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Abstract 

Sounds enhance the detection of visual stimuli while concurrently biasing an 

observer’s decisions. To investigate the neural mechanisms that underlie such 

multisensory interactions, we decoded time-resolved signal detection theory 

(SDT) sensitivity and criterion parameters from neural activity using 

magnetoencalography, while participants performed a visual detection task. 

Using temporal generalization analysis, we found that sounds improve visual 

detection by enhancing the maintenance of the most informative perceptual 

samples over time. In parallel, criterion decoding analyses revealed that sounds 

evoke patterns of activity that resembled the patterns evoked by an actual visual 

stimulus. These two complementary mechanisms of audiovisual interaction 

differed in terms of their automaticity: Whereas the sound-induced enhancement 

in visual information maintenance depended on participants being actively 

engaged in a detection task, sounds evoked visual activity patterns in the visual 

cortex in a bottom-up fashion, challenging the classical assumption that sound-

induced reductions in criterion correspond to decision-level biases.  
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Introduction 

Although humans largely rely on vision in order to monitor the environment 

(Colavita, 1974; Posner et al., 1976), our brain has learnt that sensory signals 

from external events are often correlated across sensory modalities and should 

be optimally integrated (Ernst & Banks, 2002; Rohe & Noppeney, 2015). 

Conveniently, the human brain has adapted to a multisensory environment and in 

the last years multiple studies have revealed that regions classically considered 

as visual areas are tuned to sensory information conveyed by both visual and 

auditory signals (Deneux et al., 2019; Garner & Keller, 2021; Ibrahim et al., 2016; 

Murray et al., 2016). These results suggest that the processing of visual 

information might be already modulated by auditory inputs at the earliest 

perceptual stages (Driver & Noesselt, 2008). In visual detection, previous 

behavioral research has shown that synchronizing a sound with a visual stimulus 

improves the detection threshold of the latter. This phenomenon, termed as the 

sound induced visual enhancement, has been described using the Signal 

Detection Theory framework (Green & Swets, 1966) in multiple psychophysical 

studies (Fiebelkorn, Foxe, Butler, & Molholm, 2011; Frassinetti et al., 2002; 

Lippert et al., 2007). While task-irrelevant sounds improve participants visual 

sensitivity (d’) to discriminate signal from noise, they also increase the proportion 

of reported false alarms, leading to a reduction in the criterion parameter (c) 

(Frassinetti et al., 2002; Lippert et al., 2007; Lovelace et al., 2003; Odgaard et al., 

2003; Pérez-Bellido et al., 2013). However, although the behavioral 

consequences of sounds on visual detection have been well characterized, we 
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still lack a good description which specific neural mechanisms underly such 

multisensory perceptual decision-making biases in detection.  

Most of previous neuroimaging research has focused on understanding how 

sounds enhance visual sensitivity. Nowadays, it is widely accepted that sounds 

modulate the processing of visual signals at early perceptual stages through 

sensory level interaction of audiovisual inputs (Giard & Peronnet, 1999; Mercier 

& Cappe, 2020; Meredith & Stein, 1983; Murray et al., 2016; van Atteveldt et al., 

2014a). Yet, more recent studies tackling similar questions from a perceptual 

decision-making perspective (Franzen et al., 2020; Kayser et al., 2017) have 

characterized the effect of sounds on visual discrimination as a late 

enhancement in the transformation of sensory input into accumulated decisional 

evidence. Therefore, how specifically and to which extent sounds enhance visual 

sensitivity at early (i.e. sensory), late (i.e. decision) or both (Mercier & Cappe, 

2020) perceptual stages remains under debate.  

An equally relevant question that has received much less attention in perceptual 

neuroscience is how sounds induce changes in visual detection criterion. 

Although SDT criterion variations have been typically associated to decision level 

response biases, some perceptual illusions that affect perceptual accuracy often 

manifest in a shifted criterion parameter (J. Witt et al., 2012; J. K. Witt et al., 

2015). Thus, whether the sound-induced criterion reduction reported in visual 

detection tasks exclusively reflects a decisional-level bias or it also depends on a 

perceptual-level bias is still unknown. 
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Finally, another disputed question taps into the automaticity of multisensory 

integration (Lunn et al., 2019; Macaluso et al., 2016; Talsma et al., 2010). While 

there is ample evidence that sounds can modulate neural activity in early visual 

areas in a bottom-up fashion, and these modulations may affect the processing 

of subsequent visual information (De Meo et al., 2015; Deneux et al., 2019; 

Ibrahim et al., 2016; Romei et al., 2009a, 2012), several studies have shown that 

crossmodal interactions are weakened when attention is directed away from the 

relevant stimuli (Alsius et al., 2007; Alsius & Soto-Faraco, 2011; Convento et al., 

2018; Talsma et al., 2007; Talsma & Woldorff, 2005), or the sensory signals fall 

below the threshold of awareness (Pápai & Soto-Faraco, 2017). Thus, whether 

and if so, how sounds modulate the neural representation of task-irrelevant visual 

information is also an open question. 

We addressed these questions in two different experiments: In the first 

experiment we tested a group of participants in a visual detection task while we 

concurrently registered their MEG activity. Unlike previous studies in which the 

effect of sounds on visual processing was characterized using univariate 

contrasts (Feng et al., 2014; Giard & Peronnet, 1999; Meredith & Stein, 1983; 

Molholm et al., 2002; Talsma et al., 2007b), here we applied an information 

decoding based approach. To characterize at which perceptual stages sounds 

modulate visual detection, we capitalized on multivariate pattern analyses to 

decode time-resolved d’ and c parameters from MEG activity patterns measured 

at different brain regions of interest (ROIs) along the visual hierarchy. Moreover, 

to understand whether sounds simply enhance the decodability of visual 
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information or they also affect the maintenance of target information over time, 

we implemented temporal generalization (TG) analyses (King & Dehaene, 2014; 

Stokes, 2015). 

In a second experiment we sought to understand whether sounds modulate the 

processing of visual stimuli automatically or through a top-down controlled 

mechanism. To do that, we tested a new group of participants with similar stimuli 

sequences as in the first experiment, but this time their attention was diverted 

away from the previously relevant visual gratings (Fig. 1C). Building on the same 

decoding methodology that we used for the first experiment, we investigated 

whether sounds changed the neural representations of unattended visual 

gratings. 

Foreshadowing our results below, we show that auditory input interacts with 

visual processing in two distinct ways: 1) Sounds enhance the decoding of the 

visual targets across the perceptual hierarchy, primarily in the form of an 

improved maintenance over time of the information encoded at post-sensory 

perceptual stages. This enhancement seems to be mediated by a top-down 

controlled mechanism, as it vanishes when the audiovisual stimuli are irrelevant 

for the task; and 2) Sounds automatically trigger patterns of activity in the visual 

cortex highly similar to the ones evoked by a visual stimulus. This result suggests 

that the typically reported sound-induced behavioral increment in false alarms in 

visual detection tasks might actually reflect a bottom-up auditory-driven 

perceptual bias. This is contrast to the typical interpretation of this effect as a 
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purely decisional process (Frassinetti et al., 2002; Lippert et al., 2007; Odgaard 

et al., 2003). 

