 7 SNPs tagging unique 240 

haplotype (Figure S4), suggesting that the 24 founders carried different functional variants. 241 

Moreover, each of the 7 SNPs was simultaneously associated with multiple trait means at HN, 242 

including flowering time (DTTHN and DTAHN), plant architecture trait (the ear leaf width, 243 

ELWHN), and multiple SP measurements (SP-DTT, SP-DTA, SP-DTS, SP-PH, SP-EW) at 244 

genome wide significance (Fig. 3C, D). Moderate association to the mean and plasticity 245 

measurements for yield and plant architecture traits were also found at a relaxed significance 246 

threshold (P = 6.0 x 10-6 for EWHN and P = 5.1 x 10-5 for PHHN; Fig. 3D), indicating this 247 

region was highly pleiotropic. Notably, the genetic effect of this QTL was unique to HN for 248 
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all the associated traits, where the “TT” genotype increased DTT, DTA, DTS and “CC” 249 

decreased ED, EW, ELW, and PH at HN but not at other sites, likely due to interaction with 250 

temperature (Especially TemD) rather than DayL (Fig. 3E; Figure S5), providing an ideal 251 

candidate for targeted breeding application at HN.  252 

 253 

Fig.3 Association results of both mean and plasticity for all the 23 traits. A) Manhattan 254 

plots of GWAS from all scans, with upper panel for means and lower panel for plasticity 255 

measurements. The red horizontal dashed lines indicate the Bonferroni-corrected genome-256 

wide significance threshold. The vertical dashed grey lines highlight the site of 32 SNPs 257 

associated with more than 2 measurements. B) Venn diagram illustrating the overlap of QTLs 258 

detected for the 4 types of measurements. C) A heatmap illustrating the p values of the 32 259 

SNPs detected for more than 2 measurements (Here, SNPs were used instead of QTLs, as one 260 

QTL sometimes includes multiple statistically independent SNPs that are physically close to 261 

each other). Each cell represents the -Log10 (p values) of a particular SNP (x-axis) associated 262 

with a specific trait (y-axis on the right). The outer index on the left side marks the mean (M, 263 

in black) or plasticity (P, in blue) of the traits. The inner index marks the corresponding trait 264 

types: plant architecture (AR; in purple), flowering time (FT; in olive-green), and yield (YD; 265 

in orange). For each trait, only the lowest p-values were indicated for either specific plasticity 266 

(SP) or overall plasticity (OP), labelled as SP-trait or OP-trait. D) The Additive effects varied 267 

across sites exampled for cluster 1 (chromosome 5:6 462 711 bp) on multiple traits. The traits 268 

were separated by the dashed vertical lines and labelled in x-axis, and for each trait the 269 

measurements for BLUP, individual sites were ordered (from left to right) as indicated in the 270 

colour legend (from top to bottom). Median and standard error were shown with the middle 271 

point and error bars. The corresponding GWAS p values were illustrated in the lower panel. 272 

E) The p-values testing the interaction between this SNP (chromosome 5:6 462 711 bp) and 273 

the 3 environmental factors. 274 
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 275 

A second cluster, spanning 7.4 Mb from chromosome 8: 123,042,682 bp to 130,423,169 bp, 276 

showed both allelic heterogeneity and pleiotropic effect on multiple flowering and plant 277 

architecture traits (Cluster 2 in Fig. 3A, C; Figure S6). However, their genetic effects were 278 

unique to the three northern sites (JL, LN, and BJ; Fig. 3C), except for LNBEHB. Compared 279 

with cluster 1, whose effects were unique to HN, such regional effects on multiple northern 280 

sites may have led to the detection of this QTL for multiple sites BLUP measurements. 281 

A third cluster (Cluster 3 in Fig. 3A, C) was found contributing exclusively to the variation of 282 

plasticity measurements for all the flowering time traits (DTT, DTA, and DTS) due to the 283 

change of additive effects from negative to positive (Fig. 2F).  284 

Altogether, these results illustrated a complex genetic architecture involving multiallelic, 285 

pleiotropy, and genotype by environment interaction underlying maize complex trait 286 

variation. The detection of QTL unique to HN and the three northern sites demonstrated a 287 

variable genetic architecture of maize complex traits across sites possibly due to clinal 288 

variation in QTL effects.  289 

 290 

The possible molecular basis of phenotype plasticity  291 

Previously, we linked ZmTPS14.1 (GRMZM2G068943, chromosome 8: 123,129,008 bp to 292 

123,140,283 bp) to variation of flowering time mean35, which was located inside the QTL on 293 

chromosome 8 (cluster 2 in Fig. 3, chromosome 8: 123,042,682 bp to 130,423,169 bp). Here, 294 

this QTL was simultaneously associated with mean and plasticity variation of multiple traits, 295 

including DTT, DTA, DTS, ATI, STI, SAI, LNAE, and LNBE at genome-wide (P =1.53 x 296 

