
Heterogeneity in Neuronal Dynamics is Learned
by Gradient Descent for Temporal Processing

Tasks

Chloe N. Winston1,2,3, Dana Mastrovito4, Eric Shea-Brown3,4,5, and
Stefan Mihalas3,4,5

1Department of Neuroscience, University of Washington, Seattle, WA
2Department of Computer Science, University of Washington, Seattle,

WA
3University of Washington Computational Neuroscience Center, Seattle,

WA
4Allen Institute for Brain Science, Seattle, WA

5Department of Applied Mathematics, University of Washington,
Seattle, WA

Keywords: after-spike currents, generalized-leaky-integrate-and-fire model, neu-
ronal heterogeneity, rate-based neuron model, recurrent neural network

Abstract

Individual neurons in the brain have complex intrinsic dynamics that are highly di-
verse. We hypothesize that the complex dynamics produced by networks of complex
and heterogeneous neurons may contribute to the brain’s ability to process and respond
to temporally complex data. To study the role of complex and heterogeneous neu-
ronal dynamics in network computation, we develop a rate-based neuronal model, the
generalized-leaky-integrate-and-firing-rate (GLIFR) model, which is a rate-equivalent
of the generalized-leaky-integrate-and-fire model. The GLIFR model has multiple dy-
namical mechanisms which add to the complexity of its activity while maintaining dif-
ferentiability. We focus on the role of after-spike currents, currents induced or mod-
ulated by neuronal spikes, in producing rich temporal dynamics. We use machine
learning techniques to learn both synaptic weights and parameters underlying intrin-
sic dynamics to solve temporal tasks. The GLIFR model allows us to use standard
gradient descent techniques rather than surrogate gradient descent, which has been uti-
lized in spiking neural networks. After establishing the ability to optimize parameters

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

using gradient descent in single neurons, we ask how networks of GLIFR neurons learn
and perform on temporally challenging tasks, such as sinusoidal pattern generation and
sequential MNIST. We find that these networks learn a diversity of parameters, which
gives rise to diversity in neuronal dynamics. We also observe that training networks
on the sequential MNIST task leads to formation of cell classes based on the cluster-
ing of neuronal parameters. GLIFR networks have mixed performance when compared
to vanilla recurrent neural networks but appear to be more robust to random silenc-
ing. When we explore these performance gains further, we find that both the ability
to learn heterogeneity and the presence of after-spike currents contribute. Our work
both demonstrates the computational robustness of neuronal complexity and diversity
in networks and demonstrates a feasible method of training such models using exact
gradients.

1 Introduction
Artificial neural networks (ANNs) have been used to emulate the function of biological
networks at a system level (Yamins et al., 2014; Rajan, Harvey, & Tank, 2016). Such
models rely on the fantastic capacity of ANNs to be trained to solve a task via back-
propagation, using tools developed by the machine learning community (Goodfellow,
Bengio, & Courville, 2016). However, the way in which the neurons in recurrent ANNs
integrate their inputs over time differs from neuronal computation in the brain (Fig-
ure 1A-B). Primarily, biological neurons are dynamic, constantly modulating internal
states in a nonlinear way while responding to inputs. A biological neuron maintains a
membrane potential that varies not only with input currents but also through history-
dependent transformations. When its voltage exceeds some threshold, a neuron pro-
duces a spike, a rapid fluctuation in voltage that is considered the basis of neuronal
communication. While these are the defining features of a neuron, neurons exhibit
additional, more complex types of dynamics, including threshold variability and burst-
ing. Threshold adaptation gives rise to threshold variability and thus modulates the
sensitivity of a neuron to inputs. A proposed mechanism is that the threshold fluctu-
ates in a voltage-dependent manner, possibly due to the gating mechanisms of various
ion channels (Fontaine, Peña, & Brette, 2014). Another type of dynamic is respon-
sible for bursting and related spiking behaviors. Bursting results from depolarizing
currents which can be induced by prior spikes. A broader array of spiking patterns can
be explained by considering both hyperpolarizing and depolarizing after-spike currents,
currents that are modulated by a neuron’s spiking activity (Mihalaş & Niebur, 2009).

In sum, biological neuronal dynamics can be thought of as continuous, nonlinear
transformations of internal neural states, such as ionic currents and voltage. This is
in contrast to a typical artificial neuron that maintains a single state resulting from a
static, linear transformation of an input vector. Moreover, diversity in intrinsic neu-
ronal mechanisms give rise to heterogeneity in the dynamics that biological neurons
express. Such heterogeneity is generally absent in artificial neural networks. For ex-
ample, not all neurons in the brain display bursting behavior or threshold adaptation.
The brain also exhibits diversity in neuronal properties, such as ionic conductances,
threshold, and membrane properties. This diversity is evident from experiments fitting

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

neuronal models to spiking behavior observed in the mouse cortex (Teeter et al., 2018).
Heterogeneity of such neural characteristics further amplifies the diversity in neuronal
dynamics. In contrast, the only diversity in typical ANNs lies in synaptic weights. Typi-
cal recurrent neural network (RNN) neurons do not exhibit intrinsic dynamics, and each
neuron responds identically to input with a common, fixed activation function.

Yet, vanilla RNNs which employ linear weighting of inputs and nonlinear transfor-
mation of hidden states over time (Figure 1A) have managed to perform quite well on
complex tasks without incorporating the complexity and heterogeneity prominent in bi-
ological networks. For example, variations of RNNs have been successful at classifying
text (Liu, Qiu, & Huang, 2016) and classifying images from a pixel-by-pixel presen-
tation (Goodfellow et al., 2016; Li, Li, Cook, Zhu, & Gao, 2018; LeCun, Bengio, &
Hinton, 2015). This raises the question, what, if any, is the advantage of neuronal dy-
namics and the diversity thereof? Do neuronal dynamics enable the modeling of more
temporally complex patterns? Does neuronal heterogeneity improve the learning ca-
pacity of neural networks?

We propose that both complex neuronal dynamics, such as after-spike currents, and
heterogeneity in neuronal dynamics across a network would enhance a network’s capac-
ity to model temporally complex patterns. Moreover, we hypothesize that heterogeneity
in dynamics will be optimal and will be learned when parameters are optimized in ad-
dition to synaptic weights during training. In order to evaluate these hypotheses, we
develop and test a neuronal model whose parameters can be optimized through gradient
descent.

A set of approaches has been previously used to develop neuronal models which
encapsulate the above-mentioned biological complexities. These range from models
that include a description of channels (Hodgkin & Huxley, 1952; Morris & Lecar, 1981)
to more compact models that synthesize the complexities into more abstract dynamical
systems (Izhikevich, 2003) or hybrid systems (Mihalaş & Niebur, 2009). Networks of
such neurons have been constructed (Markram et al., 2015; Billeh et al., 2020), but they
are difficult to optimize, either to solve a task or to fit biological data.