 

Results 

Experiment 1 

Twenty-four participants underwent an MEG scan while they performed a visual 

detection task (Fig. 1A). In each trial, participants had to report the presence (S+) 

or absence (S-) of a briefly flashed vertical grating (33 ms). In half of the trials 

and orthogonal to the probability of appearance of the visual grating, an auditory 

stimulus was presented (the ‘audiovisual’ condition). Visual stimuli could be 

presented at the center (i.e. the fovea and parafovea) or the periphery (i.e. 

perifovea) of the visual field (Fig. 1B). This manipulation was motivated by 

previous neuroanatomical tracing studies in monkeys showing that more 

peripheral visual eccentricities receive denser projections from primary auditory 

cortex (Falchier et al., 2002; Rockland & Ojima, 2003), and it allowed us to 

explore whether the audiovisual integration strength was dependent on visual 

eccentricity (Fiebelkorn, Foxe, Butler, & Molholm, 2011; Gleiss & Kayser, 2013). 
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Figure 1 A. Experiment 1 design: Trial sequence showing an audiovisual S+ (blue) or S- (orange) 

event at the central visual field. In the audiovisual trials (50% of the trials), a 1000 Hz pure tone 

was presented simultaneously (33 ms) with the [S+ | S-] event (S+ trials = 50% and their 

probability of appearance was decorrelated to the sound presentation). B. Example of a central 

S+ and a peripheral S- stimulus. Information about their dimensions is overlaid in white. C. 

Experiment 2 design: The trial sequence was similar to the one used in the first experiment with 

the difference that now participants had to ignore the visual grating and auditory events and 

report on fixation point (FP) color changes. For illustrative purposes, the color frames in panel A 

and C highlight those events that were task-relevant in each experiment. 

 

Sounds improve visual detection sensitivity and reduce criterion 

Observers’ sensitivity (d´) in detecting the visual target was higher in the 

audiovisual compared to the visual conditions (d’ = 1.57 vs 1.44: F1,23�=�5.67, 

P�=�0.025, η�=�0.032; Fig. 2A). This sensitivity enhancement did not depend 
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upon visual eccentricity (interaction between modality and eccentricity: 

F1,23�=�0.16, P�=�0.69). Furthermore, as expected, the criterion (c) parameter 

was lower in the audiovisual compared to the visual conditions (c = 0.56 vs 0.79: 

F1,23�=�23.97, P�<�0.001, η�=�0.014; Fig. 2B), indicating that participants 

had a more liberal response threshold in the audiovisual trials. Criterion did not 

differ between visual eccentricities (F1,23�=�0.15, P�=�0.7) and the auditory-

driven criterion reduction did not depend on the visual eccentricity either 

(F1,23�=�0.01, P�=�0.9). Finally, although participants were instructed to 

prioritize accuracy over speed, reaction times (RTs) were faster in the 

audiovisual than in the visual conditions (RTs = 496 vs 540 ms: F1,23�=�61.02, 

P�<�0.001, η�=�0.06; Fig. 2C). Also for reaction times, the effect of modality 

did not depend upon visual eccentricity (F1,23�=�0.24, P�=�0.62). Thus, our 

behavioral results are consistent with previous reports in showing that sounds 

enhance visual sensitivity, speed up visual detection and increase the proportion 

of reported false alarms (Fig. S2). Given that we were not able to detect any 

significant effect of visual eccentricity on the sound-induced visual enhancement, 

in the following multivariate decoding analyses the “center” and “periphery” visual 

field conditions will be combined to train and test the classifier. Combining these 

two conditions will improve the sensitivity of the classifier (as the number of trials 

in each training fold will be doubled). As a sanity check, we performed a control 

analysis where we trained and tested the classifier with data from the “center” 

and “periphery” conditions separately and obtained qualitatively similar results in 

both visual fields (Fig. S7). 
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Figure 2. Behavioral results in the first experiment: Sensitivity (A), criterion (B) and reaction times 

(C) are depicted for each modality (“audiovisual”, “visual”), visual eccentricity condition (“center” 

and “periphery”) and participant. Inside the violin plot, the horizontal black line reflects the 

median, the thick box indicates quartiles, and whiskers 2 ´ the interquartile range. Grey horizontal 

lines connect participants scores across conditions. 

 

Neurally decoded signal detection parameters correlate with behaviour 

To describe how sounds modulate visual processing across the perceptual 

hierarchy we trained a linear discriminant classifier to distinguish signal-present 

(S+) from signal-absent (S-) trials on the basis of MEG signals measured in 

visual, parietal, inferotemporal and prefrontal ROIs (upper part, Fig. 3A). These 

ROIs were anatomically defined and encompassed multiple sensory and 

decision-related brain regions involved in visual detection (King et al., 2016; van 

Vugt et al., 2018). Prior to testing the effect of sounds on visual detection, we 

explored how the neurally estimated d’ and c parameters evolved in time 

independent of modality (i.e., combining visual and audiovisual trials; Fig. S5 and 

S6). 
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We found that a classifier trained and tested on the visual and audiovisual 

conditions together was able to discriminate above chance level between S+ and 

S- trials from ~180 ms to the end of the trial in the visual ROI (P < 0.001; see the 

results averaged over ROIs in Fig. 3C). A closer inspection of the d’ temporal 

generalization matrixes (TGMs) showed that signal decoding peaked at ~500 ms 

in all the ROIs (Fig. S1.B and S5), and consistent with previous research (King et 

al., 2016; Mostert et al., 2015), the information represented at early sensory 

stages (<200 ms) generalized less strongly than at later decision-related stages. 

We repeated the same analysis on the neural decoder’s criterion (c). We 

observed that criterion increased at ~200 ms after stimulus onset and on both 

sides of the diagonal (Fig. 3C). The same pattern was replicated across ROIs 

(Fig. S6). This result indicates that whereas a classifier trained to classify S+ and 

S- trials before ~200 ms cannot be biased (given that there is not reliable 

information yet to be trained on), once the classifier “learns” the difference 

between S+ and S- trials (after ~200 ms until the end of the trial), it will classify 

more often the activity in those time points not containing decodable information 

as S-, reflected in larger criterion values (see the results averaged over ROIs in 

Fig. 3D). 

Next, we tested whether the neurally derived SDT parameters encoded time 

specific information about the participant’s latent perceptual decision-making 

states. We found that the neural decoder’s d’ parameters were positively 

correlated with the observer’s d’ along the TGM diagonal in all the ROIs, peaking 

at 500 ms (see ROI averaged results in Fig. 3D) and with subtle differences in 
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the generalization spread between ROIs (Fig. S5). Further correlation analyses 

revealed that the neural decoder’s criterion parameters were positively correlated 

with the observer’s criterion parameters in an “early” cluster spanning from ~400 

ms to ~600 ms in visual and parietal ROIs (P < 0.01), and in a “late” cluster 

spanning from ~900 ms to ~1100 ms in visual, parietal and inferotemporal ROIs 

(p < 0.01). These results demonstrate that the neural decoder’s d’ and c 

parameters are informative about participants behavior and allow us to infer at 

which temporal latencies the brain performs critical sensitivity and bias 

computations. 