10-8) or suggestive significance threshold (P =1.00 x10-5) and the tagging SNPs were 297 

interacting with all 3 environmental factors, suggesting a general contribution from QTL by 298 

environmental factor interaction to variation in phenotype plasticity.  299 

To experimentally validate and evaluate the plasticity effects of ZmTPS14.1, we planted the 300 

knock-out lines of ZmTPS14.1 obtained in a previous sudty35 in Jilin (JL, North China, N 43° 301 

30′, E 124° 49′) and Hainan (HaiN, South China, N 18° 34′, E 108° 43′) and compared the 302 

measured flowering time phenotypes. In consistent with the association results, the female 303 

flowering time (DTS) of knock-out lines was earlier in HaiN but not significantly changed in 304 

JL compared to wildtype lines (Fig. 4A; Figure S7A; Table S8). To further explore the 305 
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underlying molecular basis, we analysed an in-house time-course transcriptome dataset 306 

generated from reference accession B73 under long-day and short-day conditions (Fig. 4B). 307 

The expression of ZmTPS14.1 under both day-length conditions changed in the same 308 

direction along the time course (Fig. 4B), suggesting there was no day-length dependent 309 

expression response for ZmTPS14.1.  310 

As has been proposed that plastic response may involve developmental switch genes36, we 311 

explored whether plastic effects of genes at the center of the regulatory pathway were 312 

mediated or interacted with downstream genes. Therefore, we evaluated the expression of 313 

candidates downstream of ZmTPS14.1. ZmTPS14.1 encodes Trehalose-6-phosphate synthase 314 

(TPS), which converts glucose-6-phosphate into Trehalose-6-phosphate (T6P), regulating 315 

vegetative development and flowering by miR156/SPL pathway37. The expression of 316 

ZmSPL6 (GRMZM5G878561), an SPL family member downstream of ZmTPS14.1, showed a 317 

significant expression pattern difference in response to long/short day length (Fig. 4B). 318 

Meanwhile, the knock-out lines of ZmSPL6 showed earlier female flowering in JL but no 319 

significant change in HaiN compared to wildtype lines (Fig. 4A; Figure S7B; Table S8), 320 

suggesting day length was an important factor for the plastic effect of ZmSPL6. Thus, we 321 

proposed a compensation mechanism from ZmSPL6 to ZmTPS14.1 in DTS plasticity (Fig. 322 

4C). In the long-day condition, the continuous expression increase of ZmSPL6 could make up 323 

for the knockout effect of ZmTPS14.1, resulting in no phenotypic difference between the 324 

knock-out lines of ZmTPS14.1 and wildtype (Fig. 4A). But no such compensation appeared 325 

in the short-day condition, thus we observed the phenotype difference between knockout and 326 

wildtype lines of ZmTPS14.1 in the short-day condition (Fig. 4A, C). This compensation 327 

mechanism was also reflected in the CUBIC population (Fig. 4D). In the long-day condition 328 

(JL), ZmTPS14.1 (chromosome 8: 123,138,468 bp) showed significant association (P = 1.5 x 329 

10-2) with DTS in the TT allele background of ZmSPL6 (-), but not significant in GG allele 330 

background of ZmSPL6 (+). And in the short-day condition (HN), the significant association 331 

between ZmTPS14.1 and DTS was detected in both ZmSPL6 (-) (P = 8.9 x 10-5) or ZmSPL6 332 

(+) (P = 5.0 x 10-3) backgrounds (Fig. 4D).  333 
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 334 

Fig. 4 The interaction between ZmTPS14.1 and ZmSPL6 reveals the genetic basis of 335 

phenotype plasticity of flowering time. A) Phenotype (DTS; days to silking) of knock-out 336 

lines and wild type of ZmTPS14.1 and ZmSPL6 at two field plantations, one plantation at JL 337 

represents Jilin (N 43° 30′, E 124° 49′), and another one at HaiN represents Hainan (N 18° 338 

34′, E 108° 43′). Error bars represent standard deviation. ** indicate P values < 0.01 by 339 

Student’s t-test. “ns” means no significance. B) The sampling diagram of the time-course 340 

experiment in B73 under long-day (LD) and short-day (SD) conditions. The black area 341 

represents dark time and the dotted-line area represents light time. Leaf tissues were 342 

harvested at three time points (9:00, 3 hours of light; 12:00, 6 hours of light; 15:00, 9 hours of 343 

light/ 1 hour of dark). The expression pattern of ZmTPS14.1 and ZmSPL6 at three time points 344 

under the long-day condition (LD, blue) and the short-day condition (SD, red) were shown. 345 