Small increases in dynamical complexity can have significant benefits. Adapta-
tion dynamics can help neural networks perform better on predictive learning tasks
(Burnham, Shea-Brown, & Mihalas, 2021) and achieve better fits of neuronal and be-
havioral data in mice (Hu et al., 2021). Inroads have been made to allow the opti-
mization of spiking models using backpropagation via surrogate gradients (Huh & Se-
jnowski, 2018; Neftci, Mostafa, & Zenke, 2019). Such methods have revealed the
importance of neuronal integration and synaptic time scales (Perez-Nieves, Leung,
Dragotti, & Goodman, 2021) and adaptation (Salaj et al., 2021; Bellec et al., 2020)
in network computation. Previous models (Perez-Nieves et al., 2021; Burnham et al.,
2021) have also shown the importance of time-scale diversity in temporal tasks. How-
ever, these models are still significantly simpler than those found to fit single neuron
data well (Teeter et al., 2018). To allow larger scale dynamics to be fit well, we want
to be able to optimize neural networks with the type of dynamics proven to fit such
complexities. Here we focus on the addition of after-spike currents, which can lead to a
wide set of observed behaviors, including bursting (Gerstner, Kistler, Naud, & Paninski,
2014; Mihalaş & Niebur, 2009).

While spiking neurons are more biologically realistic, they are generally more dif-

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

ficult to optimize. Thus, we develop a model which is typically differentiable, but
becomes a spiking model in the limit of taking a parameter to 0. We refer to this novel
neuronal model as the generalized leaky-integrate-and-firing-rate (GLIFR) model. The
GLIFR model is built on the spike-based generalized-leaky-integrate-and-fire (GLIFR)
model (Teeter et al., 2018) and produces the equivalent of after-spike currents, dynam-
ics dependant on a neuron’s firing history. Unlike the GLIF model, the differentiability
of the GLIFR model enables the application of standard deep learning techniques to
optimize parameters underlying intrinsic neuronal dynamics. We use gradient descent
to optimize networks of GLIFR neurons on several temporal tasks and assess the per-
formance and robustness of these networks. We find that it is possible to optimize
both intrinsic neuronal parameters and synaptic weights using gradient descent. Opti-
mization of neuronal parameters generally leads to diversity in parameters and dynam-
ics across networks. Moreover, when we test several variations of the GLIFR model,
we find that both the presence of neuronal dynamics and the heterogeneity in neu-
ronal properties improve performance. While the GLIFR networks are outperformed
by long-short-term-memory (LSTM) networks, our networks have mixed performance
when compared to vanilla RNNs on a pattern generation task and a temporally complex
sequential MNIST task. In sum, we develop a method to optimize neuronal parameters
in individual neurons and thereby suggest a computational role of neuronal complexity
and heterogeneity in the brain. We provide code for creating and optimizing GLIFR
models in Python.

2 Related Work
In our work, we assess how, if at all, the presence of neuronal dynamics, as well as
the heterogeneity thereof, confers performance improvements in RNNs. Prior work has
developed RNNs that express biologically realistic dynamics, giving rise to a class of
networks known as spiking neural networks (SNNs). One example of an SNN (Zenke
& Vogels, 2021) uses a leaky-integrate-and-fire dynamic across its neurons. In these
neurons, the membrane potential was modulated according to Equation 1 where S rep-
resents whether the neuron is spiking, and V represents the neuron’s membrane poten-
tial.

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1: A. Schematic of a “vanilla” RNN cell or neuron. A RNN neuron maintains
a hidden state r(t) that is computed at each timestep by linearly weighting the input
signal and the previous output of itself and neighboring neurons through a recurrent
connection. The output s(t) is computed by applying a nonlinear transformation (e.g.,
tanh or sigmoid) to r(t). B-C. Schematics of GLIFR neuron. Each neuron maintains
a synaptic current Isyn that is computed at each timestep by linearly weighting (Win)
the input signal and the previous output of itself and neighboring neurons through a
recurrent connection (Wlat). The neuron’s voltage V decays over time according to
membrane decay factor km and integrates synaptic currents and after-spike currents Ij
over time based on membrane resistanceRm and membrane decay factor km. Addition-
ally, the voltage tends towards Vreset through a continuous reset mechanism based on
the firing rate at a given time. An exponential transformation of the difference between
the voltage and the threshold voltage yields a continuous-valued normalized firing rate,
which varies between 0 and 1. The normalized firing rate, along with terms aj and rj ,
is used to modulate the after-spike currents that decay according to decay factor kj .
The dynamics present in a GLIFR neuron give rise to its key differences from RNN
neurons; GLIFR neurons can express heterogeneous dynamics, in contrast to the fixed
static transformations utilized in RNN neurons.

V (t+ dt) = (e−dt/τmV (t) + (1− e−dt/τ)I(t))(1− S(t))

S(t) = Θ(V (t)− Vth)
I(t+ dt) = e−dt/τsynI(t) +WSpresynaptic(t) +WrecS(t)

(1)

At each timestep, the voltage exponentially decays towards 0 while being increased
by the neurons’ synaptic currents that also decay exponentially. Spiking drives the volt-
age to 0. Only synaptic weights were trained, and a surrogate gradient was employed
to address the difficulty presented by the undifferentiable Heaviside function. Specifi-
cally, when computing gradients of the loss with respect to parameters, the gradient of
the Heaviside function was approximated by a smoother function (Equation 2). Modi-
fying the gradient descent technique only to allow for this surrogate gradient, (Zenke &
Vogels, 2021) achieved high performance on an MNIST task.

f(x) =
1

(β|x|+ 1)2
(2)

Further work has studied the effect of spike frequency adaptation on network per-
formance, using models of after-spike currents. Spike-frequency adaptation improved
the performance of LIF SNNs on temporally challenging tasks, such as a sequential
MNIST task where the network must classify images of handwritten images based on
a pixel-by-pixel scan, an audio classification task where the network must identify si-
lence or spoken words from the Google Speech Commands Dataset, and an XOR task
where the network must provide the answer after a delay following the inputs (Salaj et
al., 2021). These networks were found to approach RNN performance on the second
audio classification task.

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

The work described thus far used spiking models of biological dynamics and did
not explore the advantage heterogeneity could confer. Several approaches have been
taken to this end. One approach is to initialize an SNN with heterogeneous dynam-
ics but optimize only synaptic weights. This method achieved comparable or higher
performance than ANNs that employed convolutional and/or recurrent transformations
on an object detection task (She, Dash, Kim, & Mukhopadhyay, 2021). A second ap-
proach is to optimize intrinsic neuronal parameters in addition to synaptic weights.
Under the hypothesis that neuronal heterogeneity is computationally advantageous, the
learned parameters will be diverse across the trained network. To this end, one study
extended the surrogate gradient technique for LIF SNNs to also optimize membrane
and synaptic time constants across networks (Perez-Nieves et al., 2021). It was found
that these networks learned heterogeneous parameters across the network when trained
on temporal MNIST tasks, a gesture classification task, and an auditory classification
task. On some tasks, learning parameters improved performance over learning synaptic
weights alone. Learning parameters relied on surrogate gradients. Our work establishes
a method of training neuronal parameters with standard gradient descent by using a rate-
based neuronal model; moreover, this model additionally expresses after-spike currents
as schematized in Figure 1A-B.

To summarize, previous work has suggested that heterogeneity in integration and
synaptic time scales improves network performance. This opens the door to the ques-
tions we address here: whether after-spike currents that produce complex dynamics
within individual neurons can be trained, whether these after-spike currents improve
network performance, and whether training naturally leads to their heterogeneity. It
also invites the question of whether neuronal models with these complex dymamics
can be designed that learn without employing a surrogate gradient technique. In what
follows, we show that this is possible, and illustrate how this results in heterogeneous
neuronal dynamics as well as mixed performance relative to vanilla RNNs.

