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Abstract 29 

The recognition of microbiome inhabiting the healthy female bladder engendered the 30 

need for comprehensive characterization of the female urinary microbiome (FUM) in health 31 

and disease. Although previous studies reported FUM composition at different taxonomic 32 

levels, progress towards reliable identification at species level is highly required. The aim of 33 

this study was to comprehensively characterize bacterial species of FUM of healthy 34 

reproductive-age European women by two complementary methodologies i.e., extended 35 

culturomics and long-read third generation sequencing of near full-length 16S rRNA gene. 36 

A wide diversity of bacterial species was captured (297 species) with a median of 53 37 

species/sample, including 16 putative uropathogens. Clustering FUM into community 38 

structure types revealed high inter-individual differences. Notably, there was not a single 39 

species common to all samples, although the Lactobacillus genus was detected in all samples. 40 

Lactobacillus crispatus, Lactobacillus iners and Lactobacillus mulieris were observed in high 41 

relative abundance in several samples as well as other species (e.g., Streptococcus 42 

agalactiae, Atopobium vaginae, Gardnerella vaginalis, Gardnerella swidsinskii), while more 43 

prevalent species were often low abundant members (e.g., Finegoldia magna). We captured 44 

remarkable richness within Corynebacterium spp. (25 species) and Lactobacillaceae (4 45 

genera, 14 species). While amplicon sequencing allowed detection of more anaerobic species 46 

(e.g., 11 Peptoniphilus spp.), culturomics enabled the identification of recently recognized 47 

Gardnerella species and putative novel Corynebacterium species.  48 

This study provided fine-grained FUM profiling at species level and revealed detailed 49 

FUM structure, which is critical to unveil the potential relationship between specific microbiome 50 

members and urinary diseases/disorders. 51 

 52 

IMPORTANCE 53 

Despite evidence of the resident microbial community in the female lower urinary tract, 54 

bacterial species diversity and abundance in healthy women is still unclear. This study 55 

demonstrated that complementarity between optimized culture-dependent and -independent 56 
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approaches is highly beneficial for comprehensive FUM species profiling by detecting higher 57 

FUM species diversity than previously reported, including identification of unreported 58 

Lactobacillaceae species and putative novel Corynebacterium species. Although some 59 

particular species were present in high relative abundance, low-abundant members were 60 

more prevalent. FUM classification into community structure types demonstrated high inter-61 

individual differences in urinary microbiome composition among healthy women. We also 62 

report moderate correlation between culture-dependent and -independent derived data 63 

highlighting drawbacks resulting from each methodological approach. Our findings suggest 64 

that FUM bacterial diversity reported from previous studies may be underestimated. Finally, 65 

our results contribute to the fundamental knowledge of healthy FUM required for further 66 

exploration of the urinary microbiome role in urinary tract diseases. 67 

 68 

Keywords: midstream urine, extended culturomics, 16S rRNA gene amplicon sequencing, 69 

Lactobacillus, Gardnerella, Corynebacterium 70 

 71 

Background 72 

Emerging studies in the female urinary microbiome (FUM) have suggested the 73 

importance of this unique bacterial community in maintaining urinary tract (UT) healthy (1–6). 74 

The advance in FUM characterization through next-generation sequencing and culture-based 75 

methodologies has allowed identification of FUM members and indication of their involvement 76 

in various UT conditions. These breakthrough findings have triggered the reassessment of 77 

current diagnosis practice of urinary tract infection (UTI) (7, 8) and the investigation of still 78 

poorly understood etiologies of UT disorders (e.g., overactive bladder syndrome, urgency 79 

urinary incontinence and interstitial cystitis/bladder pain syndrome) (9–11). 80 

Up to date, studies have described healthy FUM as a community dominated by certain 81 

genera such as Lactobacillus, Gardnerella or Streptococcus, or a mixed community without a 82 

single dominant genus involving, e.g., the combination of Staphylococcus, Corynebacterium 83 

and Prevotella genera (10, 12–14). Although the composition of healthy FUM at genus level 84 
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is relatively established, its species-level composition has not been comprehensively studied. 85 