The y-axis represents gene expression, which was obtained from standardization of raw reads 346 

counts then z-score normalization. Error bars represent standard error. C) The proposed 347 

compensation interaction model between ZmSPL6 and ZmTPS14.1. ZmSPL6 expressed 348 

highly in the long-day condition which could promote female flowering but its expression 349 

suppressed in the short-day condition (SD) showed no effect for flowering. And the knockout 350 

lines of ZmTPS14.1 showed the flowering time difference in the short-day condition, but not 351 

in the long-day condition because of the compensation effect of ZmSPL6. D) The phenotype 352 

(DTS in JL and HN) comparison between two alleles of ZmTPS14.1 (chromosome 8: 353 

123,138,468 bp; C/C genotype → +; T/T genotype → -) in the different allele background of 354 

ZmSPL6 in LD (JL) and SD (HN) conditions (chromosome 3: 159,420,596 bp; G/G genotype 355 

→ +; T/T genotype → -). P-values were obtained by Student’s t-test. 356 

 357 

Accounting for dynamics in genetic architecture improved complex traits prediction across 358 

environments 359 

We evaluated the potential of integrating genetic diversity, environmental variation, and their 360 

interaction in complex trait prediction by jointly modelling genotype, environment, and their 361 

interaction (referred to as GEAI model, Materials and Methods). Two cross-validation 362 

schemes were considered. In the first case, we explored the predictability on untested lines at 363 
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any of the five sites by using all the lines phenotyped at the five sites using 5-fold cross-364 

validation. Compared with the GBLUP, with a universal prediction for all sites, our model 365 

not only provided site-specific predictions but also increased prediction accuracy for a 366 

majority of traits and sites (83.0% of all traits and sites; Table S9, Materials and methods). 367 

The averaged prediction accuracy for DTT, PH and EW increased by 5.3%, 1.2%, and 1.8%, 368 

respectively, and the increase in prediction accuracy was more pronounced at HN (increased 369 

by 15.5%, 3.8%, and 4.4% for DTT, PH, and EW, respectively, Fig. 5A-C). 370 

In the second case, we explored a serial of more challenging designs, in which only a core set 371 

of lines (10%- 70%) were phenotyped across five sites and the interest was to predict the 372 

performance of unphenotyped lines at each site. It was very encouraging to see that our GEAI 373 

model showed higher accuracy for almost all the traits and sites. For example, at 10% overlap, 374 

our GEAI model outperformed GBLUP predictions (P = 4.0 x10-3) by 3.2% on average and 375 

increased the prediction accuracy at four out of five sites by 1.0%-12.7% for DTT, and the 376 

averaged accuracy was increased to 4.6%. At 70% overlap, the increase in accuracy at each 377 

site was larger than at 10% overlap (1.5%-13.5%; Fig. 5D-I). As the number of lines 378 

phenotyped at all sites increased from 10% to 70%, both the averaged accuracies and site-379 

specific accuracies increased (Figure S8). Overall, our study highlighted the potential of 380 

intergrading QTL by environment interaction in understanding complex traits variation and 381 

predictions.  382 
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 383 

Fig. 5 Performance of GEAI model in site-specific complex trait prediction. A) 384 

Predictability of untested lines at any of the five sites by using all the lines phenotyped across 385 

the five sites as training data for A) DTT, B) EW, and C) PH.  Prediction accuracy for 386 

untested lines at any of the five sites for D) DTT, E) EW, and F) PH when 10% of the lines 387 

were phenotyped at all five sites and remaining lines were only phenotyped at one of the five 388 

sites. Prediction accuracy for G) DTT, H) EW, and I) PH when 70% of the lines were 389 

phenotyped at all five sites and the remaining lines were only phenotyped at one of the five 390 

sites. 391 

 392 

Discussion 393 

Here, by surveying the performance of a genetically diversified population across China’s 394 

summer maize major production zone, we were able to quantify contributions from specific 395 

environmental factors to the variation of 23 complex traits, detect plastic QTLs, and provide 396 

site-specific complex traits prediction model with higher accuracy.  397 

Contribution from environmental factors to maize complex traits mean variation and 398 

plasticity variation 399 

Plants time their vegetative and reproductive growth in response to changes in seasonal cues, 400 

such as winter temperatures (vernalization) and day length (photoperiod)38. Although many 401 
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studies have emphasized the importance of photoperiod to flowering time regulation, the 402 

temperature is a key determinant of flowering time39-41, and significantly stronger 403 

correlations between seasonal transcriptome and temperature than those with day length42 404 

were reported. In consistent with these reports, we found that TemH had a considerable high 405 

contribution to the across-environment variation of flowering traits, while very little 406 

contribution from TemD, DayL, G-by-TemH, or G-by-DayL were found. In contrast, yield 407 

traits were influenced by a combination of TemH, TemD, DayL, and their interactions with 408 

genotype. A possible explanation is that both photosynthesis and respiration losses, mainly 409 

determining the crop yields, are sensitive to temperature and day length43, and previous 410 