3 Model for After-Spike Currents
We develop a neuronal model that exhibits after-spike currents and is conducive to
gradient descent (Figure 1B, C). To do this, we build on a previously described spike-
based GLIF model that incorporates after-spike currents (Teeter et al., 2018). Although
prior work has used surrogate gradient methods for optimizing discrete spiking neural
networks, we transform this GLIF model into what we term a GLIFR model, which
is rate-based to facilitate optimizing neuronal parameters with traditional gradient de-
scent mechanisms. Specifically, we modify the GLIF3 model from (Teeter et al., 2018)
to produce firing rates (Equation 4) rather than discrete spikes (Equation 3). This rate-
based approach enables the use of exact gradients rather than surrogate gradients across
the spiking function. Additionally, it is more akin to vanilla RNNs that utilize smooth
activation functions, thereby motivating the application of standard deep learning tech-
niques.

Below, we describe how state variables are computed at each timestep in the GLIFR
model, comparing the computation to that in the GLIF model. We use a subscript s
for the GLIF state variables and no subscript for the equivalent GLIFR variables. We

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

use superscript p to represent the index of the neuron in consideration and l for the
associated layer where postsynaptic layers are indexed with larger numbers than are
presynaptic layers. For example, sp,l(t) defines the normalized firing rate of the pth

neuron in the lth layer.
The discrete spiking equation can be expressed as in Equation 3. H refers to the

Heaviside function where H(x) = 1 when x > 0 and H(x) = 0 when x ≤ 0. In the
GLIFR model, we define sp,l(t), the normalized firing rate that is unitless and varies
between 0 and 1 (Equation 4). A raw firing rate sp,lr (t) = 1

τ
sp,l(t) may be derived

where τ (ms) represents how often we check if the neurons has crossed the threshold,
and we set τ to dt throughout the study. While s represents a normalized firing rate, for
simplicity of terminology we will refer to it as the firing rate. The parameter σV (mV)
controls the smoothness of the voltage-spiking relationship, with low values (σV <<
1mV) enabling production of nearly discrete spikes and higher values enabling more
continuous output (Figure 2A, B). We used σV = 1mV for all simulations, unless
otherwise noted. Thus, for the GLIF and GLIFR models, respectively, spiking is defined
as follows:

sp,ls (t) = H(V p,l(t)− V p,l
th) (3)

sp,l(t) =
1

1 + e−(V
p,l(t)−V p,l

th)/σV
(4)

where (3) corresponds to the GLIF and (4) to the GLIFR model.
After-spike currents are modeled as a set of separate ionic currents (correspond-

ing to j = 1, 2, . . .) as in Equation 6. We use two after-spike currents with arbitrary
ionic current equivalents, but this model can theoretically be extended to more currents.
As in the GLIF model (Equation 5), decay factor kp,lj (ms−1) is used to capture the
continuous decay of the current, and the “spike-dependent current” is determined by
multiplicative parameter rp,lj and additive parameter ap,lj (pA). In the GLIFR model
though, this “spike-dependent current” is scaled by the raw firing rate 1

τ
sp,l.

dIsp,lj (t)

dt
= −kp,lj I

p,l
j (t) + (aj + rjI

p
j (t− dt))sp,ls (t) (5)

dIp,lj (t)

dt
= −kp,lj I

p,l
j (t) + (aj + rjI

p
j (t− dt))1

τ
sp(t− dt) (6)

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2: A. Sample responses to constant input. These plots show example outputs
of two neurons when provided with a constant input over a 40 ms time period. The
two neurons share identical membrane-related parameters and decay factors for after-
spike currents. The neuron whose output is traced in purple has the following after-
spike current related parameters: r1, r2 = −1; a1, a2 = −5000pA. The neuron whose
output is represented in green has the following parameters: r1 = −1, r2 = 1, a1 =
5000pA, a2 = −5000pA. The difference in after-spike current parameters gives rise to
different types of dynamics. The lefthand column contains outputs produced by neurons
with σV = 1, whereas the righthand column contains outputs produced by neurons with
σV = 0.001mV , demonstrating the ability of the GLIFR neuron to produce spike-like
behavior while maintaining its general differentiability. B. Sample responses to differ-
ent amplitude inputs. These plots show example outputs of a neuron when provided
with different magnitudes of constant input over a 40 ms time period. Larger inputs ap-
pear to yield higher-frequency oscillations in the neuron’s output. The lefthand column
contains outputs produced by neurons with σV = 1mV , whereas the righthand column
contains outputs produced by neurons with σV = 0.001mV .

Synaptic currents, currents resulting from input from the previous layer as well as
lateral connections, are modeled according to Equation 8. We do not include an ex-
ponential decay term for simplicity as we focus on cellular properties, and the model
is equivalent in the discrete and continuous space. The first term in this equation rep-
resents the integration of firing inputs from the presynaptic layer and the second term
describes the integration of firing inputs from the same layer through lateral connec-
tions. The latter connection is associated with a synaptic delay denoted ∆t. We use
∆t = 1ms.

Iqs,syn(t) =
∑
p

W pq
in s

p,l−1
s (t− dt) +

∑
p

W pq
lats

p,l
s (t−∆t) (7)

Iqsyn(t) =
∑
p

W pq
in s

p,l−1(t− dt) +
∑
p

W pq
lats

p,l(t−∆t) (8)

Here, Wpq (pA) defines how much the presynaptic spiking outputs (of neuron p)
affects the postsynaptic current (of neuron q).

Finally, voltage is modeled similarly to in a traditional GLIF model (Equation 9),
but in order to preserve the simplicity of our model to facilitate gradient descent, we
ignore the more complex reset rule that is used in the GLIF model (Teeter et al., 2018).
Instead, we set fr = 1 in Equation 10.

dV p,l
s (t)

dt
= −kp,lm V p,l(t− dt) +Rmk

p,l
m

(
I0 + Ip,lsyn(t) +

∑
j

Ip,lj (t)

)
− fr(V p,l(t− dt)− Vreset)sp,ls (t)

(9)

dV p,l(t)

dt
= −kp,lm V p,l(t− dt) +Rmk

p,l
m

(
I0 + Ip,lsyn(t) +

∑
j

Ip,lj (t)

)
− fr(V p,l(t− dt)− Vreset)

1

τ
sp,l(t− dt)

(10)

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

Here, V p,l(t) decays according to km (ms−1). It integrates current based on re-
sistance Rm (GΩ). Voltage also tends towards the reset voltage Vreset (mV) at a rate
proportional to the firing rate sp,l. This is a continuous equivalent of the discrete voltage
reset.

Varying the values of ap,lj and rp,lj can give rise to a variety of complex patterns in-
cluding bursting. As shown in Figure 2A, hyperpolarizing values enable the neuronal
firing rate to oscillate slightly, and a combination of hyperpolarizing and depolarizing
after-spike currents enable regular oscillations in firing rate. Because we model firing
rates rather than individual spikes, we take this as a form of bursting. We furthermore
find that for a given set of neuronal parameters, larger inputs yield higher-frequency
oscillations in firing rate (Figure 2B). We note that in these simulations and later in
trained networks, the GLIFR model is theoretically capable of producing both biologi-
cally plausible patterns and less biologically realistic activity.