 

 

Figure 3. A Visual representation of the four anatomically defined regions of interest overlayed on 

a right hemisphere surface model of the MNI template. ROIs correspond to primary visual cortex 

(green), parietal cortex (purple), inferotemporal cortex (yellow) and dorsolateral prefrontal cortex 

(red). Source reconstructed activity extracted from the virtual channels corresponding to each 

ROI (e.g. visual cortex) was subsequently used to test and train a multivariate classifier (bottom 

part). B. A multivariate pattern classifier was trained on visual and audiovisual (green and red 

simulated points respectively) conditions together to optimally discriminate between S+ and S- 
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trials (empty and full circles respectively). The trained classifier was cross validated on visual and 

audiovisual trials separately. We categorized S+ trials classified as signal-present as hits, and the 

S- trials classified as signal-present as false alarms. Note that although a classifier might be 

equally good in discriminating S+ from S- trials in all the conditions, there might be systematic 

biases to classify more often the trials in the audiovisual condition (middle panel) as signal-

present than in the visual condition (bottom panel), following typical human performance. The 

simulated probability density functions represent how S+ (continuous) and S- (dashed) trials are 

distributed according to the discriminant channel output. C. Averaged over ROIs decoded 

sensitivity and criterion parameters (visual and audiovisual conditions together). D. For each of 

the six experimental blocks and for each time point combination in the temporal generalization 

matrix (TGM), we calculated d’ and c parameters based on the classifier output (here we show 

the average over the six blocks). Similarly, for each block we calculated d’ and c based on the 

observer’s performance. Finally, we calculated a time point by time point correlation (R) between 

the six neurally and behaviorally estimated d’ and c parameters. Red thin contours depict 

significant clusters. 

 

Decoder’s sensitivity analysis: Sounds enhance the maintenance of 

postsensory visual information over time 

To understand how sounds neurally enhance visual detection we contrasted the 

audiovisual and visual d’ TGMs in each ROI (Fig. 4A). Four significant clusters 

conforming a continuous pattern (P < 0.03) emerged in the inferotemporal ROI 

(Fig. 4B), meaning that information decodable at 500 ms was better preserved 

until the end of the trial in the audiovisual condition. Interestingly, in the visual 

cortex ROI we found that decoders trained before and after the response time 

(~1100 ms to the end of the trial) and tested in the audiovisual condition were 

more sensitive to information present at ~500 ms (P < 0.02) than the same 
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decoders tested in the visual condition. This result suggests that there was an 

enhanced reactivation of the information encoded at ~500 ms in the audiovisual 

trials, right before participants were instructed to select their final response (1250 

ms). In the parietal cortex ROI we also observed a significant cluster (P < 0.01) 

reflecting that sounds punctually boost signal decoding at around ~500 ms in 

comparison to the visual trials. This effect was time specific as it did not 

generalize to earlier or later time points. We registered a late but brief (~1000 to 

1100 ms) enhanced reinstatement of the information presented at ~500 ms in the 

dorsolateral prefrontal cortex ROI. This small cluster (P < 0.02) preceded in time 

the cluster previously reported in the visual ROI (Fig. S12). 

To obtain a general understanding of the TG pattern, we looked at the d’ TGM 

averaged over ROIs. Consistently with the individual ROIs decoding analyses we 

found that the audiovisual enhancement of information conformed a continuous 

pattern (Fig. 4C). Decoders trained from ~500 ms to the end of the trial could 

decode better the visual stimulus at 500 ms in the audiovisual compared to the 

visual condition. This vertical pattern was composed by two elongated clusters (P 

< 0.001 and P < 0.005) separated by a small gap spanning from approximately 

750 to 950 ms where the sound-induced visual decoding enhancement was not 

significant. 

Surprisingly, we found that although multiple decoders trained at different time 

points could decode the signal presence at 500 ms, a decoder trained at 500 ms 

was not able to “symmetrically” enhance the decoding of the audiovisual trials 

within an analogous temporal window. In a complementary control analysis (Fig. 
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4C and Fig. S8), we confirmed that by training and testing the classifier in the 

visual and audiovisual conditions separately, the sound-induced d’ enhancement 

pattern became symmetrical with respect to the diagonal. This result indicates 

that training the classifier in the visual and audiovisual conditions together might 

come with the cost of losing/averaging out the idiosyncratic features that 

characterize the visual and audiovisual neural activity patterns. Therefore, a 

classifier trained on data from both conditions together at the decoding peak (500 

ms), but tested in the visual and audiovisual conditions separately might have 

reduced capacity to generalize the information and tease apart between S+ and 

S- trials when the most discriminative information decays (i.e. before and after 

the decoding peak), and other more modality-specific neural modulations take 

over.  

In summary, our d’ analyses show that sounds enhance the maintenance over 

time of late perceptual information (500 ms) until the response phase, across 

multiple ROIs. 
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Figure 4. Temporal generalization matrixes depict A the neural decoder’s sensitivity parameter 

(d’) in the visual (upper TGMs) and audiovisual (bottom TGMs) conditions and their difference (B) 

in each ROI. C represents the differential decoded sensitivity averaged over ROIs with classifiers 

trained in the visual and audiovisual conditions together (left panel) or separately (right panel). 

Independently trained classifiers replicate similar results as when the classifiers were trained in 

both conditions together and recovers the expected decoding symmetry with respect to the 

diagonal. Red contours delimit significant clusters. 
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Decoder’s criterion analysis: Neurally decoded criterion is lower in the 

audiovisual trials 

Consistent with participants performance, we found that the neural decoder’s 

criterion was reduced in the audiovisual compared to the visual condition in all 

the ROIs (Fig. 5A). That is, a decoder trained on visual and audiovisual trials 

together systematically classified more often the audiovisual trials as S+ trials 

than the visual ones (Fig. S4). This pattern was predominant along the TGM 

diagonals with some qualitative differences between ROIs (Fig. 5B). In visual and 

inferotemporal cortex ROIs we observed significantly negative clusters (P < 

0.005), indicating that multiple decoders trained from ~500 to 1100 ms had a 

generalized bias to classify audiovisual trials patterns occurring at ~400 ms as 

S+ trials. In the parietal and dorsolateral prefrontal ROIs, a similar but less 

generalized pattern emerged along the diagonal (P < 0.01). In addition, we 

observed a second significant cluster that was specific to the parietal and 

dorsolateral ROIs. In this second cluster, the direction of the bias reversed. That 

is, a decoder trained around ~400 ms was biased to classify more often a trial as 

S+ in the visual than in the audiovisual trials (from ~600 to 1100 ms in the 

parietal ROI; P < 0.03, and from ~1000 to 1100 ms in the dorsolateral ROI; P < 

0.02). The latency of this positive bias may indicate that whereas in the S- 

audiovisual trials the participants “believed” more consistently to have seen the 

target immediately after the sound presentation, in the visual trials, due to the 
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absence of an auditory cue signalling the most likely latency of the visual 

stimulus onset, the belief of seeing the target can potentially spread to later time 

points.  

In summary, criterion analyses demonstrate that sounds evoke neural activations 

that are more often misclassified as S+ trials than in the visual conditions. As 

expected, in a control analysis we showed that this sound-induced criterion bias 

would be inappreciable if we would have trained and tested the decoders in the 

visual and audiovisual conditions separately (Fig. 5C).  
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Figure 5. Temporal generalization matrixes depict A. the neural decoder’s criterion parameter (c) 

in the visual (upper TGMs) and audiovisual (bottom TGMs) conditions and their difference (B) in 

each ROI. C represents the differential decoded criterion averaged over ROIs with classifiers 

trained in the visual and audiovisual conditions together (left panel) or separately (right panel). 