studies have shown that temperature and day length could also affect days to maturity, rate of 411 

yield accumulation, and harvest index44. 412 

Unfortunately, soil conditions, such as pH, soil temperature, water, and nutation content were 413 

not available in our study, limiting our ability to provide broader insight into the impact of 414 

specific environmental factors on complex trait variation. The genotype to filed (G2F) Maize 415 

project45, one of the ongoing efforts aiming at compensatively surveying the environmental 416 

factors and performance of diversified population across a large number of field plantations, 417 

would be of great importance to characterise the role of specific soil factors on complex traits 418 

variation.  419 

Here, we quantified phenotype plasticity as a response to changes between particular 420 

environment sites and across all five sites, resulting in multiple plasticity measures for the 421 

same genotype. Despite a high overall correlation among these plasticity measurements, 422 

different QTLs were detected, indicating that these measures captured different aspects of 423 

plasticity with complementary information. Such differences in quantifying phenotype 424 

plasticity may be highly relevant in applications where the testing site and targeted site are 425 

clearly defined. In particular, when the mechanism of environmental factors interacting with 426 

the plastic QTL is known, an accurate prediction could be made on germplasm performances 427 

under various deployment environments at the GenBank level, facilitating precise breeding 428 

designs in the future.  429 

Among the 23 traits, yield traits were more plastic than other traits and involved larger 430 

contributions from both temperature and day length, as well as a larger proportion of G-by-E 431 

interaction. A similar result has been reported in D’Andrea et al (2013)46. A possible 432 

explanation could be that yield traits were the results of combined effects from vegetative and 433 

reproductive growth with demonstrated contribution from both temperature and 434 
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photoperiod43,44 that likely to be equally important, while flowering time was predominantly 435 

regulated by temperature42 with a relatively smaller contribution from photoperiod. Future 436 

studies are required to explore how differences in genetic architecture among traits cause 437 

such differences in phenotypic plasticity.  438 

The genetic architectures underlying trait mean and plasticity  439 

In consistent with previous studies25,47, we found partial overlaps between QTLs associated 440 

with trait mean and plasticity. However, our interpretation is that when treating phenotype 441 

plasticity as a measure of change for one polygenic trait across environments, such overlap is 442 

expected. Besides this, we also expect that i) plasticity is polygenic as a result of the 443 

polygenic architecture for the trait itself at different environments, ii) the degree of overlap 444 

between QTLs underlying trait mean and plasticity may vary across studies due to detection 445 

power, and iii) QTLs with altered genetic effect among environments are more likely to 446 

impact the variability of plasticity. Taking DTT as an example, we detected 7 loci for DTT 447 

mean and 9 loci for DTT plasticity with four loci overlapping. The magnitude change 448 

(chromosome 5: 6,462,711 bp) or the sign change (chromosome 9: 35,126,793 bp) of QTL 449 

effects resulted in variability in DTT plasticity, providing support for the allelic sensitivity 450 

model48. Even though we did not detect the chromosome 9 QTL in DTT mean scan at a 451 

genome-wide significance, a moderate association was found at a lower significance 452 

threshold. In line with this, when aggregating the allelic effects of mean or plasticity QTLs 453 

not detectable at genome-wide significance, we found, as a group, they were significantly 454 

contributing to the variation of both mean and plasticity measurements (Figure S9, Table 455 

S10). Given the polygenic and dynamic genetic architecture of trait mean across 456 

environments reported here and in previous research30,49, there might be a tighter connection 457 

between the genetic regulation of trait mean and plastic than we have previously 458 

acknowledged.  459 

Plasticity QTL may have been subjected to directional selection during the breeding 460 

program 461 

Previous studies showed that the highly selected region during maize adaptation to temperate 462 

climate explained less G-by-E variation than the selected region12 and the allele frequency of 463 

plasticity QTLs were changed between temperate and tropical lines27, suggesting that 464 

directional selection may have shaped their genetic diversity. Here, we explored whether the 465 

93 plasticity QTLs were selected during intense artificial selection by evaluating their allele 466 

frequency changes using two collections of breeding materials, one collection from China 467 
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that has predominantly been deployed in the 1960s, 1980s, and early 2000s, and a second 468 

collection from US before and after 200350. We found that the allelic frequencies of 42 (45%) 469 

plasticity QTLs consistently changed from 1960s to 1980s and from 1980s to early 2000 in 470 

Chinese collection, and before and after 2003 in US collection (Figure S10). Such an 471 

agreement indicates that it is likely that these plastic QTLs were subjected to selection rather 472 

than genetic drift. However, many plastic QTLs, found here or in earlier researches24,25, were 473 

also contributing to the trait mean, further studies would be required to explore whether such 474 

changes are results of directional selection or simply consequences of selection on the trait 475 

mean that is correlated with the plasticity.  476 

Fine mapping the QTLs and the molecular basis of variation in phenotype plasticity 477 