4 Method for Training Weights and Parameters in GLIFR
Networks

We use standard gradient descent to optimize networks of GLIFR neurons, training both
synaptic weights and parameters in each neuron separately, similar to (Perez-Nieves et
al., 2021). In this way, the network can learn heterogeneous parameters across neu-
rons. To enable simulating these networks during training, we discretize the after-spike
current and voltage equations as shown in Equations 11 and 12 respectively.

Ip,lj (t) = Ip,lj (t− dt)(1− kp,lj dt) + (ap,lj + rp,lj I
p,l
j (t− dt))1

τ
sp,l(t− dt)dt (11)

V p,l(t) = V p,l(t− dt)(1− kp,lm dt) +Rp,l
m k

p,l
m

(
Ip,l0 + Ip,lsyn(t)

+
∑
j

Ip,lj (t)

)
dt− 1

τ
sp,l(t)dt(V p,l(t− dt)− Vreset)

(12)

We introduce several changes in variables to enable training multiplicative terms and
to promote stability. Because multiplicative terms can pose challenges for optimization
by gradient descent, we keep resistance fixed and do not optimize it. Instead, while
we do optimize km, we optimize the product WpqRqkqdt rather than Wpq (either for
incoming weight or lateral weights) or Rq individually, and we refer to this product as
ωpq. This combines the synaptic current and voltage computations.

We also add biological constraints to several parameters to maintain stability through
training. In biological systems, km and kj are restricted to be positive since they rep-
resent rates of decay. Moreover, to maintain stability, decay factors should be kept
between 0 and 1

dt
throughout training. To achieve this constraint without introducing

discontinuities in the loss function, we optimize t∗ = ln(kdt
1−kdt) for each decay factor k.

Thus, t∗ can be any real number, whereas k = sigmoid(t∗) · 1
dt

is the decay factor we

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

use when simulating neural activity. In this way, the value of k that is used is always
between 0 and 1

dt
.

The term rj can also introduce instability, so we use a similar method to constrain
rj to [−1, 1]. We optimize t∗ = ln(

1−rj
1+rj

) and retrieve rj using rj = 1− 2 · sigmoid(t∗),
which is bounded between −1 and 1.

The units of all states maintained by the GLIFR neuron are shown in Table 1, and
the units of all trainable parameters are shown in Table 2. Note that we use j = 1, 2 in
all our simulations to model two after-spike currents.

We employ a deterministic initialization scheme to decrease the likelihood that the
network will learn parameters underlying exploding or saturating firing rates; specifi-
cally, we initialize the network with small decay constants and thresholds close to the
reset voltage of 0mV . We use two initialization schemes in our experiments to test the
effects of heterogeneous and homogeneous initialization. Parameters associated with
both schemes are described in Table 3. Note that the neuron described is in a layer with
N neurons.

In contrast to previous work (Perez-Nieves et al., 2021) with spiking models, we
find that standard gradient descent without surrogate gradients suffices to train GLIFR
networks. While this relies on the use of a rate-based model rather than a spiking model,
GLIFR neurons are capable of producing nearly discrete outputs when σV is taken in
the limit to 0. Importantly, by utilizing this scheme, we are able to extend our model
to account for after-spike currents, a significant, albeit complex, dynamic in biological
networks.

5 Testing the Optimization of Neuronal Parameters for
Learning Realizable Signals

We first confirm the ability of neuronal parameters to be optimized through gradient
descent in a theoretically simple task - to learn a target that is known to be realizable by
a GLIFR.

As shown in Figure 3A, we initialize a single GLIFR neuron and record its response
to a constant input stimulus over a fixed period of time (10 ms with timestep duration of
0.05 ms.) This is our target neuron. We then create a second neuron (learning neuron)
that is equivalent to the target neuron only in the incoming weights used. We train the
learning neuron to produce the target neuron’s output, allowing it to learn the parameters
that were altered. We used Adam optimization with a learning rate of 0.001.

We tested the ability of the learning neuron to learn the pattern produced by the tar-
get neuron. Figure 3B-C show that a single neuron successfully learned to reproduce the
dynamics of the target neurons. However, the final parameters learned by the learning
neuron differed from the parameters in the target neuron (Figure 3D), illustrating that
different internal mechanisms can lead to similar dynamics (Prinz, Bucher, & Marder,
2004). This supports the idea that varying distributions of parameters across a network
may nevertheless lead to similar network function.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1: List of states in GLIFR neurons, along with their units.
V (t) voltage mV

s(t) normalized firing rate 1

Ij(t) after-spike current pA

Isyn(t) synaptic current pA

Table 2: Trained Parameters. List of trainable parameters in GLIFR networks, along
with their units. Here, indices p, l refer to neuron p in layer l, so that individual neuron
parameters are trained separately.

V p,l
th threshold mV

ωpqin , ωpqlat combined synaptic weights mV

ap,lj additive constant in after-spike current pA

rp,lj multiplicative constant in after-spike current unitless

kp,lj decay factor for after-spike current ms−1

kp,lm voltage decay factor ms−1

Table 3: Parameter Initialization. This table describes how each trainable parameter was
initialized in GLIFR neurons either homogeneously or heterogeneously across neurons.
Note that in both schemes, ω, rj , and kj were initialized with at least some amount of
heterogeneity.

parameter homogeneous heterogeneous

Vth 1mV U(−1, 1)mV

ωpq U(− 1
N
, 1
N

)mV U(− 1
N
, 1
N

)mV

apj U(−0.01, 0.01)pA U(−0.1, 0.1)pA

rpj U(−0.01, 0.01) U(−0.1, 0.1)

kpj 2ms−1 U(1.5, 2.5)ms−1

kpm 0.05ms−1 U(0.02, 0.06)ms−1

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3: A. Testing optimization in single neurons for realizable signals. In the re-
alizable pattern generation task depicted here, a neuron (the target neuron) is used to
create the target firing pattern. A second neuron (the learning neuron) is initialized with
different parameters and learns parameters to produce the target. B. Training loss. This
plot shows an example trace of mean-squared error over training of a single neuron. C.
Output of learning neuron. This plot shows the output of the learning neuron prior to
training and after training, along with the target, demonstrating the ability of a single
GLIFR neuron to learn simple patterns. D. Learned parameters. This plot depicts the
difference between the values of the trainable parameters in the learning neuron and the
corresponding values in the target neuron over training epochs. Note that a value of 0
represents equivalence to the target network in a particular parameter.