Independently trained classifiers fail to capture the existing differences in criterion between the 

audiovisual and visual conditions. Red contours delimit significant clusters. 

Experiment 2 
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In our second experiment we tested if the mechanism by which sounds 

enhanced the maintenance of visual information is automatic and bottom-up 

driven or requires participants to be actively engaged in a visual detection task. 

For instance, it is possible that subjects explicitly used the auditory stimulus as a 

cue to optimally orient their attention in time, prioritizing the encoding and 

maintenance of the most informative visual samples in short-term memory 

(Lippert et al., 2007; Los & van der Burg, 2013; Sergent et al., 2013). Such a 

mechanism cannot be considered bottom-up as it requires an endogenous 

control of attention. Relatedly, we also investigated whether the reduced criterion 

in the audiovisual condition reflects a decisional or a perceptual bias.  

To address these questions, a new group of participants (n = 24) was presented 

with similar stimuli sequences as in our first experiment. However, participants 

now had to attend to and memorize a sequence of three fixation point color 

changes (Fig. 1C), rendering the previously relevant vertical gratings and 

auditory stimuli task irrelevant. The unattended gratings were presented at only 

one visual eccentricity (“central”) and with two different levels of contrast (i.e. 

contrast was set at threshold level in the low contrast “S+” condition and at two-

times the threshold level in the high contrast “S++” condition). Adding this new 

high contrast condition allowed us to test how perceptually salient but ignored 

S++ stimuli interact with sounds, and ensured that unattended visual stimuli 

evoked sufficient signal to be decoded from neural activity patterns.  

We hypothesised that 1) if the enhanced maintenance of neurally decoded visual 

information described in our first experiment is supported by automatic bottom-up 
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multisensory integration, we should replicate the same result in this second 

experiment despite participants ignore the audiovisual stimuli. Following up on 

the same logic, 2) if the reduction in the decoder’s criterion following the sound 

presentation described in the first experiment corresponds to a decision-level 

bias, we should not be able to replicate here the same result as participants do 

not make decisions about the visual gratings. Instead, finding again a more 

biased decoder in the audiovisual compared to the visual condition would imply 

that sounds can automatically trigger patterns of activity in the brain that are 

misclassified by the decoder as a visual stimulus. 

 

Audiovisual distractors do not interfere with participants performance in 

the working memory task 

Participants’ performance in remembering the sequence of fixation point colour 

changes was high (group mean d’ = 2.99, SD = 0.91). Importantly, their 

sensitivity and criterion parameters did not vary as a function of gratings levels of 

contrast (d’ F2,48�=�0.98, P�=�0.37 and c F2,48�=�0.29, P�=�0.75) or auditory 

stimulus presentation (d’ F1,24�=�0.308, P�=�0.58 and c F1,24�=�0.44, 

P�=�0.51; Fig. S2). This demonstrates that the task-irrelevant audiovisual 

stimuli could be successfully ignored by the participants as they did not interfere 

with the color working-memory task. Likewise, RTs analyses did not show any 

difference as a function of grating contrast (F2,48�=�0.9, P�=�0.41) or auditory 

presentation (F1,24�=�0.01, P�=�0.89. Group mean RT = 880 ms, SD = 0.15). 
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Decoder’s sensitivity analysis: Sounds do not automatically enhance the 

maintenance of visual information  

We found that the decoders trained and tested in the low contrast condition could 

not discriminate between the S+ and S- trials (Fig. S9 and S10). This result 

indicates that diverting participants attention away from the visual gratings 

diminished the contrast response gain (Herrmann et al., 2012) compared to the 

first experiment, leading to a null decoding sensitivity for threshold-level visual 

stimuli. On the other hand, the neural activity driven by the high contrast stimuli 

was strong enough to be discriminated above chance level at multiple time points 

(Fig. 7). Given the null sensitivity of the decoders in classifying the neural activity 

patterns associated to low contrast stimuli, we constrained our subsequent 

analyses to the high contrast condition. 

We found that high contrast stimuli could be decoded as early as ~100 ms in the 

visual cortex. Decoding accuracy peaked at 180 ms in the visual, inferotemporal 

and parietal ROIs and around 350 ms in the dorsolateral prefrontal ROI. The d’ 

TGM profile in the high contrast condition showed that most of the significant 

clusters were distributed along the diagonal with weak information generalization 

(Fig. 6A). This is consistent with the highly dynamical information broadcasting 

that takes place during sensory processing (King et al., 2016; Mostert et al., 

2015), and suggest that the stimuli were ignored by the participants as they failed 

to trigger the sustained generalization pattern typically associated with visual 

awareness (King et al., 2016).  
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To investigate whether sounds enhanced the neural decodability of the 

unattended visual targets, we contrasted the audiovisual and visual d' TGMs but 

we could not find significant differences between both modality conditions in any 

of the selected ROIs (Fig. 6B). Since this contrast yielded clear differences in our 

first experiment, but we observe a null result here when attention is directed 

away from the stimuli, we conclude that the sound-induced enhanced 

maintenance of visual information, reflected in sensitivity, is highly dependent on 

stimulus relevance, and it is therefore likely mediated via top-down mechanisms. 

 

 

Figure 6. Temporal generalization matrixes illustrating decoded sensitivity parameters (d’) in the 

high contrast condition (S- vs S++). A and B follow the same labelling convention as in figure 5.  
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Decoder’s criterion analysis: Sounds drive visual activity patterns in visual 

cortex in a bottom-up fashion 

To test whether sounds influenced the neural decoder’s criterion in the high 

contrast condition (Fig. 7A), we contrasted the audiovisual and visual c TGMs. 

We found a significant cluster (P < 0.01) in the visual cortex ROI, meaning that 

those decoders trained from ~450 to 650 ms classified more often the activity 

patterns from ~250 to 450 ms as S+ in the audiovisual compared to the visual 

trials (Fig. 7B). That is, sounds increased the proportion of neurally estimated hits 

but also of false alarms at around 350 ms (Fig. S5).  This result demonstrates 

that sounds can automatically evoke patterns of activity in the visual cortex that 

are often misclassified by a decoder as an actual visual stimulus. 

One might argue that the sound-induced increase in false alarms reports might 

be unspecifically related to the decoder picking up on univariate auditory event-

related field (ERF) deflections present in both S+ and S- trials. This explanation 

is unlikely because the decoders that showed an increase in false alarms were 

trained at a temporal window (450 to 650 ms) in which the neural activity in S- 

and S+ trials did not differ univariately (Fig. S11). Moreover, the activity that was 

misclassified as S+ spanned along the second half of the auditory ERF but did 

not generalize to the first half even though both halves were almost symmetrical. 

Our results are congruent with previous literature in showing that sounds activate 

early visual regions in a bottom-up fashion (Deneux et al., 2019; Feng et al., 
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2014; Ibrahim et al., 2016; Romei et al., 2009b), and suggest that these 

activations encode stimulus-specific neural representations.  

