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Abstract

Motivation: Recent evidence suggests that bacterial and viral infections may cause or exacerbate many

human diseases. One method of choice to detect microbes in tissue is RNA sequencing. While the

detection of specific microbes using RNA sequencing offers good sensitivity and specificity, untargeted

approaches suffer from very high false positive rates and a lack of sensitivity for lowly abundant organisms.

Results: We introduce Pathonoia, an algorithm that detects viruses and bacteria in RNA sequencing

data with high precision and recall. Pathonoia first applies an established k-mer based method for species

identification and then aggregates this evidence over all reads in a sample. In addition, we provide an

easy-to-use analysis framework that highlights potential microbe-host cell interactions by correlating the

microbial to host gene expression. Pathonoia outperforms competing algorithms in microbial detection

specificity, both on in silico and real datasets. Lastly, we present two case studies in human liver and brain

in which microbial infection might exacerbate disease.

Availability: A Python package for Pathonoia sample analysis and a guided analysis Jupyter notebook

for bulk RNAseq datasets are available on GitHub https://github.com/kepsi/Pathonoia.

Contact: aliebho1@jhu.edu and s.bonn@uke.de

Graphical Abstract 1 Introduction

A common approach to obtain insights into molecular mechanisms of

disease is to sequence and analyze patient’s transcriptomes and compare

them to transcriptomes of healthy controls. These experiments capture

gene expression changes in human cells that might underly the disease

process, but they can also capture transcripts of viruses or bacteria that

infected those cells. While in many cases transcript information that cannot

be aligned to the human genome or transcriptome is discarded as unspecific

or contaminant, these non-human transcripts might be of microbial origin,

and they might shed important disease insights.

Especially in recent years it has become clear that the human body

harbors a vast amount of non-human cells. Certainly, these cells, mostly

bacteria, are predominantly found in the gut and skin microbiomes,

but other human tissues show abundance of microorganisms as well.

For example, the healthy human blood microbiome is discussed by
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Castillo et al. (2019) and even the healthy brain is suspected to contain

bacteria permanently according to Roberts et al. (2018).

For understanding the effect of certain agents in human tissues, dual

RNA-sequencing experiments (Westermann et al. (2012)) are conducted

in vitro. Nevertheless, it might be unknown that a pathogen relates

to a disease. Real patient’s data is needed for discovering it and its

co-morbidity, cause, or effects in the disease state.

The idea of finding foreign RNA in patient’s sequencing data

has been proposed before, for example by Sangiovanni et al. (2019)

and Rahman et al. (2018). The non-host part of a sample can be

analyzed as a metagenome. Metagenomes, as known from the studies of

microbiomes and environment, e.g. soil, come with their own challenges

(Breitwieser et al. (2017)) but many tools exist to measure their abundance

of bacteria and viruses, as proposed by Wood et al. (2019), Kim et al.

(2016) and Alawi et al. (2019).

Many publicly available datasets have been analyzed with this notion

by Simon et al. (2018) who created a database for a wide search of potential

disease related pathogens. Similarly, we (Rahman et al. (2019)) created a

database system for public small RNA experiments, that can be accessed

online for a wide range of diseases and pathogens.

Nevertheless, the non-host part of a transcriptomic sample is very

noisy, meaning that it contains majorly sequencing reads which do not

have a biological background. These reads may instead stem from (human)

processing contamination, bad sequencing quality and intentionally added

sequences as part of the experimental protocol. The problem of falsely

detected organisms (false positives) is a known problem for metagenomic

data analysis (McIntyre et al. (2017)), but for the "metagenomes" which

we observe here as a side-effect, this problem is oppressive.

Most metagenomic analysis tools measure pathogenic abundance by

classifying for each sequencing read the organism it may stem from and

summing up the reads according to their taxonomy. Analogous to the

gene-count matrix, an organism count matrix is created. The problem

with this approach is, that heavily (artificially) enriched sequences are

often aligning to the same random organism and therefore provoking

unreasonably high abundance. The traces of real pathogens may have

a very low abundance and may drop out of the analysis. Furthermore,

chimera, which are combined sequences of different species, cannot be

(correctly) identified (Edgar et al. (2011)).