6 Strategy for Analyzing Task Learning and Performance
After verifying the theoretical ability to optimize neuronal parameters in simple GLIFR
systems, we turn to more complex tasks. As in previous work (Perez-Nieves et al.,
2021), we aimed to assess the role of several factors in network computation while
evaluating our networks: (1) the presence of biologically realistic dynamics (i.e., mem-
brane dynamics, voltage reset), (2) the presence of after-spike currents, (3) random het-
erogeneity of neuronal parameters across the network, (4) the learning of heterogeneity
of neuronal parameters across the network. Thus, we utilize multiple network types.
First, as a baseline, we use a vanilla recurrent neural network (RNN). The neurons used
by RNNs are modeled as in Equation 13. Here, Wih represents the weights applied to
the input signal, Whh refers to the recurrent weights, and b refers to the bias term. In
contrast to GLIFR neurons, we set the synaptic delay ∆t to dt in RNNs in order to
enable to modeling of nonlinear transformations at the beginning of a simulation. This
enables the RNN to perform better than it would if we used ∆t = 1ms on all tasks we
study.

h(t) = tanh(Wihx(t) +Whhh(t−∆t) + b) (13)

We also use the following variations of the GLIFR network: a GLIFR network with
fixed heterogeneity with (FHetA) or without (FHet) after-spike currents, a GLIFR net-
work with refined heterogeneity with (RHetA) or without (RHet) after-spike currents,
and a GLIFR network with learned heterogeneity with (LHetA) or without (LHet) after-
spike currents. We define fixed heterogeneity as heterogeneity that a network is initial-
ized with and does not alter over training, refined heterogeneity as heterogeneity that
a network is initialized with but is altered (‘fine-tuned’) over training, and learned het-
erogeneity as heterogeneity that a network is not initialized with but is learned over
training. These distinctions are illustrated in Figure 4. We finally use an LSTM net-
work as another baseline whose mechanisms improve the ability to model complex
temporal dynamics without emulating biology. For each experiment, we set the number
of neurons for each network type to yield comparable numbers of learnable parameters.

Each network, including RNNs, GLIFR networks, and LSTM networks, consists
of a single recurrent hidden layer of the appropriate neeuron type, whose outputs at

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

each timepoint are passed through a fully connected linear transformation to yield the
final output. The recurrence is incorporated into the GLIFR networks through the term
W pq
lats

p,l(t−∆t) in the synaptic currents equation. .
Code for the GLIFR model is publicly available at https://github.com/

AllenInstitute/GLIFS ASC. The model is implemented in PyTorch and thus
can be optimized and evaluated like other PyTorch neural network modules.

Figure 4: GLIFR schemes. A flowchart describes the variations of the GLIFR networks
we explored. These are based on whether the network neuronal parameters were homo-
geneously initialized or heterogeneously initialized as well as whether these intrinsic
neuronal parameters were learned over training. This classification enables us to isolate
effects of the expression of after-spike currents, a complex type of dynamic, and the
learning of heterogeneous parameters.

7 Performance on Pattern Generation Task
In order to study the contribution of neuronal complexity and heterogeneity to the
ability to learn complex temporal dynamics, we trained networks on a pattern gener-
ation task (Figure 5A). Each network consisted of a single recurrent layer of GLIFR,
RNN, or LSTM neurons whose outputs were weighted at each timestep to obtain an
1-dimensional time series. The number of parameters and the number of neurons in the
hidden layer of each network trained on this task are listed in Figure 5B.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://github.com/AllenInstitute/GLIFS_ASC
https://github.com/AllenInstitute/GLIFS_ASC
https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 5: A. Pattern generation task. A schematic shows the pattern generation task.
The yellow circles represent signals that are either weighted to form inputs to neurons
or result from applying weights to neuronal outputs. The green circles represent neu-
rons. The network is given constant input and is expected to produce a sinusoid whose
frequency is directly proportional to the magnitude of the input. B. Metadata for trained
networks. The number of trainable parameters is shown for each network along with
the size of the hidden layer. C. Sample approximations. These plots depict the tar-
get sinusoids in black and the corresponding predictions of sample trained networks.
All network types learned the patterns reasonably well. D. Training loss. The mean-
squared error of the network on the dataset averaged over thirty random initializations
is plotted over training epochs. The shading indicates a moving average of the standard
deviation. On average, all network types converged on a solution within the training
time. E. Trained model performance. The mean-squared error of each trained network
on the pattern generation task is shown. Bars are labeled with RNN, LSTM, Hom,
FHet, RHet, or LHet on the x-axis, and an “A” above the bar represents the presence
of after-spike currents. For example, the Hom bar with an “A” above it represents the
HomA network. This chart shows that the GLIFR networks outperfrom the RNNs but
not the LSTM networks. Additionally, learning heterogeneity improved performance
of the GLIFR networks, although expression of after-spike currents did not appear to
confer performance improvements.

Each network was trained to generate 5 ms sinusoidal patterns whose frequencies
are determined by the amplitudes of the corresponding constant inputs. We trained each
network to produce six sinusoids with frequencies ranging from 80 Hz to 600 Hz. The
ith sinusoid was associated with a constant input of amplitude (i/6) + 0.25. Previous
work (Sussillo & Barak, 2013) tackles a more complex version of this task using RNNs
but uses Hessian optimization, while we limit our training technique on both the RNN
and the GLIFR networks to simple gradient descent. We use an Adam optimizer with a
learning rate of 0.0001 to train each network for 5000 epochs. The setup of the task we
use is depicted in Figure 5A. This task is challenging because the network must be able
to produce different types of sinusoids (i.e., in their frequencies) when presented with
inputs that differ only in their constant values.

We trained networks on this task over thirty random network initializations. The
trained networks reasonably approximate the sinusoids corresponding to each input
(Figure 5C) and were shown to have converged on a solution over the training period
(Figure 5D). We found that all types of GLIFR networks performed significantly better
than the RNN (Figure 5E). Moreover, learning heterogeneity over training improved
model performance both when initialized with heterogeneous parameters (FHetA vs
RHetA; two-sample t-test, p < 0.001) and when initialized with homogeneous parame-
ters (LHetA vs HomA; two-sample t-test, p < 0.001). This suggests that learned hetero-
geneity improves model performance. This trend holds in models without after-spike
currents that are initialized homogeneously (FHet vs RHet, two-sample t-test, p > 0.01;
LHet vs Hom, two-sample t-test, p < 0.001). Interestingly, we found that networks
initialized with heterogeneous parameters performed worse than those initialized with
homogeneous parameters (RHetA vs LHetA, p < 0.001; FHetA vs HomA, p < 0.001).
This could be because it is difficult to learn the optimal distribution of parameters from

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

an already diverse parameter distribution. However, we observed that the addition of
after-spike currents did not produce a statistically significant performance improvement
on any types of networks tested (two-sample t-test, p > 0.1). Together, these results
suggest a computational advantage of biologically realistic dynamics if they are com-
plemented by learning heterogeneous parameters across the network. Interestingly, the
addition of after-spike currents was not needed for the improvement over RNNs, as
GLIFR networks with solely simpler biological dynamics (e.g., membrane dynamics,
voltage reset) performed better than RNNs on this task. While they outperform the
RNNs, at least with the simple gradient-based learning used here, the GLIFR networks
do not perform as well as the LSTM networks (two-sample t-test, p < 0.001).

8 Performance on Sequential MNIST (SMNIST) Task
We next assess the performance of the GLIFR network on a Sequential line-by-line
MNIST (SMNIST) task. Each image in MNIST is 28 × 28. In this task (Figure 6A),
the network takes in a 28-dimensional input at each timestep corresponding to a row of
the image. At each of the 28 timesteps, the network produces a 10-dimensional output
(1 dimension for each digit 0-9), whose softmax would represent a one-hot encoding of
the digit. The network is trained so that the 10-dimensional output at the last timepoint
correctly indicates the input digit. We use an Adam optimizer with cross entropy loss to
train each network for 50 epochs with a learning rate of 0.001. The number of neurons
and the number of learnable parameters in each network type trained on this task are
shown in Figure 6B.