Available studies point to dominance of e.g., Lactobacillus crispatus, Lactobacillus jensenii, 86 

and Gardnerella spp. (often mistakenly reported as Gardnerella vaginalis) (15), and the 87 

presence of certain potential uropathogens such as Escherichia coli and Enterococcus 88 

faecalis, usually observed in low amounts (7, 13, 16, 17). In fact, detailed species-level 89 

characterization is essential to understand FUM diversity and identify key functions 90 

contributing to urinary health and disease, since specific features are often species- or even 91 

strain-specific. 92 

Current approaches for FUM characterization usually involve culturomics with matrix-93 

assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as 94 

primary identification method and/or DNA sequencing methodologies targeting individual short 95 

hyper-variable regions of the 16S rRNA gene (3, 9, 10, 12, 18). However, some 96 

methodological drawbacks concerning the identification at species level of some FUM 97 

members can still be recognized. For instance, culture-based methodologies with limited 98 

growth conditions and isolates’ identification of insufficient resolution power do not fully 99 

capture bacterial species diversity, while short-read DNA-based methods are often limited to 100 

a reliable identification of FUM members only at genus level (18).  101 

Considering the above, there is a critical need for accurate and sensitive 102 

characterization of the urinary tract microbiome of asymptomatic, healthy individuals to fully 103 

support future action in deciphering the microbial community shifts from a eubiotic to dysbiotic 104 

state, in order to guide the development of approaches to maintain or restore healthy FUM 105 

composition. 106 

To improve our understanding of FUM, we analyzed midstream urine samples of 107 

twenty reproductive-age healthy women using complementary approaches of extended 108 

culturomics supported by a deep bacterial taxonomic resolution and 16S rRNA long-read 109 

sequencing.  110 

 111 

Methods 112 
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Participants and sample collection 113 

This study was approved by the Faculty of Pharmacy (University of Porto, Porto, 114 

Portugal) Ethics Committee and written informed consent was obtained from all study 115 

participants. Twenty women of reproductive age were recruited between November 2016 and 116 

July 2018, following strict criteria: no pregnancy, no symptoms nor diagnosis of current UTI, 117 

and no antibiotic exposure in the previous month. A questionnaire was conducted concerning 118 

personal and health information that was encrypted, ensuring data confidentiality. Participants 119 

were carefully instructed in the collection technique. In the third week of the menstrual cycle, 120 

each participant provided a first-morning midstream voided urine sample by self-performed 121 

non-invasive procedure via 40 ml sterile containers. Sampling procedure included vaginal 122 

swabbing, prior to urine collection, for minimizing cross-contamination.  123 

Urinary dipstick (Combur-Test, Roche) analysis and microscopic examination of the 124 

re-suspended sediment of centrifuged urine (1 ml) were performed. Up to 2 hours after 125 

collection, urine samples were subjected to extended culturomic protocol, concurrently pre-126 

treated for amplicon sequencing analysis, and stored at -80 oC. The FUM culturomic data from 127 

ten women published in the context of urinary tract microbiome temporal stability (17), were 128 

included in this study. Since this manuscript includes novel data from amplicon sequencing 129 

performed on the same samples, previous culturomic data was used for comparison of 130 

efficacy of two methodologies and accurate assessment of community structure types. 131 

 132 

Extended culturomics  133 

The extended culturomic protocol included inoculation of 0.1 ml of urine onto the large 134 

plate surface (140 mm diameter) of Columbia agar with 5% sheep blood (blood agar plates - 135 

BAPs, Biogerm, Portugal) and HiCrome UTI agar (chromogenic agar plates - CAPs, HiMedia, 136 

India) supplemented as previously described (19, 20). BAPs and CAPs were incubated under 137 

aerobic and microaerophilic conditions (GENbox MICROAER, bioMérieux, France) at 37 °C 138 

for 48 h. Additionally, BAPs were incubated under anaerobic conditions (GENbox ANAER, 139 

bioMérieux, France) at 37 °C for 48 h. In case of a suspected high bacterial load based on 140 
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microscopic observation, ten-fold serial dilutions (up to 0.001) were performed using saline 141 

solution (0.9% NaCl) to obtain a countable range of colony forming units (CFU/ml). Each 142 

morphologically distinct colony type was counted, and 1-5 colonies of each morphology were 143 

further identified. The plate presenting the higher CFU count was considered as the 144 

representative count of each isolate in a sample. Relative abundance (RA; %) was calculated 145 

by generating the percent of total CFU/sample.  146 

 147 

Identification of cultured bacteria 148 

MALDI-TOF MS with the in vitro diagnostic (IVD) database version 3.0 (VITEK MS 149 

automation control and Myla software, bioMérieux, France) was used to identify the bacterial 150 

isolates. Isolates with no identification, with discrepant results between MALDI-TOF MS 151 

identification and phenotypic characteristics, or with known insufficient resolution power for 152 

species identification were further subjected to sequencing of 16S rRNA gene and/or other 153 

genetic markers (pheS for Lactobacillus and Limosilactobacillus, cpn60 for Gardnerella, rpoB 154 

for Acinetobacter, Corynebacterium or Staphylococcus, and recN for Citrobacter) and/or PCR 155 

assays for the detection of species-specific genes (dltS for Group B Streptococcus, sodA for 156 