 

 

Figure 7. Temporal generalization matrixes generated from decoded criterion parameters (c) in 

the high contrast condition (S- vs S++). A and B follow the same labelling convention as in figure 

5.  

 

Discussion 

In our first experiment we used a multivariate decoding approach to dissociate 

the neural mechanisms by which sounds modulate observers’ sensitivity and bias 

in a visual detection task. Under the assumption that sounds can affect the 
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decoding amplitude but also the latency or duration of visual representations, we 

applied TG analyses (King & Dehaene, 2014; Stokes, 2015) revealing that 

indeed sounds enhanced the maintenance of visual information over time. The 

effect of sounds on visual sensitivity can be characterized by different dynamical 

processing models (see models’ description in Fig. 8) that vary in terms of their 

overall architecture (i.e., the number and the order of the processing stages) and 

whether they postulate that the sound-induced enhancement correlates with an 

increase of the amplitude or the duration of a given processing stage (Gwilliams 

& King, 2020; King et al., 2016).  

 

 

Figure 8.  Sounds might improve the detectability of a visual signal through different mechanisms. 

To characterize the dynamic nature of information processing we describe four models that vary 

in terms of the number and ordering of processing stages. We propose that sounds could 

enhance detection by increasing 1) the decoding amplitude or 2) the duration of one or several 

processing stages: The “dynamic amplitude” models broadcast target information across a 

sequence of short-lived processing stages whose amplitude codes for its detectability. We 
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hypothesize that sounds might act upon one of these stages, boosting the decoding amplitude at 

early or late processing stages. The “single stage” model encodes and maintains the target 

information within the same processing stage. We propose that sounds might improve the 

maintenance of information within the initial processing stage. The “late maintenance” model 

transmits the encoded information to a later processing stage where task-relevant information is 

sustained through recurrent processing loops. Sounds might enhance the maintenance of 

information within the later processing stage. Vertical arrows represent information transfer from 

one neural stage to the next. Circular arrows represent recurrent feedback loops that maintain 

information over time. The key process that characterizes the effect of sounds in each model is 

highlighted in red. 

 

Our results are better explained by a “late maintenance” model in which stimulus 

information after being encoded in early sensory regions is remapped as a 

decision variable (DV) and stored until the response phase. According to this 

model’s predictions, sounds would improve visual sensitivity by enhancing the 

maintenance over time of task-relevant visual information encoded at ~500 ms 

after the stimulus onset (see that the target information encoded at 500 ms was 

highly correlated with participants sensitivity). Based on the temporal ordering of 

the significant clusters across ROIs (Fig. S12) and in line with the currently 

accepted view that multisensory interactions depend upon a widely distributed 

network of brain regions (Cao et al., 2019; Rohe et al., 2019; Rohe & Noppeney, 

2015, 2016), we propose that a late maintenance dynamical mechanism could be 

articulated, first by the encoding of the visual stimulus in the visual cortex. 

Concurrently, the encoded sensory information would be mapped into a latent 

DV in parietal regions (Kiani & Shadlen, 2009; O’Connell et al., 2012; Zhou & 
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Freedman, 2019). This is a stochastic process in which an auditory cue might 

amplify the participant’s gain towards those DV samples that more likely encode 

the visual target. These highly informative samples could be stored in the 

inferotemporal and dorsolateral prefrontal cortex to protect them from 

interference with new incoming sensory input. Indeed, the interplay between 

these two brain regions has been demonstrated to play an important role in 

short-term memory during perceptual decisions (D’Esposito & Postle, 2015; 

Gross et al., 1972; Pagan et al., 2013; Stokes et al., 2013; van Vugt et al., 2018). 

As the response phase approaches, the participants can strategically reorient 

their featured-based attention towards the stored relevant stimulus information. 

This manifests by an enhanced reactivation of the target in the DLPF cortex 

(Squire et al., 2013), that subsequently leads to an enhanced reinstatement of 

the stimulus information in early visual regions (Christophel et al., 2017; 

D’Esposito & Postle, 2015; Sprague et al., 2016).  

We could not replicate the same pattern of results in the second experiment 

when participants ignored the audiovisual stimuli. This suggests that in the first 

experiment sounds helped participants to guide their temporal attention in a top-

down fashion, improving the processing and maintenance of task-relevant 

perceptual information (Lippert et al., 2007; Los & van der Burg, 2013; Ngo & 

Spence, 2012). We speculate that the sound-induced visual sensitivity 

enhancement could be partly mediated by a mechanism like retroception 

(Sergent et al., 2011, 2013). In retroception a post-stimulus cue can 

retrospectively amplify the signal gain of a target stored in perceptual memory 
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that would otherwise have escaped consciousness. In the sound-induced visual 

enhancement such signal gain amplification would be instantiated by an auditory 

cue instead, improving the maintenance of perceptual information stored at post-

sensory (i.e. decision) processing stages.  

We must acknowledge that showing that the crossmodal visual enhancement 

takes place through a top-down controlled mechanism does not preclude that 

other more automatic and sensory-level multisensory mechanisms could 

contribute in parallel to enhance visual sensitivity (although these might be out of 

reach of our decoding analyses sensitivity).  For instance, audiovisual inputs 

might be integrated at subcortical level in the superior colliculus or through direct 

connections between early sensory areas (Clavagnier et al., 2004; Deneux et al., 

2019; Garner & Keller, 2021; Ibrahim et al., 2016; C. Kayser & Logothetis, 2007; 

Meredith & Stein, 1983). Alternative accounts propose that sounds could exert a 

modulatory influence by resetting the phase of ongoing oscillations in visual 

cortex, such that co-occurring visual targets align with high-excitability “ideal” 

phases (Fiebelkorn, Foxe, Butler, Mercier, et al., 2011; Lakatos et al., 2007; van 

Atteveldt et al., 2014). These two sensory-level mechanisms of audiovisual 

integration have been well-described at an electrophysiological level, however 

future studies must continue elucidating which are their specific functional role in 

multisensory perception. 

In this work, in addition to the sound-induced enhancement in visual 

sensitivity, we showed that sounds reduced the participants criterion in visual 

detection. Consistently with this result, in our first experiment the neural decoding 
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analyses showed that sounds biased the decoders to classify more often the 

audiovisual trials as S+ in multiple time points. The classical interpretation of this 

decoding bias implies that participants, after hearing the sound, were more 

inclined to believe that the target has been presented (i.e. decision-level bias). 

However, in our second experiment in which participants did not have to make 

any decision about the presence or absence of the visual targets, we showed 

that sounds automatically evoked patterns of activity in early visual regions 

similar to the patterns evoked by an actual visual stimulus. This sound-induced 

visual activity patterns could be subjectively misperceived by an observer as a 

visual stimulus, leading to perceptual-level biases.  