All network types converged to a solution over the training period (Figure 6C),
and we recorded the accuracies of the trained models over thirty random network ini-
tializations (Figure 6D). We found that the RNN outperformed all GLIFR networks
(two-sample t-test, p < 0.001), and that the LSTM outperformed the RNN (two-sample
t-test, p < 0.001). Similar to the pattern generation task, we found that learning hetero-
geneity improved performance (FHetA vs RhetA, two-sample t-test, p < 0.001; HomA
vs LHetA, two-sample t-test, p < 0.001) primarily when after-spike currents were in-
cluded (FHet vs Rhet, two-sample t-test, p > 0.1; Hom vs LHet, two-sample t-test,
p > 0.1). Contrary to our findings in the pattern generation task, networks initialized
with heterogeneity performed better than networks initialized without heterogeneity
(RHetA vs LHetA, two-sample t-test, p < 0.001; FHetA vs HomA, two-sample t-test,
p < 0.001). However, we found that after-spike currents significantly improved perfor-
mance in both the RHet (two-sample t-test, p < 0.001) and the LHet (two-sample t-test,
p < 0.001) networks. This suggests that although GLIFR networks achieved lower
performance than vanilla RNNs, their complex and diverse dynamics may nevertheless
confer a computational advantage.

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 6: A. SMNIST task. A schematic shows the SMNIST task. The yellow circles
represent signals that are either weighted to form inputs to neurons or result from ap-
plying weights to neuronal outputs. The green circles represent neurons. The network
is input lines of an image at a time and expected to produce, as its output, a one hot
encoding of the digit represented in the image. B. Metadata for trained networks. The
number of trainable parameters is shown for each network along with the size of the
hidden layer. C. Training loss. The training cross-entropy loss of the network averaged
over thirty random initializations is plotted over training epochs. The shading indicates
a moving average of the standard deviation. On average, all network types converge
on a solution within the training time. D. Trained model performance. The accuracy
of each trained network on the pattern generation task is shown. Bars marked with
“A” above refers to networks that express after-spike currents. Both the RNN and the
LSTM networks outperformed the GLIFR networks. However, the ability to learn het-
erogeneity in the GLIFR networks and the presence of after-spike currents conferred
performance improvements.

We further tested the robustness of networks to random silencing of neurons. To
accomplish this, for various probabilities p, we performed dropout with probability
p during training of each network and tested its performance when a random set of
neurons (proportion p) were silenced through the entirety of each testing simulation.
While this impaired performance, the networks with GLIFR units are more robust to
silencing than vanilla RNNs for p ≥ 0.4 (Figure 7A), as indicated by thirty random
silencing simulations over six random network initializations. The LSTM networks
continue to surpass both the GLIFR networks and the RNNs during silencing.

GLIFR dynamics enable more complex temporal interactions within and among
neurons. What is the resulting impact on the robustness of GLIFR networks random
“deletions” (or silencing) of individual neurons? We test this by conducting a similar
experiment without dropout through training. Specifically, on networks trained without
dropout, we randomly select a subset of neurons to silence throughout testing. For each
subset, we clamp the neurons’ firing rates to 0, preventing their contribution in both for-
ward and lateral connections, and compute the accuracy of the network on the MNIST
task (Figure 7B). We find that when silencing proportions of neurons for p ≥ 0.4, all
forms of GLIFR networks show an advantage over the RNN. Moreover, in general,
LHetA networks perform the best. This observation suggests that neuronal complexity
and heterogeneity improves network robustness despite the reduced baseline perfor-
mance when compared with vanilla RNNs.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 7: A. Model performance when neurons silenced through training. On five ran-
dom network initializations, neurons were randomly silenced during SMNIST training
for the entire period of a given simulation. Each network was then tested on thirty ran-
dom silencing of neurons during testing. The average accuracy of each network with

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

varying percentages of their neurons silenced is shown. Bars represent standard devia-
tion. B. Model performance when neurons silenced through testing only. Thirty random
network initialization were trained on the SMNIST task. Each network was then tested
on thirty random silencing of neurons during testing. The average accuracy of each
network with varying percentages of their neurons silenced is shown. Bars represent
standard deviation.

9 GLIFR Networks Can Learn Discrete Spiking
In all the experiments so far ,we have kept σV a constant during training. As previously
noted, the parameter σV can be modified such that as σV << 1 the model approaches
discrete spiking dynamics. This is established in Equations 14, 15, 16.

lim
σV→0

sp,l(t) = lim
σV→0

1

1 + e−(V
p,l(t)−V p,l

th)/σV

=

{
1 V p,l(t) > V p,l

th

0 V p,l(t) < V p,l
th

= H(V p,l(t)− V p,l
th)

(14)

lim
σV→0

V p,l(t) = lim
σV→0

(
V p,l(t− dt)(1− kp,lm dt) +Rp,l

m k
p,l
m

(
Ip,l0 + Ip,lsyn(t) +

∑
j

Ip,lj (t)

)
dt

− dt

τ
sp,l(V p,l(t− dt)− Vreset)

)
= V p,l(t− dt)(1− kp,lm dt) +Rp,l

m k
p,l
m

(
Ip,l0 + Ip,lsyn(t) +

∑
j

Ip,lj (t)

)
dt

− dt

τ
lim
σV→0

(sp,l)(V p,l(t− dt)− Vreset)

= V p,l(t− dt)(1− kp,lm dt) +Rp,l
m k

p,l
m

(
Ip,l0 + Ip,lsyn(t) +

∑
j

Ip,lj (t)

)
dt

− dt

τ
H(V p,l(t)− V p,l

th)(V p,l(t− dt)− Vreset)
(15)

lim
σV→0

Ip,lj (t) = lim
σV→0

(
Ip,lj (t− dt)(1− kp,lj dt) + (ap,lj + rp,lj I

p,l
j (t− dt))dt

τ
sp,l(t− dt)

)
= lim

σV→0

(
Ip,lj (t− dt)(1− kp,lj dt) + (ap,lj + rp,lj I

p,l
j (t− dt))dt

τ
lim
σV→0

(sp,l(t− dt))
)

= lim
σV→0

(
Ip,lj (t− dt)(1− kp,lj dt) + (ap,lj + rp,lj I

p,l
j (t− dt))dt

τ
H(V p,l(t)− V p,l

th)

)
(16)

We take a simulated annealing approach to assess whether this setup can be utilized
to learn a nearly discrete model which would more closely reproduce biologically real-

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

istic, rapid spiking. Specifically, we train a GLIFR network on the SMNIST task while
gradually decreasing the σV parameter over training (from 1 to 10−3). We find that
the LHetA networks still learn the task well, achieving an average accuracy of 82.00%
(n=30; standard deviation of 0.94%). While this is lower than the previously achieved
accuracy of 94.16% without simulated annealing, this annealing experiment demon-
strates the ability of GLIFR networks to learn spiking behavior and still perform well
without needing to use surrogate gradients.