Enterococcus faecalis, and malB for Escherichia coli) (Supplementary Table S1). GenBank 157 

accession numbers and species identification for FUM isolates subjected to Sanger 158 

sequencing are available in Supplementary Table S2 and previously published by Ksiezarek 159 

et al. (17). Phylogenetic analysis based on individual genes were performed to access putative 160 

novel species by using MEGA version 7.0 (21), constructed according to neighbour-joining 161 

method (22), and genetic distances were estimated using Kimura's 2-parameter model (23). 162 

The reliability of internal branches was assessed from bootstrapping based on 1000 163 

resamplings (24). 164 

 165 

DNA extraction and amplicon sequencing 166 

Samples were pretreated prior to DNA extraction, which included centrifugation of 20 167 

ml of urine at 5,500 rpm for 15 min, and the resulting pellet was suspended in 1 ml of 168 
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phosphate buffered saline (PBS) and stored at -80 °C until further processing. PBS was 169 

discarded by centrifugation at 10,500 rpm/15 min/4°C, immediately before genomic extraction. 170 

Genomic DNA from urine samples was extracted using Qiagen DNeasy Blood and Tissue Kit 171 

(Qiagen, Germany), according to the manufacturer’s protocol, using pretreatment for Gram-172 

negative bacteria. DNA was eluted into 50 μl of Tris-HCl (pH 8.0) and stored at 4°C. DNA 173 

quality was analyzed by agarose gel electrophoresis, and quantity was measured on Qubit 174 

dsDNA HS Assay Kit (Invitrogen, Life Technologies, UK). Controls consisting of reagent 175 

blanks (washing buffer, lysis buffer and kit reagents) were processed as the urine samples. 176 

Since extraction controls showed no traceable amounts of DNA, they were not included for 177 

sequencing. PCR amplification of the hypervariable 16S rRNA gene V1-V8 regions sequenced 178 

with universal primers (27F:AGAGTTTGATCCTGGCTCAG, and BS-179 

R1407:GACGGGCGGTGWGTRC), library construction and sequencing with SMRT® 180 

technology on PacBio RS II sequencing system was provided as a custom service of Eurofins 181 

GATC Biotech GmbH (Germany). 182 

 183 

Sequencing data analysis 184 

After sequencing, primers, sequence adaptors, and low base quality calls were 185 

removed by Cutadapt. Chimera sequences were checked, and removed by UCHIME (version 186 

4.2.40) (25). The non-chimera and unique sequences were subjected to BLASTn (26) analysis 187 

using non-redundant 16S rRNA reference sequences with an E-value cutoff of 1e-06. 188 

Reference 16S rRNA gene sequences were obtained from the Ribosomal Database Project 189 

Classifier (27). Only good quality and unique 16S rRNA sequences which have a taxonomic 190 

assignment were considered and used as a reference database to assign operational 191 

taxonomic unit (OTU) status with a 97% similarity. Taxonomic classification was based on the 192 

NCBI Taxonomy (28). All the hits to reference 16S rRNA database! "#$#! %&'()*#$#*! +'*!193 

(,#%)-)%!-)./#$(!"#$#!+,,.)#*!/&!/0#!0)/(!/&!$#1&2#!-+.(#!,&()/)2#(3!40#!/0$#(0&.*(!+,,.)#*!"#$#5!194 
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6!78399:!)*#'/)/;<!6!7=399:!+.)>'1#'/!%&2#$+>#<!?999!1)')1@1!A@#$;!.#'>/0<!?9:!B)/(%&$#!195 