We found that a few QTL peaks, such as the QTL on chromosome 5: 6-7 Mb (Fig. 3A; 478 

Figure S4) and chromosome 8: 123-130 Mb (Fig. 3A; Figure S6) simultaneously associated 479 

with multiple traits means and plasticity measurements, possibly being a consequence of 480 

extended linkage disequilibrium (LD). Fine mapping the causal variants underlying each trait 481 

mean and plasticity QTL and distinguishing whether these signals were tagging one common 482 

signal simultaneously associated with multiple trait means and plasticity measures or they 483 

were multiple variants each associated with one measure but in tight LD with each other is a 484 

daunting task. Even though detailed analysis (Supplementary note) showed that a large 485 

proportion of the SNPs were tagging the same causal variants (Figure S4, S6), there seemed 486 

to be multiple independent association signals underlying the same QTL (Figure S4, S6) for a 487 

few mean or plasticity measures. For example, a detailed exploration on the chromosome 5 488 

QTL showed that multiple statistical independent SNPs were tagging different combinations 489 

of multiple functional haplotypes (Figure S4), illustrating a complex genetic architecture 490 

involving allelic heterogeneity, multi-allelic, pleiotropy, and genotype by environment 491 

interaction at the same time. To pinpoint the causal genes in presence of such complexity, we 492 

applied gene-based test51 aggregating summary statistics on SNPs up/down stream of the 493 

annotated protein-coding genes, and detected 300 genes (Table S11), among which 24% were 494 

simultaneously associated with both mean and plasticity measurements (106 for mean, 122 495 

for plasticity, 72 for both). Among these genes, the maize FT gene ZCN8 was detected in 496 

both means and plasticity of flowering traits, while ZCN18 was only associated with STI 497 

plasticity52. A benzoxazinone synthesis gene cluster including bx1/2/3/8 on chromosome 4 498 

was detected with association to the mean of ELW. Similar conditional effects also had been 499 

found in mutant and overexpression of multiple flowering genes in Arabidopsis, such as 500 
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PRR3 in circadian clock53, PIF4 in ambient temperature pathway54, and HXK1 in sugar 501 

pathway55. Although future experimental validations are required to validate the biological 502 

mechanism undying such variation, the validation of two candidate genes in our study 503 

suggests that the effect of genes on complex traits may in general be context-dependent.  504 

Conclusion 505 

In summary, we showed that the genetic architectures of maize agronomic traits were 506 

dynamic across China’s major summer maize production zone with the genetic effects of 507 

many QTLs being either local or regional due to interaction with environmental factors, 508 

leading to changes in additive genetic variance, narrow sense heritability and variation in 509 

phenotype plasticity. The dynamic allelic effects of plasticity QTLs enable us to develop a 510 

GEAI complex trait prediction model with site-specific predictions and higher accuracy, 511 

opening a new possibility for future crop improvement. Our study thus provided novel 512 

insights into the dynamic genetic architectures of agronomic traits in response to changing 513 

climate and provided a GEAI model with site-specific prediction, paving a practical route to 514 

precision agriculture. 515 

 516 

Materials and methods 517 

Experimental design 518 

We developed a Complete-diallel plus Unbalanced Breeding-derived Inter-Cross (CUBIC) 519 

population of 1404 maize inbred lines and surveyed their performance for 23 agronomic traits 520 

at five sites in China’s major maize production zone with longitudinal variation from E 114° 521 

01′ at Henan (HN) to E 125° 18′ at Jilin (JL) and latitudinal variation from N 43° 42′ at HN to 522 

N 35° 27′ at HN. A detailed description of the development of this population was available 523 

in Liu et al29. Briefly, these inbred lines were derived from 24 elites representing 4 divergent 524 

heterotic groups with cycles of random mating, selection, and inbreeding29. In 2014, all 525 

inbred lines, each with five replicates, were planted at five sites, including Jilin Province (JL, 526 

N 43° 42′, E 125° 18′), Liaoning Province (LN; N 42° 03′, E 123° 33′), Beijing (BJ; N 40° 527 

10′, E 116° 21′), Hebei Province (HB, N 38° 39′, E 115° 51′) and Henan Province (HN; N 35° 528 

27′, E 114° 01′). Twenty-three agronomic traits, including 6 phonology traits, 8 plant 529 

architecture traits, and 9 yield traits were phenotypically evaluated. Except for six flowering 530 

traits that were scored as the median values of replicated lines, all the remaining traits were 531 

scored as the means among replicates (Table S12). Three environmental variables, including 532 
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daily highest temperature (TemH), daily temperature difference (TemD), and day length 533 

(DayL), were extracted from local weather stations 534 

(http://data.sheshiyuanyi.com/WeatherData/). All the 1404 lines were re-sequenced and 535 

called genotypes were available for download from Liu et al29. Totally 6.6 M SNPs with 536 