10 GLIFR Networks Learn Heterogeneity Over Train-
ing

Based on the performance values above, neuronal heterogeneity seemed to contribute to
the GLIFR networks’ performance in the pattern generation task and the SMNIST task.
To further elucidate whether and how the learned heterogeneity in parameters may have
reshaped neuronal dynamics we determined the extent to which the GLIFR networks
had learned truly diverse parameters in both task contexts. For the homogeneously
initialized networks, both ajs and rjs had been initialized with limited diversity, and the
remaining neuronal parameters had been set homogeneously. We hypothesized that the
diversity in all parameters would have developed over training. The heterogeneously
initialized networks were set with random distributions of parameters, and we expected
the distribution to shift over the course of training.

We found that training did result in heterogeneous parameter values for both the
pattern generation task (Figure 8A-B) and the SMNIST task (Figure 8C-D) such that
the variance of the trained aj and rj parameters is much larger than at initialization
(standard deviation was 0.01). We wanted to determine how well this diversity in neu-
ronal parameters mapped to diversity in neuronal dynamics. To do this, we constructed
f-I curves representing the average firing rate of each neuron over a time period (5 ms)
when the neuron was injected with varying levels of current (Figure 9A, B). We found
a diversity in shapes of these curves, illustrating the diversity in the neuronal dynamics
produced by neurons in the trained networks.

Finally, we hypothesized that networks would also develop classes of neurons. To
that end, we performed hierarchical clustering on the neuronal parameters of networks
trained on the SMNIST task. We used the Calinski-Harabasz (CH) Index as a measure
of clustering. For the pattern generation task, we were unable to find a number of clus-
ters that produced the optimal CH score. However, we found that the CH score was
maximized using four clusters in the LHet network trained on the MNIST task (Figure
9C). After clustering these neurons, we examined their parameters. The four classes of
neurons appeared to be separated primarily based on after-spike current parameters aj
and kj (Figure 9D). Specifically, one class expresses slow, after-spike currents with hy-
perpolarizing values of aj and depolarizing values of rj (red), a second class expresses
smaller hyperpolarizing after-spike currents (yellow), a third class expresses slow de-
polarizing after-spike currents (purple), and the final class expresses fast after-spike
currents with depolarizing values of aj and hyperpolarizing values of rj (green) . We
noted that each pair of parameters corresponding to after-spike currents tended to be

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

similar (i.e., for a given neuron, a1 ≈ a2). We suggest that this is a result of the gradient
descent technique. Potentially, the gradients over both after-spike currents were similar,
resulting in both sets of parameters progressing in the same direction.

We also found that the classes based on parameters separated the f-I curves into cat-
egories (Figure 9B). For example, the neurons with hyperpolarizing after-spike currents
tended to exhibit low maximal firing rates. On the other hand, the neurons with slow
depolarizing after-spike currents tended to exhibit firing rates that rapidly saturated to
relatively high values. This further suggests that the learned diversity in parameters
enabled a diversity in dynamics as well.

Figure 8: A-D. Learned parameter distributions. The initial (yellow) and learned (green)
distributions of parameters across neurons in single example networks are shown for the
pattern generation task (A, B) and the SMNIST tasks (C, D). Results are shown for both
heterogeneous initialization (A, C) and homogeneous initialization (B, D). Under both
initialization schemes, heterogeneity in neuronal parameters is learned.

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 9: A. Pattern generation task learned dynamics. The f-I curves are plotted for
each neuron in an example LHetA network trained on the pattern generation task. The
black traces represent those in the initial network. B. SMNIST task learned dynamics.
The f-I curves are plotted for each neuron in the LHetA network trained on the MNIST
task and are colored according to clusters produced by Ward’s hierarchical clustering
(colors correspond with those in D) This demonstrates that the clustering of the neuronal
parameters also separates the f-I curves that characterize the neuronal dynamics. C. CH
scores. The CH scores for different cluster numbers are plotted for SMNIST parameters,
demonstrating an optimal cluster count of 4. D. Parameter clustering. Various pairs of
parameters are plotted for the LHetA network trained on the SMNIST task. The points
are colored according to clusters produced by Ward’s hierarchical clustering.

11 Discussion

This work explored the role of neuronal complexity and heterogeneity in network
learning and computation using a novel paradigm. Specifically, we developed the
GLIFR model, a differentiable rate-based neuronal model that expresses after-spike
currents in addition to the simple types of dynamics. While past work (Perez-Nieves
et al., 2021; Salaj et al., 2021) has studied neuronal complexity and heterogeneity, it is
beneficial to learn dynamics in neurons using traditional machine learning approaches.
Here we demonstrated the ability to learn both synaptic weights and individual neuronal
parameters underlying intrinsic dynamics with traditional gradient descent. While it is
generally rate-based, the GLIFR model retains the ability to produce spiking outputs
and thus is a powerful model for studying neuronal dynamics.

We demonstrated the ability for networks of GLIFR neurons to learn tasks, such as
a pattern generation task and a SMNIST task. In both tasks, heterogeneous parame-
ters and dynamics were learned. We tested the effects of the ability to learn parame-
ter heterogeneity and the ability to express after-spike currents on model performance.
Learning heterogeneous parameter distributions improved performance, and modeling
after-spike currents improved performance on the SMNIST task. Regardless of whether
heterogeneous parameters or after-spike currents were learned, the GLIFR models out-
performed vanilla RNNs in the pattern generation task. We also found that GLIFR net-
works trained on the SMNIST task were more robust to injury. Specifically, when we
silenced fixed fractions of neurons, the GLIFR networks performed better than vanilla
recurrent neural networks. Finally, we found that learning parameters across a network
in response to a temporally challenging task enabled the network to develop classes of
neurons with differing intrinsic parameters and dynamics.

These findings support the hypothesis that neuronal heterogeneity and complexity
have a computational role in learning complex tasks. The implications of this are two-
fold. On one hand, neuronal heterogeneity may be an interesting step to pursue for
more powerful computing in artificial neural networks. Vanilla recurrent networks, for
example, rely on a single type of dynamic - typically either the sigmoid or the tanh
activation function. However, the use of activation functions that can be “learned” over
time, such that the trained network exhibits diverse dynamics across its neurons, may

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

confer a computational advantage. Here we demonstrated the computational advantages
of more biologically realistic neurons for specific temporally challenging tasks while
using traditional gradient descent training techniques.

On the other hand, our results provide further insight into the purpose of complexity
and diversity of neural dynamics seen in the brain. Our brains are responsible for in-
tegrating various sensory stimuli, each varying in their temporal structures. Intuitively,
heterogeneity in the types of dynamics used by neurons across the brain may enable
robust encoding of a broad range of stimuli. Moreover, certain types of complex dy-
namics may affect synaptic strengths and improve the network’s robustness to damage.
Along these lines, our results suggest that neuronal complexity and heterogeneity play
a role in network function.