Therefore, we propose a solution which is considering the sample as

a whole and measuring abundance of microorganisms across sequencing

reads. Retaining an improved measure of abundance, common sequencing

contamination can be differentiated from biological effects through the

group-wise comparisons of their mean abundance.

2 Approach

Here, we are describing the Pathonoia algorithm, trying to overcome

the problem of falsely detected organisms (false positives/FP) in a

metagenomic sample. Our motivation originates in samples which contain

a low number of true positives (TP) combined with many artificially

contaminating and low-quality RNA sequences. For these samples it is

especially hard to gain high specificity for the detected organisms.

Artificial sequences tend to result in many identical reads which are

then being added up in read counts for a specific organism which they

are randomly mapping to. In its evaluation step, Pathonoia excludes

identical sequences from the counting since a higher abundance of a

natural organism would result in a higher number of non-identical reads.

Furthermore, longer matches to an organism’s genome are accounted with

more weight than shorter ones.

Currently, Kraken’s metagenomic alignment is widely used and

accepted as most efficient. Our proposal of Pathonoia is using Kraken’s

k-mer matches to all existing bacterial and viral genomes in the NCBI

database and replace its read classification step with a sample wide

evaluation for organism abundance.

As displayed in Fig. 1F, with this approach Pathonoia is achieving

greater precision on the detected organisms than Kraken’s read

based evaluation alone and other Kraken-based abundance measuring

techniques. We measured this precision on an artificial dataset since this

is the only way to account for true false positives.

The evaluation of a biological sample with Kraken-only and Pathonoia

is visualized in Fig. 1C. Pathonoia is clearly able to reduce the number of

(falsely) detected organisms, but also improves the profile of possibly

abundant organisms, meaning the differences in "abundance counts"

between included species.

Making use of Pathonoia’s abundance measures of species, we propose

a downstream analysis for gaining biological results on a dataset (Fig. 1E).

Here, we propose to compare case and control samples in a differential

abundance analysis to uncover the potential involvement of a species in a

condition.

3 Methods

First, we describe Pathonoia, which has the goal to uncover organic RNA-

sequences from a mixture of artificial and metagenomic sequences. This

set of "noisy" sequences may stem from the unaligned reads from RNA

sequencing data from (human) transcriptome samples. Furthermore, our

benchmarking methods are being explained.

Second, we describe an analysis pipeline based on the output of

Pathonoia. Here, the goal is to distinguish biological signals from

experimental and statistical contamination. We provide two exemplary

studies with it. This pipeline is available as a guided analysis in a Jupyter

Notebook on GitHub.

Pathonoia

Only non-host-mapping reads are assumed as input for Pathonoia for

detecting biological signal in noisy RNA-sequencing data. SAMtools can

be used to assemble the corresponding fastQ files after using any aligner

(see Suppl. Section S1 for further details). This input is processed in two

major steps: metagenomic alignment with Kraken (Wood et al. (2019))

and Pathonoia’s sample-wide aggregation of k-mers.

Identifying the lowest common ancestor (LCA) for each k-mer in a sample

is accomplished using Kraken. We use minimizer and k-mer lengths l =

k = 31 for highest precision settings of Kraken 2 and the Kraken 2 index

for all viral and bacterial genomes in the NCBI nt database. The LCA for

a k-mer is the most specific taxonomic description of a set of organisms

that share this sequence. We use the taxonomic identifier (taxID) for the

implementation of the algorithm. The outcome of the alignment step is the

kraken-align file, which contains the classified k-mers for each read of a

sample. One example format of a classified read is:

C K025:418/1 Shamonda o.virus (taxid 159150) 100

0:20 159150:7 0:15 159150:6 1:5 0:2 2306583:1 0:10

The five fields are:

1. C or U if the read was classified or not

2. the read identifier as given in the fastQ file

3. the taxonomic name and taxID with which it was classified according

to the Kraken algorithm

4. the original read length

5. sequence of pairs in format taxID:Y, where Y is the number of k-mers

in a row which are classified with the same taxonomic identifier
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Fig. 1. Pathonoia reduces number of false positives in noisy metagenomic samples. A) The Pathonoia algorithm is based on Kraken 2, analyzing unaligned reads in RNAseq data. Kraken

generates k-mer assignments for each read, followed by a taxonomic classification (grey box). Pathonoia uses only the k-mer assignments of a whole sample and combines them into a

non-read-count based abundance measure. Unique x-mers in the whole sample are identified, where an x-mer are several k-mers in a row, e.g., first read (green), 5 k-mers, k = 7, x = 11.