/0$#(0&.*! -&$!1@./),.#! 0)/(<! +'*! C=9!1+D)1@1!0)/(! /&! %&'()*#$! -&$!1@./),.#! 0)/(3! E-! /0#! -)'+.!196 

'@1B#$!&-!0)>0FA@+.)/;!$#+*(!+-/#$!+..! -)./#$)'>!(/#,(!"+(!.#((!/0+'!?999<!/0#!%&$$#(,&'*)'>!197 

(+1,.#!"+(!#D%.@*#*3!G)'+..;<!HI!"+(!%+.%@.+/#*!B;!>#'#$+/)'>!/0#!,#$%#'/!&-!/&/+.!$#+*(!-&$!198 

#+%0!(+1,.#3 199 

  200 

Statistical analysis 201 

Community structural analyses were done using relative proportions of CFU/ml and 202 

reads for each genus and species within individual urine samples. Based on similarity (or 203 

dissimilarity) of community composition between samples and taking into account all members 204 

and their proportion in a community, we identified community structure types performing 205 

hierarchical clustering of Bray-Curtis dissimilarity distance matrices with a cutoff of 0.8, via the 206 

package vegan (version 2.5-2) (29) in R (version 3.4.4) (30). Alpha diversity was estimated 207 

using Shannon index (H’). Principal coordinates analysis (PCoA) and Mantel test between the 208 

dissimilarity distance matrices (based on Bray-Curtis index) were performed to compare 209 

structure types obtained by both methodologies. To identify species responsible for 210 

community structure differences, a biplot of the PCoA was created using a weighted average 211 

of the species scores, based on their RA in the samples. Data visualisation was carried out 212 

using gplots (version 3.0.1.1) (31), ggplot2 (version 3.2.1) (32) and eulerr (version 5.1.0) (33) 213 

R packages. 214 

 215 

Results 216 

Overview of the healthy female study cohort 217 

Our study cohort included twenty female participants aged 24-38 years (average = 31; 218 

standard deviation = 4). Most women identified themselves as Portuguese nationality (80%) 219 
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followed by other European nationalities (20%). Average body mass index was 21.9 kg/m2. 220 

Most women had a normal menstrual cycle (90%) and used contraceptives (85%), with few 221 

having experienced at least one pregnancy (25%). Characteristics of our study cohort 222 

comprised of healthy highly educated women, including clinical and behavioral questionnaire 223 

data (personal medical history, UT health and infection history, pregnancy history, 224 

demographic and lifestyle information), and results of urine dipstick and sediment microscopic 225 

analysis are available in Supplementary Tables S3 and S4.  226 

 227 

Characterization of community structure types by culturomics 228 

Using extended culturomics we observed a high bacterial load in urine samples (103-229 

108 CFU/ml, 6 104 CFU/ml in 80% of samples). Two thousand and forty-three isolates were 230 

studied (median = 103 isolates/sample) and assigned to 131 species (median = 20 231 

species/sample) and 54 genera, as identified either by MALDI-TOF MS and/or sequencing of 232 

most suitable genes (Supplementary Table S5). In this cohort, we identified for the first time 233 

13 bacterial species from different genera [Dermacoccus nishinomiyaensis, Gardnerella 234 

leopoldii, Gardnerella swidsinskii, Gardnerella genomospecies 3, Globicatella sulfidifaciens, 235 

Lactobacillus mulieris, Lactobacillus paragasseri, Limosilactobacillus urinaemulieris, 236 

Limosilactobacillus portuensis, Limosilactobacillus mucosae (former Lactobacillus mucosae), 237 

Pseudoglutamicibacter cumminsii, Staphylococcus carnosus, and Staphylococcus equorum, 238 

and 5 putative novel Corynebacterium species (Supplementary Table S5 and Fig. S1). Alpha 239 

diversity varied from 0.001 to 2.65 (median H′ = 1.5). Bacterial species detected by culturomics 240 

and their RA per sample are listed in Supplementary Table S5. Of note, Corynebacterium (18 241 

species), Staphylococcus (14 species), Streptococcus (10 species), Lactobacillus (7 species) 242 

and Actinomyces (6 species) were the genera that presented the highest species-level 243 

diversity. 244 

Clustering FUM into community structure types (CST)  was performed at genus and 245 

species level (samples in the same CST shared >80% similarity by Bray-Curtis distance). 246 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.19.476882doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.19.476882
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hierarchical clustering at genus level identified 3 CST (Supplementary Fig. S2). The most 247 

common CST was CST3 (n=15/20) largely dominated by Lactobacillus in combination with 248 

other genera (e.g., Staphylococcus, Corynebacterium, Streptococcus and Cutibacterium), 249 

followed by CST2 (n=4) characterized mostly by Gardnerella, and CST1 dominated by 250 