We believe that with the GLIFR model in public domain, we have opened door to
more intriguing studies that will identify further roles for complex neural dynamics in
learning tasks. In future work, testing the GLIFR models on additional tasks may pro-
vide additional insights into the computational advantages of neuronal heterogeneity
and complexity. Additionally, it would be interesting to pursue a theoretical explana-
tion of the computational role of heterogeneity and complexity. Past experimental work
(Tripathy, Padmanabhan, Gerkin, & Urban, 2013) found that neuronal heterogeneity
increased the amount of information carried by each neuron and reduced redundancy
in the network. Exploring this in computational models would be valuable, as it may
suggest additional ways in which the computational advantages of biological dynam-
ics can be harnessed to improve artificial neural networks and yield insights into the
mechanisms of computation in biological networks.

12 Code availability
Modeling, training, and analysis code is available at

https://github.com/AllenInstitute/GLIFS ASC.

13 Acknowledgments
We wish the acknowledge the following sources of funding and support: the University
of Washington Mary Gates Research Endowment, the NIH Training Grant T90 DA
32436-10, the NIH BRAIN Initiative Grant 1RF1DA055669. We wish to thank the
Allen Institute founder, Paul G. Allen, for his vision, encouragement, and support.

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://github.com/AllenInstitute/GLIFS_ASC
https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

References
Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass,

W. (2020). A solution to the learning dilemma for recurrent networks of spiking
neurons. Nature Communications, 11(1). doi: 10.1038/s41467-020-17236-y

Billeh, Y. N., Cai, B., Gratiy, S. L., Dai, K., Iyer, R., Gouwens, N. W., . . . Arkhipov, A.
(2020). Systematic integration of structural and functional data into multi-scale
models of mouse primary visual cortex. Neuron, 106(3), 388–403.

Burnham, D., Shea-Brown, E., & Mihalas, S. (2021). Learning to Predict in Networks
With Heterogeneous and Dynamic Synapses. bioRxiv.

Fontaine, B., Peña, J. L., & Brette, R. (2014). Spike-threshold adaptation predicted
by membrane potential dynamics in vivo. PLoS computational biology, 10(4),
e1003560.

Gerstner, W., Kistler, W. M., Naud, R., & Paninski, L. (2014). Neuronal dynamics:
From single neurons to networks and models of cognition. Cambridge University
Press.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
(http://www.deeplearningbook.org)

Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal of
Physiology, 117(4). doi: 10.1113/jphysiol.1952.sp004764

Hu, B., Garrett, M. E., Groblewski, P. A., Ollerenshaw, D. R., Shang, J., Roll, K., . . .
Mihalas, S. (2021). Adaptation supports short-term memory in a visual change
detection task. PLoS Computational Biology, 17(9). doi: 10.1371/journal.pcbi
.1009246

Huh, D., & Sejnowski, T. J. (2018). Gradient descent for spiking neural networks. In
Advances in neural information processing systems (Vol. 2018-December).

Izhikevich, E. (2003). Simple model of spiking neurons. IEEE Transactions on Neural
Networks, 14(6), 1569-1572. doi: 10.1109/TNN.2003.820440

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–
444.

Li, S., Li, W., Cook, C., Zhu, C., & Gao, Y. (2018). Independently recurrent neural
network (indrnn): Building a longer and deeper rnn.

Liu, P., Qiu, X., & Huang, X. (2016). Recurrent neural network for text classification
with multi-task learning. arXiv preprint arXiv:1605.05101.

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M., Sanchez,
C. A., . . . Schürmann, F. (2015, October). Reconstruction and simulation of
neocortical microcircuitry. Cell, 163(2), 456–492. Retrieved from https://
doi.org/10.1016/j.cell.2015.09.029 doi: 10.1016/j.cell.2015.09
.029

Mihalaş, Ş., & Niebur, E. (2009, March). A generalized linear integrate-and-fire neural
model produces diverse spiking behaviors. Neural Computation, 21(3), 704–718.
Retrieved from https://doi.org/10.1162/neco.2008.12-07-680
doi: 10.1162/neco.2008.12-07-680

Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber.
Biophysical Journal, 35(1). doi: 10.1016/S0006-3495(81)84782-0

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

http://www.deeplearningbook.org
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1162/neco.2008.12-07-680
https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

Neftci, E. O., Mostafa, H., & Zenke, F. (2019). Surrogate Gradient Learning in Spiking
Neural Networks: Bringing the Power of Gradient-based optimization to spiking
neural networks. IEEE Signal Processing Magazine, 36(6). doi: 10.1109/MSP
.2019.2931595

Perez-Nieves, N., Leung, V. C., Dragotti, P. L., & Goodman, D. F. (2021). Neural
heterogeneity promotes robust learning. Nature Communications, 12(1). doi:
10.1038/s41467-021-26022-3

Prinz, A. A., Bucher, D., & Marder, E. (2004). Similar network activity from disparate
circuit parameters. Nature neuroscience, 7(12), 1345–1352.

Rajan, K., Harvey, C. D., & Tank, D. W. (2016). Recurrent Network Models of Se-
quence Generation and Memory. Neuron, 90(1). doi: 10.1016/j.neuron.2016.02
.009

Salaj, D., Subramoney, A., Kraisnikovic, C., Bellec, G., Legenstein, R., & Maass, W.
(2021). Spike frequency adaptation supports network computations on temporally
dispersed information. eLife, 10. doi: 10.7554/eLife.65459

She, X., Dash, S., Kim, D., & Mukhopadhyay, S. (2021). A heterogeneous spiking
neural network for unsupervised learning of spatiotemporal patterns. Frontiers in
Neuroscience, 14, 1406.

Sussillo, D., & Barak, O. (2013). Opening the black box: low-dimensional dynamics
in high-dimensional recurrent neural networks. Neural computation, 25(3), 626–
649.

Teeter, C., Iyer, R., Menon, V., Gouwens, N., Feng, D., Berg, J., . . . Mihalas, S. (2018).
Generalized leaky integrate-and-fire models classify multiple neuron types. Na-
ture Communications, 9(1). doi: 10.1038/s41467-017-02717-4

Tripathy, S. J., Padmanabhan, K., Gerkin, R. C., & Urban, N. N. (2013). Interme-
diate intrinsic diversity enhances neural population coding. Proceedings of the
National Academy of Sciences, 110(20), 8248–8253.

Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., & DiCarlo,
J. J. (2014, May). Performance-optimized hierarchical models predict neural
responses in higher visual cortex. Proceedings of the National Academy of Sci-
ences, 111(23), 8619–8624. Retrieved from https://doi.org/10.1073/
pnas.1403112111 doi: 10.1073/pnas.1403112111

Zenke, F., & Vogels, T. P. (2021). The Remarkable Robustness of Surrogate Gradient
Learning for Instilling Complex Function in Spiking Neural Networks. Neural
Computation, 33(4), 899-925.

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476851doi: bioRxiv preprint

https://doi.org/10.1073/pnas.1403112111
https://doi.org/10.1073/pnas.1403112111
https://doi.org/10.1101/2022.01.19.476851
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Related Work
	Model for After-Spike Currents
	Method for Training Weights and Parameters in GLIFR Networks
	Testing the Optimization of Neuronal Parameters for Learning Realizable Signals
	Strategy for Analyzing Task Learning and Performance
	Performance on Pattern Generation Task
	Performance on Sequential MNIST (SMNIST) Task
	GLIFR Networks Can Learn Discrete Spiking
	GLIFR Networks Learn Heterogeneity Over Training
	Discussion
	Code availability
	Acknowledgments
	References