For all unique x-mers belonging to the same organism, x is summed up into AO . If AO > AOT , a threshold of approximately one full read-length or 3 distinct k-mers, the species is

added to the list of organisms in the sample. B) Pathonoia and the downstream analysis template (Fig. 2) are available on GitHub. C) A spectrum of species reported in Kraken and Pathonoia,

highlighting the top 10 most abundant species. Kraken reported 7262 organisms of which 250 organisms are shown, which have more than 100 reads for a cell line sample infected with

Human Herpes Virus. Pathonoia reduces this list to 132 organisms and HHV and other Herpes viruses ascend in the ranking of reported species. D) Number of reported species with Kraken,

Pathonoia and Kraken with threshold for two datasets with 12 and 24 samples. The threshold version counts an organism only as "detected" if it counts at least 100 reads. A lower number

of detected organisms is desirable since that clears out the spectrum as shown in C) and reduces the number of FP. E) The aim of Pathonoia is to improve the precision of detected organisms

to make better claims about the presence of unexpected organisms in a sample. FP (sequencing errors, other sample bias or random alignments, especially with poor quality reads) should

be removed. Precision depends on TP and FP. True or false classification is defined by the presence of an organism in a sample. F) Based on a simulated dataset with 7 samples containing

twelve to 50 species, precision, recall and F1 are measured for Kraken, Kraken with threshold, Pathonoia and Bracken. Kraken’s recall is the highest as it contains the highest number of

species. Kraken is the base for all these algorithms and therefore they can only detect organisms which were detected by Kraken (with some exceptions, see Suppl. S1.1). With removing FP

from the Kraken results, every algorithm also loses some TP, which is why recall goes down. Thresholding alone even worsens precision. For precision and the balanced F1 score, Pathonoia

achieves best results. The downstream analysis (Fig. 2) helps to put samples and abundance measures in context of a dataset and can remove further sample bias.

In this example, 20 k-mers could not be identified (taxID = 0), seven k-

mers belong to the Shamonda orthobunya virus genome, followed by 15

unidentified k-mers and so on. Adding up the number of k-mers in a read,

in this example 20 + 7 + 15 + 6 + 5 + 2 + 1 + 10 = 66, the result is

always the read length subtracted by k + 1, here 100− (31 + 1) = 66.

Interpreting the Kraken alignment output and detaching it from the notion

of reads is the second and key step of Pathonoia. It is also described in

Suppl. Fig. SF1. Using a hashmap, every identified sequence of a sample

that is unique, is stored as key and its assigned taxID as value. We call

these sequences (keys) as x-mers, since they have length x = k + Y (k:

k-mer length, Y : number of consecutive k-mers identified with the same

taxID). Next, all lengths x of sequences from the same organism (taxID)

are summed up: AO =
∑

n

i=1
xi, with x ∈ X , the set of n distinct x-

mers of organismO. Only organisms surpassing a threshold of (our default)

AOT = 100 nucleotides (which corresponds to at least one fully mapping

reads) are considered for the next step and final output. In order to increase

certainty about a specific organism, the abundance measure AO of every

taxID on species level is summed with the abundance of genus and family

levels additionally: AO = AS + AG + AF . The intuition behind this

is that if an organism is indeed part of the sample, several different areas

of it are sampled and processed by chance. This may include areas which

are not specific to the organism’s genome. If a species can be detected on

species level though, the evidence can be increased by adding higher level

counts which have to stem from a specific species in any case. Finally, the

organisms can be ranked by their abundance AO . Nevertheless, the full

potential unfolds with comparing sample groups with each other.
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Fig. 2. Analyzing datasets with Pathonoia. A) Analysis workflow for a dataset. Transcriptome alignment (input: fastQ files) yields gene counts and unaligned reads. Unaligned reads are

analyzed by Kraken and Pathonoia as described in Fig. 1. A differential abundance (DA) analysis reports organisms that are more abundant in one sample group compared to another