This result is consistent with previous work (Ibrahim et al., 2016; Romei et al., 

2007, 2009b, 2012) by demonstrating that sounds alone can modulate the 

activity in early visual areas in a bottom-up fashion. It is possible that an abrupt 

sound that has been repeatedly paired with a visual stimulus, when presented in 

isolation, may automatically reactivate the associated (visual) sensory traces 

(den Ouden et al., 2009; Garner & Keller, 2021). Indeed, this mechanism might 

be at the base of many multisensory illusions like the double-flash illusion in 

which pairing two auditory stimuli with one visual stimulus induces the percept an 

additional illusory visual stimulus with identical physical properties as the inducer 

stimulus (Berger et al., 2003; McCormick & Mamassian, 2008; Pérez-Bellido et 

al., 2015).  In brief, our results provide neural evidence for an alternative 

hypothesis on the interpretation of SDT parameters (J. Witt et al., 2012; J. K. Witt 
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et al., 2015) that challenges the classical assumption postulating that sound-

induced reductions in criterion necessarily correspond to decision-level biases.  

Retrograde tracing studies in monkeys have revealed the existence of 

direct connections between the auditory the visual cortex. These connections are 

heterogeneously distributed across the visual field with more peripheral 

eccentricities receiving denser projections (Clavagnier et al., 2004; Rockland & 

Ojima, 2003). In our first experiment, we explored whether such asymmetrical 

connectivity pattern translated into different multisensory interactions. To do that, 

we included two conditions in which the visual stimuli could appear at the “center” 

or the “periphery” of the visual field.  However, our behavioral and neural 

decoding analyses yield similar results in both eccentricity conditions. Future 

studies should further investigate whether the heterogenous auditory-to-visual 

cortex connectivity pattern reported in monkeys replicates in humans (Beer, 

Plank and Greenlee, 2011), and if it actually involves a functional dissociation for 

multisensory processing. 

 

Conclusion 

In recent years it has been demonstrated that the visual and auditory systems 

are heavily interconnected at multiple processing levels (Driver & Noesselt, 2008; 

Murray et al., 2016; Rohe & Noppeney, 2015). Although the effect of sounds on 

visual detection has been well described at behavioural level, it remained unclear 

which specific neural mechanisms give support to crossmodal interactions. In this 

study we devised a novel approach to neurally dissociate the contribution of 
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sounds to sensitivity and criterion modulations in visual detection tasks. Our 

results demonstrate that multisensory interplay in visual detection does not 

exclusively rely on sensory-level crossmodal interaction. Instead, it unfolds at 

multiple levels of the perceptual hierarchy improving the amplitude of the 

encoded visual representations and their temporal stability. In addition, our 

results also help to reconcile two opposing views by showing that audiovisual 

interactions in detection rely on parallel top-down and bottom-up crossmodal 

mechanisms. Whereas the sound-induced improvement in visual sensitivity is 

mediated through a widely distributed network of brain regions in which the 

maintenance of post-sensory visual information is improved via top-down 

mechanism, sound-induced reductions in criterion are primarily reflected in 

bottom-up sound-driven modulations of early visual cortex activity. In the future, 

the use of temporal generalization decoding in combination with more specific 

functional and anatomical localizers will help to understand with a greater level of 

detail which specific information is stored in each processing stage and how it is 

transformed across the multiple stages that conform the perceptual decision-

making process. 

 

Materials and Methods  

Subjects 

Twenty-five healthy human volunteers with normal or corrected-to-normal vision 

and audition participated in the first t (17 females, mean age = 24 years, SD = 6 

years) and second experiment (12 females, mean age = 25 years, SD = 7 years). 
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One subject in the first and one subject in the second experiment were excluded 

during the preprocessing due to insufficient data quality (severe eye and muscle 

artifacts and poor performance). The sample size was determined prior to data 

collection, and ensured 80% power to detect medium-to-large effects (Cohen’s 

d>0.6). Participants received either monetary compensation or study credits. The 

study was approved by the local ethics committee (CMO Arnhem-Nijmegen, 

Radboud University Medical Center) under the general ethics approval (“Imaging 

Human Cognition”, CMO 2014/288), and the experiment was conducted in 

compliance with these guidelines. Written informed consent was obtained from 

each individual prior to the beginning of the experiment. 

 

Stimuli 

Visual stimuli were back-projected onto a plexiglass screen using a PROPixx 

projector at 120 Hz. In the first experiment the screen region where the targets 

could appear was delimited at the beginning of each trial using parafoveal 

(“center” condition; inner and outer perimeters 1o and 5.5o radius) or perifoveal 

annular (“periphery” condition; inner and outer perimeters 5.5o and 11o radius 

respectively) noise patches centered on the fixation point (Fig 1B). In the second 

experiment all the stimuli were presented parafoveally (“center”). The noise 

patches were created by smoothing pixel-by-pixel Gaussian noise through a 2D 

Gaussian smoothing filter (Wyart et al., 2012). Signal-present (S+) stimuli 

consisted of vertical sinusoidal gratings (spatial frequency of 0.5 cycles/° and 

random phase sampled from a uniform distribution) added to the previously 
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generated noise patches. Thereby, the noise structure of the placeholder and 

signal stimuli was the same within trials, but it was randomly generated for each 

new trial. The fixation point was a circle (radius = 1o) presented at the center of 

screen. In the first experiment the fixation point color was black and in the 

second experiment light grey (luminance: 405 cd/m2). All the visual stimuli were 

displayed on a gray background (50% of maximum pixel intensity, luminance: 

321 cd/m2). Auditory stimuli were presented through in-ear air conducting MEG 

compatible headphones and consisted of binaurally delivered pure tones at 

1000Hz (~70 dB, 5 ms rise/fall to avoid clicks; 16 bit mono; 44.100 Hz 

digitization). All the stimuli were generated and presented using MATLAB (The 

Mathworks, Inc., Natick, Massachusetts, United States) and the Psychophysics 

Toolbox extensions (Brainard, 1997).  

 

Procedure and experimental design 

In the first experiment participants performed a visual detection task (Fig. 1A). 

First, the participants completed a 5 minutes behavioral training session in which 

they were familiarized with the new environment and task. After the practice 

session, we used an adaptive staircase (Quest; Watson & Pelli, 1983) to 

estimate the level of contrast at which each subject correctly detected a vertical 

grating in 70% of the cases. The trial sequence used during the Quest procedure 

was similar to the one used during the main task detection blocks (see below) 

except that subjects were exclusively presented with the visual condition. We 

used two independent staircases to estimate the contrast for the center and 
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periphery conditions and only the trials in which the grating was presented were 

used to update the staircase. Once we estimated the participant threshold, 

participants started the main task blocks. The appearance of a central fixation 

point signalled the beginning of each trial. This fixation point was kept on the 

screen for a variable period of time of 750 to 1000 ms (randomly drawn from a 

uniform distribution) and determined the inter-trial-interval (ITI). Then, a circular 

or an annular noise placeholder was displayed on the screen. The noise 

placeholder constrained the visual space prior to the presentation of the visual 

target indicating at which visual eccentricity the target might occur (“center” or 

“periphery”, both conditions were equiprobable) and eliminating any possible 

spatial uncertainty. After a random period of time between 1000 to 1500 ms, the 

target grating, referred to as signal-present trial (S+) or the same noise 

placeholder, referred to as signal-absent trial (S-) was displayed for 33 ms (4 

frames). Importantly, in half of the trials an auditory tone of the same duration as 

the target was presented in synchrony with the [S+ | S-] event onset. 