Citrobacter (n=1). On the other hand, species-level clustering resulted in 13 CST (Fig. 1, Table 251 

1), mostly representing individual urine specimens as only 5 CST included more than one 252 

sample. With exception of 2 clusters dominated by a single bacterial species (CST1-253 

Citrobacter koseri, and CST2-Gardnerella vaginalis, >90%), the remaining CST were 254 

predominantly represented by an extraordinarily diverse bacterial community (different 255 

combinations and RA of bacterial species), which varied widely from 1.21±0.05 to 2.65 as 256 

calculated by the Shannon diversity index (Fig. 1, Table 1). For instance, CST5 was 257 

characterized by combination of Lactobacillus iners with other bacterial species, CST12 258 

included Lactobacillus crispatus, Lactobacillus mulieris and other bacterial species, while 259 

CST10 comprised abundant Atopobium vaginae, low abundant Streptococcus anginosus and 260 

in one sample highly abundant Gardnerella swidsinskii (RA ~ 50%) (Fig. 1). 261 

 262 

Characterization of community structure types by amplicon sequencing 263 

A total of 58,534 reads were generated, with most of them being assigned to the 264 

species level (88%; 51,317 reads). One sample (U6a) had <1000 reads and was excluded 265 

from the analysis, while for the remaining a median of 2493 reads/sample (interquartile range, 266 

IQR 1625 - 3920) was generated. A total of 231 species (IQR 5-115, median = 39 267 

species/sample) belonging to 107 genera and 8 phyla were identified. The alpha diversity 268 

varied from 0.135 to 2.79 (median H′ = 0.90). Bacterial species detected by amplicon 269 

sequencing and their RA are listed in Supplementary Table S6. Of note, Corynebacterium (16 270 

species), Peptoniphilus (11 species), Anaerococcus (10 species), Streptococcus (9 species) 271 

and Bacteroides (8 species) were the genera that presented the highest species-level 272 

diversity. 273 
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The same FUM clustering approach was applied to amplicon sequencing data. Genus-274 

level clustering resulted in 5 CST (Supplementary Fig. S3). The Lactobacillus genus in 275 

combination with other bacterial genera (e.g., Prevotella, Dialister, and Corynebacterium) 276 

represented the most prevalent CST (CST5; 79%, n=15/19). Species-level clustering resulted 277 

in 7 CSTs (Fig. 2, Table 2), with the 3 (n=15) most common (being characterized by 278 

combination of a highly abundant Lactobacillus species (CST3-L. iners, CST5-Lactobacillus 279 

gasseri, CST7-L. crispatus) and species from other genera (Fig. 2). Remarkably, the 280 

Lactobacillus iners enriched-CST was characterized by a reduced species diversity (CST3, H′ 281 

= 0.56±0.42) compared to other Lactobacillus CSTs. The remaining CSTs included highly 282 

abundant C. koseri (CST1; n=1/19), Atopobium vaginae (CST2; n=1/19), or combination of 283 

different species (CST4: Anaerococcus tetradius and Prevotella timonensis; CST6: Ralstonia 284 

mannitolilytica and Streptococcus agalactiae; n=1 each). 285 

 286 

Correlation between community structure types assigned by culturomics and amplicon 287 

sequencing 288 

A moderate correlation was observed using the Mantel test (r = 0.5, p< 0.05) between 289 

the CST assigned by culturomics and amplicon sequencing. Congruence was observed for 290 

the types of highly abundant C. koseri and combinations of different Lactobacillus species 291 

(Fig. 1, Fig. 2), with 37% of samples (7/19) clustering into the same CST by both 292 

methodologies and additional 26% of samples (5/19) clustering in the proximate CST 293 

(Supplementary Fig. S4).   294 

Lactobacillus amongst others were responsible for the reduction in correlation between 295 

CST detected by different methodologies (e.g., Lactobacillus iners was more frequently 296 

detected in a higher RA by amplicon sequencing, while Cutibacterium acnes was more 297 

frequently detected by culturomics) (Fig. 3). Overall, amplicon sequencing enabled the 298 

detection of bacteria difficult to grow by conventional methods (e.g., Ureaplasma urealyticum, 299 

Ureaplasma parvum) and improved detection of fastidious bacterial species (e.g., 300 