(examples in C, G). An "organism of interest" (OoI) can be selected for understanding its role in a sample group, e.g., patients. [Patient-] Samples with (AOoI > 0) and without (AOoI = 0)

the OoI are selected for a differential gene expression (DE) analysis on the gene counts. Finally, a gene set enrichment analysis of up, down- or dis-regulated genes may uncover the pathways

which the OoI affected. (B-E) Fronto Temporal Dementia B) The dataset contains 30 cases of FTD (sub-groups shown in D) and 15 controls. Pathonoia reported 431 organisms over all

samples. C) The volcano plot shows 12 significantly (p-adj. < 0.05) DA organisms, ten of them up-regulated in FTD samples. The color scale shows the number of samples containing an

organism. Only two organisms were found in more than 5 samples. D) Dots show AO of B.stabilis per sample as it was present in most samples in C and therefore chosen as OoI. E) A

DE analysis between FTD patients with and without B.stabilis lead to a gene set of 34 up-regulated and 109 down-regulated genes, in total 143. These three gene sets were compared with

gene sets describing molecular functions and biological processes in a gene ontology analysis. The pathways’ enrichment ratios are shown with FDR≤ 0.5. [By B.stab] up-regulated genes

in FTD patients hint towards an immune reaction in the patient and the biological processes relate to neural pathways. (F-G) Fibrosis in Liver Diseases F) A dataset with 51 human liver

samples from patients with different liver diseases and fibrosis levels were analyzed with Pathonoia yielding 653 reported species over all samples. G) A DA analysis between non-fibrotic

samples and samples with fibrosis level ≥ 1 lead to 41 significant (p-adj. < 0.05) DA organisms, where only one organism was up-regulated in two non-fibrotic samples. Seven organisms

were present in more than nine fibrotic samples. A DE analysis between fibrotic samples with and without some of these organisms did not lead to any significant DE genes.

Benchmarking Pathonoia

The aim of our algorithm is the reduction of falsely detected organisms in a

metagenomic sample and therefore achieving as high precision as possible.

Precision can be measured by evaluating a simulated dataset, where the

presence (and absence) of every organism is known. Additionally, we

evaluated a biological sample for testing Pathonoia qualitatively. We

benchmark Pathonoia against read count-based abundance measuring

techniques. We want to emphasize on comparing the technique of

measuring abundance and do not intent to claim "improvements", but

rather adaptations for the aim of specific indication of lowly abundant

organisms in a very noisy metagenomic sample.

Read-count based abundance measures are represented by Kraken 2

(Wood et al. (2019)) and Bracken (Lu et al. (2017)). Kraken 2 is the

baseline for all algorithms in this benchmark. We ran all other abundance

measure algorithms on top of its output, which makes the precision

results comparable. No organism can be detected, if it wasn’t detected

by Kraken 2 with at least one k-mer (i.e., there is a maximum value for TP

and FP). Nevertheless, the way of counting and evaluating species differs

in the various algorithms. Our benchmark includes "Kraken with cut-off

minimum 5 reads", which means that an organism counts as detected

Kraken identifies minimum five reads originating from that same organism.

The pure Kraken abundance counts an organism as detected, if at least

one read is classified with it. Bracken is another tool based on Kraken

which corrects abundance measures, including the statistical distribution

of available genomes in the underlying database. Pathonoia may detect

organisms with which no read was classified since it evaluates on k-mer

level.

For calculating precision, we used seven simulated samples, which were

constructed by Ye et al. (2019) for benchmarking taxonomy classifiers in

metagenomics. They are samples containing DNA sequences from twelve

to 50 organisms which are found in common human microbiomes or

environmental metagenomes, for example the human gut or household. We
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oppose the common precision measurement techniques, which indicate if

reads were correctly identified or not. Instead, we focus on the (in)correct

presence of species. (Fig. 1E). Fig. 1F shows the average precision, recall

and F1 score over all seven samples (detailed values in Suppl. Tables ST1-

ST3). Overall, Pathonoia has an F1 score of 0.38 and the pure Kraken

algorithm has 0.1, yielding an improvement of 0.34/0.09 ≈ 393%.