Subsequently, the noise placeholder alone was displayed again and remained on 

the screen for a fixed period of 1250 ms. Then, the letters ‘Y’ and ‘N’ (as 

abbreviations for “Yes” and “No”, respectively) were centered around 4o the 

fixation dot. Subjects reported their decision as to whether or not they had 

detected a vertical grating by pressing a button with either the left or the right-

hand thumb, corresponding to the position of the letter that matched their 

decision. The position of the letters (‘Y’ left and ‘N’ right, or ‘N’ left and ‘Y’ right) 

was randomized across trials to orthogonalize perceptual decision and motor 
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response preparation. Finally, after a response period of 2000 ms the fixation 

point turned green, red or white for 250 ms signaling “correct”, “incorrect” or “non-

registered” responses respectively. Participants performed a total of 576 trials 

divided in 6 blocks of ~10 minutes. There were a total of 8 different experimental 

conditions: stimulus type (“signal-present” / “signal-absent”) × modality (“visual” / 

“audiovisual”) × eccentricity (“center” / “periphery”), and participants ran a total of 

72 trials per combination of conditions. During the main task the grating contrast 

values were kept fixed within blocks. If at the end of one block, due to learning or 

tiredness participants showed near perfect (>90% correct responses) or chance 

level (<55% correct responses) performance, to prevent ceiling or floor effects 

the target contrast was updated before the beginning of the next block using the 

new threshold value estimated by the Quest.  

In the second experiment we designed a task that forced participants to ignore 

the previously task-relevant visual gratings and sounds, and test whether the 

effects found in the first experiment were simply due to participants being 

involved in a visual detection task. Participants completed a 5 minutes behavioral 

training session in which they were familiarized with the task (see below). After 

the practice session, as in the first experiment we used a Quest to estimate the 

level of contrast at which each subject correctly detected a vertical grating in 70% 

of the cases. Then, after ensuring that participants had understood the main task, 

we continued with the experiment. In the main tasks blocks the stimulus 

sequence was identical to the one used in the first experiment with some minor 

but relevant modifications (Fig. 1C). Here, although the vertical gratings and 
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sounds were presented in each trial as in the first experiment, the participant’s 

task was to ignore them and perform a working memory task on the fixation 

point: The fixation point changed to magenta, yellow or cyan briefly for 32 ms 

once before and once after the ignored [S+ | S-] event and participants had to 

memorize these two color changes. At the end of the trial and during the 

response phase, the fixation point changed a third time revealing a color that 

could be the same or different (in 50% of the trials) as one of the previously 

memorized colors. Participants had to choose whether this third color was 

repeated or not by selecting between ‘S’ or ‘D’ (as abbreviations for “Same” and 

“Different” respectively) using the left or right thumb on the button box. The 

fixation point color sequences were generated in each trial by randomly selecting 

without repetition two of the three previously described colors. To ensure that 

participants maintained their attention steadily on the fixation point during the 

whole trial, the first two fixation point color changes happened during the 

presentation of the first and second noise placeholders, and their onset varied 

randomly from trial to trial 300 to 750 ms relative to the onset of the S+ or S- 

events. In order to avoid strong luminance variations at the fixation point during 

color changes, by default the fixation ºpoint was colored in light grey at a 

luminance value near to the average luminance of the color changes. We set the 

duration of the fixation point presentation (ITI = 500 to 750 ms), the first noise 

placeholder (600 to 1500 ms) and the response time (1500 ms). Participants 

performed a total of 648 trials divided in 6 blocks of ~10 minutes. There were a 

total of 6 experimental conditions of interest: stimulus type (S- | S+ | S++) × 
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modality (“visual” / “audiovisual”), and at the end of the experiment each 

participant underwent a total of 108 trials per combination of conditions. The 

contrast level used for the gratings used in the high contrast S++ condition was 

generated by doubling the contrast estimated for the S+ condition. This condition 

served to ensure above chance-level decoding classification of signal-present vs 

signal-absent conditions and to test whether the audiovisual interaction strength 

changed as a function of the stimulus bottom-up saliency. The vertical grating 

stimuli where only presented at one eccentricity (center). Since it was impossible 

to assess whether the subjective visibility of the gratings changed across blocks, 

as participants did not make decisions about the gratings absence or presence, 

the contrast value was kept fixed during the whole experiment.  

 

Behavioral data analyses  

In the first experiment, visual sensitivity (d’) and criterion (c) parameters were 

calculated for each condition and block, applying the signal detection theory to a 

classic yes-no paradigm (Macmillan & Creelman, 2004). S+ trials correctly 

reported as “signal” were coded as hits and S- trials incorrectly reported as 

“signal” were coded as false alarms. In the second experiment the participants’ 

task was to remember a sequence of items and report whether the third item was 

the same or different from the previously presented items. Therefore, we applied 

signal detection theory to calculate the participants sensitivity, but assuming a 

same-different “independent observation” model paradigm. 
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MEG Recording and Preprocessing  

Whole-brain neural recordings were registered using a 275-channel MEG system 

with axial gradiometers (CTF MEG Systems, VSM MedTech Ltd.) located in a 

magnetically shielded room. Participants’ eye-movements and blinks were 

tracked online using an EyeLink 1000 (SR Research). Throughout the 

experiment, head position was monitored online and corrected if necessary using 

three fiducial coils that were placed on the nasion and on earplugs in both ears. If 

subjects moved their head more than 5 mm from the starting position, they were 

repositioned during block breaks. All signals were sampled at a rate of 1,200 Hz. 

Data preprocessing was carried out offline using FieldTrip 

(www.fieldtriptoolbox.org). The data were epoched from 2000 ms before and 

1500 ms after the signal present / absent event onset. To identify artifacts, the 

variance (collapsed over channels and time) was calculated for each trial. Those 

trials and channels with large variances were subsequently selected for manual 

inspection and removed if they contained excessive and irregular artifacts. 

Additionally, trials without participant’s response or containing eye-blinks within 

the interval of 100 ms before or after the target presentation were removed from 

subsequent analyses. We used independent component analysis to remove 

regular artifacts, such as heartbeats and eye blinks. For each subject, the 

independent components were inspected manually before removal. “Bad” 

channels showing SQUID jumps or other artifacts were interpolated to the 

weighted by neighbours distance average of neighboring channels. For the main 

analyses, data were low-pass filtered using a Butterworth filter with a frequency 
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cutoff of 30 Hz and subsequently downsampled to 100 Hz. No detrending was 

applied for any analysis. Finally, the data were baseline corrected on the interval 

of −200 ms to the [S+ | S-] event onset (0 ms).  

 

Source reconstruction and ROI generation 

For each participant we build volume conduction models based on single-shell 

model of the standard Montreal Neurological Institute (MNI) anatomical atlas 

(Nolte, 2003). Then, we used them to construct search grids (10-mm 

resolution). For each grid point, lead fields were computed with a reduced rank, 

which removes the sensitivity to the direction perpendicular to the surface of the 

volume conduction model.  