MAF > 0.03 and LD =< 0.9 in 100 kb sliding window were retained for downstream analysis.   537 

Partition the phenotypic variance into contributions from genotype, environment factors, 538 

and their interactions 539 

The phenotypic variance was partitioned into contributions from genotype (G), genotype-by-540 

environment (G-by-E), and residual (environment; E) by fitting the following model: 541 

y��� � u � ��� � TemH� � TemD� � DayL� � ��� � TemH� � ��� � TemD� � ��� � DayL� � ���   (1) 542 

This model was fitted for each of the 23 traits one at a time. y��� is the trait mean/median of 543 

individual i (i= 1…n, n = 1404 is the number of individuals) at site j (j = 1…q; q=5, 544 

corresponds to the number of sites); idi is the line id (genotype) coded as factor; 545 

TemH� , TemD�  and DayL� are three environmental variables representing the daily highest 546 

temperature, daily temperature difference, and day length at site j, respectively. These 547 

environmental factors were coded as numeric, assuming a linear relationship with the 548 

phenotypic measurements. ���* TemH� , ���* TemD�, and ���* DayL� are the interaction terms 549 

(G-by-E) between a particular line (genotype) and the corresponding environmental factors 550 

(environment). The relative contributions to the total phenotypic variance from G and G-by-E 551 

were estimated by their respective sum of squares (Sum of Square for id is calculated as 552 

∑ ���� � ��� �
�
�

2 and Sum of Square for the interaction terms id� � are calculated as ∑ ���� ��
�553 

E� � ��� � E	����������
2), where E stands for TemH, TemD, and DayL. 554 

Estimating the narrow-sense heritability, additive variance, and genetic correlations 555 

A linear model was used to estimate the narrow-sense heritability for all the 23 traits 556 

measured at each of the five sites.  557 

�� � μ � Zu � e  (2) 558 

Here, �� is a vector of trait mean/median of each individual (genotype) at each tested site. e is 559 

the normally distributed residual. μ is a column vector of 1’s to represent the population 560 

mean, and u is a random effect vector of the breeding values for the 1404 individuals. Z is the 561 

corresponding design matrix obtained from a Cholesky decomposition of the kinship matrix 562 

G, estimated using the genome-wide markers using GCTA56. The Z matrix satisfies ZZ'=G, 563 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.18.476828doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.18.476828


 21

therefore, that is normally distributed (u~N (0, I�

�)). e is the residual variance with e ~ N (0, 564 

���
� ). The narrow-sense heritability of fitted phenotype was calculated as the intraclass 565 

correlation h2 = �

�/(�


�+ ��
�). AI-REML implemented in GCTA was used to obtain these 566 

estimates56. The additive genetic variance was then estimated as the variance of Y (Var) 567 

times h2.  568 

Similarly, a bivariant mixed model was fitted to obtain estimates of the genetic correlation 569 

between measurements obtained from two individual sites. Ten models were thus fitted to 570 

obtain all the pairwise genetic correlations among five sites. ��, μ and u from the model (2) 571 

were updated to an n×2 matrix, with n being the number of individuals and each column 572 

vector representing measurement obtained from a particular site. This model was fitted using 573 

the reml-bivar module57 implemented in the GCTA software56 and details of this model were 574 

available in Lee et al57. 575 

Quantification of the phenotypic plasticity for the 23 agronomic traits 576 

Since all the 1404 maize lines were phenotyped for 23 agronomic traits across five sites, we 577 

quantified and studied the genetics of maize complex trait plasticity in response to 578 

longitudinal and latitudinal environmental variation. Here, the phenotypic plasticity was 579 

classified into two categories (Figure S2B-E). The first category is overall plasticity 580 

describing plasticity across all the studied environments, while the second category-specific 581 

plasticity is more unique to certain pairs of sites, which only captures the plasticity across 582 

two environments. The motivation underlying such classification is that some individuals are 583 

more robust across most of the studied sites except only one or a few sites, while other 584 

individuals are plastic among most of the sites.  585 

One metric, pairwise difference in phenotypic value between two sites, was used to quantify 586 

the specific plasticity (Figure S2A). Using DTT measured at JL and HN as an example, the 587 

differences in measured DTT values for all individuals (��  ���
�����= DTTJL -DTTHN) would 588 

describe the specific plasticity between HN and BJ (Figure S2B)31. In addition, four 589 

additional approaches were used to quantify the overall plasticity (Figure S2C-E). First, the 590 

principal component analysis (PCA) was used to quantify the overall plasticity. The influence 591 

of the phenotype measures at individual sites on the principal components (PCs) can be 592 

captured in the loadings58 (Figure S2C). As the second PC (PC2) captures more variation in 593 

overall plasticity, we consider PC2 as a measure for overall phenotypic plasticity. Second, the 594 

across environment variance (VAR) of the rank transformed phenotype proposed in Vanous 595 
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et al., 2019 was used (Figure S2D), and the coefficient of variance (CV) 7 was also used to 596 

account for the mean difference. The fourth score for the overall plasticity (FWR) applies 597 