Qualitative benchmarking can be performed by looking at biological

samples. The ground truth for the non-host sequencing reads is majorly

unknown, which is why false positives and negatives cannot be determined.

In Fig. 1C, We examined GEO sample GSM1444167, i.e. fibroblasts that

were infected with Human herpes virus (HHV) in vitro Rutkowski et al.

(2015). In vitro samples should be comparably clean, i.e., contain fewer

contaminating organisms, but Kraken could still identify 250 species in

the non-human reads which had over 100 reads. With Pathonoia, we

could reduce this number to 132. Furthermore, the organism with highest

abundance is the infecting Human alpha herpes virus 1 in the analysis with

Pathonoia, where it was not the case for the Kraken analysis alone.

Downstream Analysis

Applying Pathonoia on several samples in a dataset, results into a

data matrix containing for each sample the abundance measures AO

of all organisms found in at least one of the samples. This abundance

data, as well as some metadata about the samples, is the input for the

downstream analysis. The goal is to identify differences of pathogenic

abundance between sample groups, for example between diseased and

control samples. This pipeline is realized as "guided analysis" and available

online. In the following, we demonstrate the workflow exemplary on two

datasets compare Fig. 2.

The datasets used for case study are comprising 48 and 63 samples.

The first one is from an in-house study of Frontotemporal Dementia

(FTD) (Menden et al. (2020)), looking at brain tissue samples split into

disease and control according to Fig. 2B. The second dataset (Fig. 2F)

contains liver samples from patients in different fibrotic liver stages due to

one of four diseases: Autoimmune Hepatitis (AIH), Non-Alcoholic Fatty

Liver Disease (NAFLD), Primary Biliary Cholangitis (PBC) and Primary

Sclerosing Cholangitis (PSC).

A Principal Component Analysis (PCA) is executed as a first step of the

analysis pipeline. It serves as an "outlier check", where samples can be

identified which may be overly contaminated. Furthermore, the PCA plot

is colored by various available metadata (Suppl. Fig. SF3) for identifying if

a certain experimental setting may result into major contamination. At this

step, outlier samples are to be removed from the analysis (manually). In

the FTD study we removed 3 samples and in the fibrosis study 12 samples

were excluded. (Suppl. Fig. SF2) After re-executing the PCA for FTD and

coloring according to age, gender, flow cell and RIN score, no bias could

be pinpointed based on this metadata.

The group-wise comparison step includes the calculation of the mean

abundance per organism for all samples in a group, for example all

control samples. DESeq2 Love et al. (2014) is used for this differential

abundance analysis. Originally, this tool was developed for differential

gene expression analysis, but the same statistical model can be applied to

our data. For increasing the stability of DESeq2, organisms which have

zero abundance in most samples are excluded from the analysis. This is

usually done for transcriptome analysis as well (Lin et al. (2016)). The

output of this step is a list of organisms alongside their log2 fold change

value between the sample groups and a p-value adjusted for multiple

testing. A volcano plot colored by number of samples that an organism is

present in, gives an overview of these results. (Results for FTD and fibrosis

dataset in Fig. 2 C,G and Suppl. Tables ST4 and ST8)

Abundance visualization is the next step. The abundance is plotted per

sample group for the most significant organisms. Here, it can be identified,

if an organism plays a role in the whole sample group, or if the mean was

only elevated due to one extreme case. The latter case should happen

less often if more outliers were removed in the first step. In both studies,

we observe that most organisms show consistent increase in the diseased

samples but not in the controls (Suppl. Fig.s SF5 and SF7). The outcome

of this step is the selection of an organism of interest. In the FTD study, we

selected Burkholderia Stabilis, as it was the most prevalent organism of the

differentially abundant ones. Its occurrence in the samples is visualized in

the PCA plot in Suppl. Fig. SF4.

A differential gene expression analysis can help understanding if the

organism of interest has a biological origin. Here, the primary

transcriptome data is used for comparing samples that contain the organism

and samples which do not contain the organism. These sample groups

might be subgroup of another sample group. For instance, in the FTD

dataset, we only select patient samples for this comparison, to understand

which difference B.stabilis might make in the diseased case (and since it is

not present in any control, also). Using DESeq2 again, on the original read

counts, we retrieve a set of up- and down-regulated (DE-) genes. Ideally,

this set concludes as an effect of the presence of the organism of interest.