In order to gain insight on how the auditory stimuli modulate the processing of 

visual stimuli across the perceptual hierarchy, we generated four 

neuroanatomically defined regions of interest (ROIs; Fig. 4A) using the AAL 

anatomical atlas: These were the visual cortex, that is involved in the encoding of 

sensory information (Ress & Heeger, 2003), the parietal cortex, that is related to 

evidence accumulation during perceptual decision (Kiani & Shadlen, 2009; Zhou 

& Freedman, 2019), the inferotemporal cortex, that has been associated to visual 

memory and target identification (Miller et al., 1993; Mishkin, 1982; Pagan et al., 

2013) and the dorsolateral prefrontal cortex, that is involved with short-memory, 

decision-making and awareness (Funahashi, 2006; Kim & Shadlen, 1999; 

Philiastides et al., 2011; van Vugt et al., 2018). These brain regions have been 

typically associated to perceptual decisions in visual detection tasks (see Table 1 
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in SM). Using the covariance matrix computed from the combined visual and 

audiovisual trials (-0.2 to 1.5 s, time-locked to the target onset; 10% 

normalization), the volume conduction model, and the lead field, we applied a 

linearly constrained minimum variance (van Veen et al., 1997) beamformer 

approach in Fieldtrip (Oostenveld et al., 2011) to build a common spatial filter for 

each grid point and participant. Finally, to spatially constrain the analyses to the 

previously selected neuroanatomical regions, we projected the sensor level 

ERFs time series through those virtual channels that spatially overlapped with 

our ROIs. 

 

Decoding analysis 

We applied a multivariate pattern analysis approach to classify single trials as S+ 

or S- as a function of the neural activity measured from the virtual channels 

composing each ROI in each time point. The method that we applied was largely 

based on linear discriminant analysis (Blankertz et al., 2011; Mostert et al., 

2015). First, in order to minimize time-point by time-point absolute univariate 

differences between the visual and audiovisual conditions, we z-scored the ERF 

activity across virtual channels for each time point and considering the visual and 

audiovisual conditions independently. Then, using the patterns of activity 

measured at the multiple virtual channels (i.e. generally termed as features) 

contained in one of our ROIs, we calculated the weights vector w that optimally 

discriminates between S+ and S- trials (equation 1). 
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          (1) 

 

�̂� and �̂� are two column vectors of length F (i.e. number of features) for a given 

time point, representing the neural activity averaged across the S+ (�̂�) and S- 

(�̂�) trials respectively, and ∑��
��  is the common regularized covariance matrix. 

The regularization parameter was optimized in preliminary tests using cross-

validation and was kept fixed for all subsequent analyses. To make the encoding 

weights comparable across time points, we added a normalization factor 

(denominator in equation 2) to the weights vector such that the mean difference 

in the decoded signal between classes equals a value of one. 
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               (2) 

 

Next, to assess whether the learned weights could discriminate between S+ and 

S- trials we cross-validated our decoder (equation 2) in a different set of trials X. 

 

� �  �
�                 (3) 

 

X is a matrix of size F 
 N, where N represents the number of trials and F the 

number of features present in the independent dataset. By multiplying X by the 

weights transpose matrix (�
 ) that we previously estimated from the training 

dataset (equation 2), we obtained the decoder output, termed here as the 

“discriminant channel”.  If there is information in the neural signal pertaining to 
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the classes to be decoded, we expect the mean discriminant channel amplitude 

to be ��� > ���, whereas if no information is available in the neural signals, we must 

find ��� = ���. In order to classify a trial as S+ or S-, we set a cut-off value. If the 

difference between the discriminant channels ��� and ��� was larger than 0, the 

trial was classified as S+. Instead, if the difference between the discriminant 

channels ��� and ���was smaller than 0, the trial was classified as S-. To avoid 

“double dipping” (Kriegeskorte et al., 2009) we adopted a leave-one-out cross-

validation approach where we randomly divided the trials of the dataset in five 

evenly distributed manifolds. We built an unbiased classifier by training our 

discriminant model in four of the five manifolds that contained visual and 

audiovisual trials. Subsequently, we tested the classifier in the remaining 

manifold. We repeated the same process until all the manifolds were used as 

training and test sets. Moreover, given potentially unequal trial numbers for each 

visual and audiovisual condition, we repeated the same process 50-times and 

averaged the final discriminant channel output for each trial.  

We calculated sensitivity and criterion parameters from neural activity. For 

instance, if the classifier categorized a S+ trial as S+, we coded the trial as a hit. 

Instead, if the classifier wrongly categorized a S- trial as S+, we coded the trial as 

a false alarm. Using the same approach as in a signal detection theory Yes-No 

paradigm (Green & Swets, 1966), we estimated sensitivity (d´) and criterion (c) 

parameters for each time point in each trial based on neural activity derived hits 

and false alarms. The d’ parameter allowed us to evaluate the sensitivity of the 

classifier to discriminate between S+ and S- trials in the visual and audiovisual 
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conditions. Time points with d’ > 0 represents above chance level visual stimuli 

classification. On the other hand, the c parameter indexed the bias of the 

classifier to classify the trials as S+ or S- in the visual and audiovisual conditions. 

Specifically, time points with lower c values represent stronger biases to report 

the signal presence regardless the actual presence or absence of the signal. This 

procedure allowed us to directly compare participants behavioral performance 

based on signal detection theory parameters with the same parameters 

estimated from neural activity during the perceptual decision making. 

The decoding analysis outlined above was implemented in a time-resolved 

manner by applying it sequentially at each time point in steps of 10 ms, resulting 

in a decoders array of the same length as the number of trial time points. To 

characterize the temporal organization of the neural processes that underlie the 

auditory contributions to visual processing (Fig. 2), we implemented a temporal 

generalization (TG) method (King & Dehaene, 2014). Each decoder trained on 

any specific time point was applied to all other time points. If we average the 

decoder output over trials, this results in a squared temporal generalization 

matrix (TGM) with “training time” × “decoding time” values per condition. The 

diagonal values in the TGM contain the estimated parameters for the decoders 

trained and cross-validated in the same time points (ttrain = ttest). Instead, the row 

values in the TGM represent how a specific decoder trained at a time point ttrain in 

both visual and audiovisual conditions classifies visual and audiovisual trials as 

signal-present or signal-absent trials at earlier and later time points. In addition, a 

column gives insight into whether the neural patterns of activation of the two 
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conditions can are discriminated at time point ttest on the basis of the decoders 

trained on all other time points. In summary, observing that the same decoder 

can separate between conditions at multiple time points give us relevant 

information about how persistent in time neural representations are. 

 

Statistical analyses 

Cluster-based permutation tests:  

To statistically assess in which training and testing time combinations of the TGM 

the decoder successfully discriminated the trials as S+ or S- above chance level, 

we contrasted the d’ values against 0. We applied cluster-based permutation 

tests (Maris & Oostenveld, 2007). This procedure controls for multiple 

comparisons across decoding and testing time combinations by leveraging the 

inherently correlated nature of neighbouring observations. For each TGM 

condition, each d’ value was compared univariately against 0 using a t-score. 

Positive and negative clusters were then formed separately by grouping 

temporally adjacent data points whose corresponding P-values were lower than 

0.05 (two-tailed). Cluster-level statistics were calculated by summing the t-values 

within a cluster, and a permutation distribution of this cluster-level test statistic 

(1000 permutations per contrast) was computed. The null hypothesis was 

rejected for those clusters for which the p-value were smaller than 0.05, 

compared to the permutation distribution. In order to compare how sounds 

modulated d’ and c at different time points, we also applied cluster-based 
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permutation tests but contrasting the visual and audiovisual TGMs with each 

other.  
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