Finlay–Wilkinson Regression32,59 to partition the phenotype into two components, one is 598 

constant across environments and another responds dynamically to environmental changes. 599 

Using the linear mixed model, the phenotype of each line is partitioned into these two 600 

components and the plasticity component is used as a measurement of plasticity. In total, the 601 

described approaches resulted in 14 measurements of phenotypic plasticity (abbreviated as 602 

DIFF, PCA, VarR, CV, and FWR). Altogether, these three metrics yield 14 plasticity 603 

measurements for each trait. 604 

Genome-wide association analysis for the trait mean/median and plasticity measurements 605 

To detect genetic polymorphisms underlying variation of agronomic trait mean and plasticity, 606 

we fitted the following linear mixed model: 607 

Y= ! + Xβ + Zu + e (3) 608 

where Y, !, Z, u, and e are the same as has been defined in the model (1). X is a matrix 609 

containing the genotype of the tested SNP (coded as 0/2 for minor/major-allele homozygous 610 

genotypes, respectively). β is a vector including the estimated additive allele-substitution 611 

effect for the tested SNP. First, a genome-wide analysis (GWA) across all genotyped SNPs 612 

was conducted using GEMMA60. A subsequent conditional analysis was performed where all 613 

the top associated SNPs (the SNPs with the highest P value from each association QTL from 614 

the initial GWA scan) were included as covariates in the design matrix X to screen for 615 

additional association signals. This conditional analysis was repeated until no more SNPs 616 

were above the significance threshold. This conditional analysis was implemented in cojo 617 

module from GCTA61. The linkage disequilibrium (LD) was high in this population, making 618 

Bonferroni correction assuming all tested markers were statistically independent too 619 

conservative. Therefore, we estimated the effective number of independent markers (Me)62 620 

and derived a less conservative genome-wide significance threshold following 0.05/Me (1.53 621 

x 10-8 equivalent to -Log10
p = 7.81). 622 

Colonization test separates linkage from pleiotropy at regions where multiple signals were 623 

associated with multiple traits 624 

At the same genomic region, multiple association signals, each associated with one or 625 

multiple traits, were colocalized. Since the level of LD between the lead SNPs is very low, 626 

we could not directly tell whether multiple independent signals, detected in multiple scans 627 
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and physically close to each other, are from one association signal simultaneously associated 628 

with multiple scans (pleiotropy), or multiple associations each associated with one scan but in 629 

tight LD with each other. To distinguish this, we performed a multi-trait colocalization 630 

analysis (Supplementary note). This method estimates a posterior probability of whether 631 

multiple traits are sharing a common causal variant using summaries statistics from each 632 

trait63,64. We first binned the genome into 1 Mb bins. Scans with independent SNPs that fall 633 

into consecutive bins were aggregated and tested for colocalization using the hyprcoloc R 634 

package63,64. Given the complex population history (multi-parental) and a limited number of 635 

recombinations, some of the statistically independent SNPs were very close to each other. To 636 

make a comparison among the 4 types of measurements, we arbitrarily grouped SNPs less 637 

than 1Mb to a single QTL.    638 

Gene-based test to prioritise candidate genes 639 

The LD was too extensive to directly pinpoint the genes underlying the associated loci. We, 640 

therefore, applied a set-based analysis that aggregates summary statistics from all the variants 641 

50 kb up/downstream of the tested gene to obtain one p value to represent the significance of 642 

a particular gene. The summary association statistics, including effect sizes, standard errors, 643 

minor allele frequencies, and sample size, were first extracted from the GEMMA association 644 

output, and subsequently inputted to fastBAT module in GCTA65. And 39,155 genes, 645 

annotated in the B73 reference genome version 3 were used to bin the summary statistics to 646 

perform the set analysis51. 647 

Testing for genotype by environment interaction of detected QTLs 648 

We tested the interaction between QTLs associated with each of the 23 traits in at least one of 649 

the five sites, one QTL and one trait at a time. This was done by fitting the model below:  650 

y��� � u � ��� � site� � ���� � ���   (4) 651 

y��� � u � ��� � site� � ���� � site� � ���   (5) 652 

This model was fitted for each of the 23 traits one at a time. y��� is the trait mean/median of 653 

individual i (i= 1…n, n = 1404, number of individuals) at site j (j = 1...q; q=5, corresponds to 654 

the number of sites); idi is the line id (genotype) coded as a factor;  sitej is a vector of 655 

characters representing the site where the measurements were made. ����  is the genotype of 656 

idi  at the testing QTL, and ���� � site� is the interaction terms (G-by-E) between a particular 657 