In the FTD study, this step resulted in a set of 143 significantly (p-adj.

value < 0.05) DE genes. (More details in Suppl. Section S3)

A Gene Ontology (GO) analysis can be performed based on these gene

set(s) for understanding the effect of the organism of interest. We perform

the gene set enrichment analysis with WebGestalt Wang et al. (2017).

(For the exact setting, see Suppl. Section S2). For the FTD study, all 34

upregulated genes were compared to the gene sets in the biological process

database (Suppl. Table ST7). Most of the top ten enriched gene sets relate

to pathways concerning the immune system and the results indicate an

anti-bacterial response in brain tissue triggered by B.stabilis.

4 Discussion

In an RNA-seq sample, a fraction of sequencing reads does not align

to the host’s transcriptome. Pathonoia was developed for making use

of this situation and detecting organisms in this data. We try to find

further information about the biological sample and evidence of potential

infections in human tissue samples.

Pathonoia’s precision exceeds the one of methods which were adopted

for this task previously. Those methods, not being designed for

this task, measure abundance based on read counts. We compared

our algorithm against other commonly used Kraken-based abundance

measuring techniques and showed a reduction of false positives.

For all simulated samples, used for benchmarking, the recall is

significantly higher than precision because of the high number of

organisms found with Kraken. Most TP are discovered (high recall,

Recall = TP

TP+FN
), but also a high number of FP are detected, which

in turn reduces precision (Fig. 1E). For improving certainty about Kraken-

detected organisms, a cut-off can be introduced ("Kraken min five reads"

in Fig. 1F) for reducing random hits. As a result, TP are reduced and both,

recall and precision are dropping. Having an alternative look at Bracken,

it does perform better than Kraken and is closer to Pathonoia’s values.

For the actual read-classification task, which Kraken and other tools

were built for, precision and other performance measures are usually over

95%Ye et al. (2019). We showed, that with measuring performance based

on the finding of specific organisms instead of correct classification of

reads, the F1 score drops to less than 20% with common techniques.

Pathonoia, in comparison, reaches up to 30%, which is much better

but still not practical if used as stand-alone solution. We hope to start

a new direction for the development of tools for gaining results with better
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biological interpretability. Pathonoia shows the best performance for the

task of organism detection. With it we suggest a methodology, that is based

on measuring abundance on sample level through adding up distinct sub-

sequences of nucleotides for the aim of specific indication of abundant

organisms in a very noisy metagenomic sample.

Looking at real sequencing data , we can observe various artifacts

(Fig. 1C). Some organisms seem to be present in many samples, even

though their presence was never mentioned or explained in the original

study. They can be detected not only with Pathonoia, but also other

algorithms. The most questionable one is Proteus phage VB PmiS-Isfahan.

Phages are frequently used in biotechnical applications Kortright et al.

(2020) and may serve for a quality check for the sequencing data. However,

no evidence can be found for this hypothesis.

In an HHV-infected in vitro sample, Pathonoia detected three different

herpes virus strains in the top hits, while Kraken could only detect

the major one, Human alpha herpes virus 1. Furthermore, Proteus

phage VB PmiS-Isfahan was the top hit for the Kraken algorithm. Its

genome is relatively short (3.8 MB), and it was not mentioned to be part

of the sample. Klebsiella Pneumonaie and Pasteurella multocida were

found through both algorithms with relatively high abundance and are

species who commonly appear in our environment Brown and Seidler

(1973); Weber et al. (1984). They may have entered the sample during

its collection, transport or manual processing. Salmonella enterica and

Staphylococcus aureus on the other hand are extensively researched

and sequenced organisms which inhabit and infect the human body

(Knodler and Elfenbein (2019),Taylor and Unakal (2021)). Nonetheless,

it cannot be determined which of these organisms was actually in the

sample or contaminated it during the handling of a human being, for

example in a hospital setting. Since this sample was infected in vitro, it

usually implies, that it is comparably clean. Pathonoia can detect the known

infection, but also helps to reduce the noise of random computational hits.