QTL and the sites (environments). A likelihood ratio test comparing the model with (Model 4) 658 
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and without (Model 5) the interaction between sites was performed to calculate p values. The 659 

significance threshold was derived as 0.05 dividing the number of tests (0.05/143= 3.49x10-
660 

04). 661 

Experimental validation of maize flowering genes 662 

Knock-out lines of ZmTPS14.1 and ZmSPL6 were generated using a high-throughput 663 

genome-editing system35. In brief, line-specific sgRNAs were filtered based on assembled 664 

pseudo-genome of the receptor KN5585. The Double sgRNAs pool (DSP) approach was used 665 

to construct vectors. The vectors were transformed into the receptor KN5585. The genotype 666 

of gene-editing lines was identified by PCR amplification and Sanger sequencing using 667 

target-specific primers (Table S13). The phenotype of knock-out lines and wild type were 668 

investigated in Jilin (Gongzhuling, Jilin province, N 43° 30′, E 124° 49′) and Hainan (Sanya, 669 

Hainan Province, N 18° 34′, E 108° 43′).  670 

Time-course transcriptome  671 

B73 seeds were planted at two conditions, long-day condition (14 hours light and 10 hours 672 

dark) and short-day condition (8 hours light and 16 hours dark). Leaf tissues were harvested 673 

at 3 time points in one day at stage V4 (Vegetative 4, four fully extended leaves). Eighteen 674 

samples (2 conditions × 3 time points × 3 replicates) were RNA-sequenced by Hiseq3000. 675 

Low-quality reads were filtered out by trimmomatic66. STAR67 was used to align the RNA-676 

seq reads to the reference genome. HTSeq68 was used to obtain gene-level counts from the 677 

resulting BAM files. Genes with significant expression changes were detected by 678 

ImpulseDE269.  679 

Estimating the contribution from mean and plasticity QTLs to the variation of mean and 680 

plasticity measurements 681 

We quantified the contribution from mean and plasticity QTLs to the variation of trait mean 682 

and plasticity by fitting the following models. 683 

Y � #�β� � #�β� � Zu �  e (6) 684 

Here, Y is a vector of length n (n =1404), representing the trait mean or plasticity 685 

measurement. The joint contributions from mean and plasticity QTLs were modelled in #�β� 686 

and #�β� where X1 and X2 are the design matrixes β�  and β� are the corresponding effect 687 

sizes. Z, u and e is the same as defined in model 3. Contributions from mean and plasticity 688 

QTL were then calculated with Varm =
���������

������
 and Varp = 

���������

������
. 689 
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Forecasting the site-specific performance of the 23 traits 690 

We fitted the following model to predict the performance of each site for the 23 traits one at a 691 

time.  692 

Y � #�β� � Zu � e (7) 693 

Y � #�β� � Zu � e (8) 694 

Here, Y is a vector of length n*p (n =1404, the number of individuals; p = 5, the number of 695 

sites; n*p = 7020), representing the trait means measured at five sites. u is a vector of length 696 

n*p, representing the breeding value of the n maize line, and e is the randomly distributed 697 

residual with length n*p. The Z matrix satisfies ZZ'=G % �, where G is the identity by state 698 

(IBS) matrix and I is a diagonal matrix of pxp. #� is a design matrix with one column of 1 699 

representing column mean and additional 4 columns representing the environmental effects 700 

from the remaining 4 sites, and β� is a vector of corresponding effect sizes. #� includes all 701 

the columns from #� and additional columns with genotypes of the k QTL associated with 702 

the mean and plasticity measures of the tested trait, and additional columns representing the 703 

interaction between the k QTL and the five sites, capturing the effects from QTL by 704 

environment factor interaction. The fitted values from model 7 were referred to as GBLUP 705 

predictions while the fitted values from model 8 were referred to as GEAI predictions. These 706 

models were fitted using rrBLUP70 package in R (https://www.R-project.org/). In the first 707 

case, we evaluated the predictability on untested lines at any of the five sites by using all the 708 

lines phenotyped across the five sites using 5-fold cross-validation. Each time, 80% of the 709 

lines were randomly sampled and used to predict the remaining 20% lines. In the second 710 

case, we simulated a serial of more challenging breeding designs, in which only a core set of 711 

lines (10% - 70%) were phenotyped across five sites and the interest was to predict the 712 

performance of unphenotyped lines at each site. Each time, a core set of lines were randomly 713 

sampled and the remaining lines were divided into 4 sets and were randomly assigned to one 714 

of the remaining 4 sites, whose phenotypes were masked as NA and unassigned 715 

environments. Accuracies were estimated as the regression r2 between measured and 716 

predicted phenotypes. 717 

 718 

Supplementary materials 719 

Figure S1-S10, Table S1-S13, and note were available in supplementary files 720 
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