For increasing certainty about the detected organisms, samples should

be considered in the reference of a whole dataset. Factors like sampling

bias and sequencing noise may shadow the observations made on a single

sample. We propose a downstream analysis comparing sample groups

of a dataset to reduce the amount of sequencing artifacts and only find

organisms which are unique to a defined condition. Furthermore, we

suggest analyzing the transcriptome data of the host, from which our data

was derived, in the light of the results of that comparison. Comparing

the transcriptome of samples containing a bacterium versus samples not

containing it within the same condition can give important indications on

which effect the bacteria can have on the host.

Pathonoia and the downstream analysis are provided online on

https://github.com/kepsi/Pathonoia. It produces several plots for an

exploratory analysis. Some decisions must be taken manually, as for

example the selection of an organism of interest once displayed with their

differential abundance. Analyzing the results carefully is important, since

a group difference in pathogenic load can come as well from a badly

designed or executed experiment. Yet, to understand if the organism of

interest has a biological origin, the transcriptome data can be used.

An FTD case study indicates that some patients may have (had) a B.stabilis

infection in the brain. It was shown in literature that members of the

Burkholderia cepacia complex, to which B.stabilis belongs, were able

to infect human brain tissue and cause brain abscesses Hobson et al.

(1995) and meningitis Peralta et al. (2018). Furthermore, Burkholderia

pseudomallei, belonging to the same genus, are up-regulated in two

independent, publicly available datasets concerning neurodegenerative

diseases as shown in the Small RNA Expression Atlas Rahman et al.

(2019) platform (Suppl. Table ST5). Nonetheless, it remains unclear

whether B.stabilis plays an important role in FTD or could enter the brain

for example due to already degenerated brain tissue. Outbreaks of B.stabilis

in hospitals are reported frequently Heo et al. (2008); Martin et al. (2011).

There was a major outbreak in Swiss hospitals due to contaminated

washing gloves in 2016 Sommerstein et al. (2017). It is not known

if patients from this cohort were treated there or in another hospital

which had an unreported outbreak and if they could have been infected

there. Further experiments should be conducted, such as dual RNA-seq

experiments Westermann et al. (2012), which may help to answer, for

example, the question how brain cells get affected by B.stabilis’ presence,

and if it may be able to cause disease or change its progression.

Fibrotic livers are prone to bacterial infection through translocation from

the gut (Ponziani et al. (2018)) and we could observe this in our samples

as well. We found 41 species significantly differentially abundant where

only one of them was highly abundant in 2 non-fibrotic samples. For the

three most significant organisms, we conducted the human transcriptome

differential expression analysis between fibrotic samples with and without

the species, but it did not show any DE genes (for two species, Acidovorax

sp.T1 and Kocuria palustris) and no enriched pathways for 19 DE genes

of the third organism (Corynebacterium matruchotii). This may support

the hypothesis, that liver fibrosis is not a reaction to infection, but rather

allows infection to happen.

5 Conclusion

Our aim was to make use of the non-host part of RNA sequencing

experiments and find potential infections or microbial abundance in the

tissues under study. It is the nature of lowly abundant organisms that any

algorithm cannot detect them with high certainty. Many random hits lead

to noise in the data. With our proposed algorithm Pathonoia, it is possible

to polarize some organisms from the noise. In contrast to the aim of other

metagenomic algorithms, we focus on the detection of organisms, i.e.,

answering the question if an organism is present in the sample at all. Also,

we wanted to overcome the commonly high false positive rate, which is

especially increased in the kind of data we are focusing on. By viewing

the full sample instead of individual sequencing reads, we reach almost

400% improvement in precision and uncovered pathogenic traces from

noisy data.

We developed an algorithm for the analysis of non-host RNA

sequencing reads which is specialized on detecting lowly abundant

organisms. Furthermore, we proposed a downstream analysis for detecting

microbiotic abundance in a group of samples within a dataset and for

suggesting their influence on the host’s transcriptome. Two case studies

give examples of the added value of our algorithm Pathonoia. They show

that the developed algorithm can model biological context and may be able

to support building new hypotheses and getting insights to disease.
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