Campylobacter ureolyticus, Finegoldia magna, Atopobium vaginae), whereas culturomics 301 
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allowed the identification of various Gram-positive bacteria (e.g., Enterococcus faecalis, 302 

Streptococcus agalactiae, Streptococcus anginosus). Remarkably, some species detected by 303 

sequencing in low-reads count (e.g., Staphylococcus aureus and Actinomyces urogenitalis, 304 

RA < 0.1%) were identified by extended culturomics, confirming their presence in a given 305 

sample (Supplementary Tables S5 and S6). Culturomics also allowed precise identification of 306 

closely related and/or newly described bacterial species e.g., Gardnerella leopoldii, 307 

Gardnerella genomospecies 3, Gardnerella swidsinskii, Limosilactobacillus portuensis, 308 

Limosilactobacillus urinaemulieris, Lactobacillus paragasseri, Lactobacillus mulieris, and 309 

putative novel Corynebacterium species. 310 

 311 

Overview of bacterial species in healthy FUM  312 

In total we captured an extended set of bacteria belonging to 8 phyla, 116 genera and 313 

297 species (median = 53 species/sample) in healthy FUM (Supplementary Tables S5 and 314 

S6; Supplementary Fig. S5). Out of 297 species, we have identified 65 species (22% of total 315 

species) belonging to 35 genera and 5 phyla by both methodologies. Certain genera were 316 

characterized by outstandingly high species-level diversity that could be captured only by 317 

combined culture-based and DNA-dependent approaches. For instance, from a total of 25 318 

Corynebacterium species, 8 could be identified by both methodologies (apart from 10 detected 319 

only by extended culturomics – including 5 putative novel species – and 7 only by amplicon 320 

sequencing), or from 14 species belonging to Lactobacillaceae (4 genera), 7 could be detected 321 

by both methodologies (in addition to 4 identified only by extended culturomics and 3 by 322 

amplicon sequencing) (Supplementary Tables S5 and S6). 323 

We could not identify a single species present in all samples, although the genus 324 

Lactobacillus was detected in all. Instead, we were able to unveil 14 prevalent bacterial 325 

species (present in more than 50% of samples) with at least 1% of abundance in one sample 326 

(Fig. 4, Supplementary Table S7). Staphylococcus epidermidis was the most common species 327 

(n=18/20), followed by Finegoldia magna (n=16/20), Corynebacterium tuberculostearicum 328 
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(n=15/20), and Prevotella bivia (n=15/20) (Supplementary Table S7). Remarkably, the 329 

common species were mostly low-abundant members (RA < 5%) (Fig. 4).  330 

Additionally, we looked for the presence of opportunistic pathogens associated with 331 

the healthy urogenital tract and found 16 bacterial species largely varying in their RAs (IRQ 332 

0,03-96.62%), among which Enterococcus faecalis, Streptococcus anginosus, and 333 

Ureaplasma parvum were the most frequently identified by both methodologies (Table 3). 334 

Noteworthy, C. koseri was a highly abundant member detected by both methodologies, while 335 

Atopobium vaginae was only detected by amplicon sequencing. All opportunistic pathogens 336 

associated with the urogenital tract detected by culturomics and/or amplicon sequencing in 337 

healthy FUM are listed in Table 3. 338 

 339 

Discussion  340 

Understanding the microbial composition of the lower urinary tract in healthy 341 

individuals is essential so that microbial changes associated with urinary disorders can be 342 

recognized and modulated as a therapeutic strategy. In this study, using a complementary 343 

approach supported by two comprehensive methodologies (extended culturomics and 344 

amplicon sequencing), we expanded the knowledge on compositional bacterial species 345 

patterns of the female lower urinary tract microbiome. 346 

Each technique presented a different capacity to characterize microbiome profiles 347 

(~63% of CST overlap for both methodologies), and only 22% of bacterial species were 348 

detected by both methodologies. Predictably, amplicon sequencing allowed more frequent 349 

detection of slow-growing species (e.g., Campylobacter ureolyticus), and obligate anaerobes 350 

(e.g., Finegoldia magna) that require particular culturing conditions. Interestingly, amplicon 351 

sequencing also revealed high species diversity within certain anaerobic genera (e.g., 352 

Anaerococcus, Peptoniphilus), however it is unclear if all these species were viable at the time 353 

of detection. On the other hand, the cultured isolates could be accurately identified to the 354 

species and strain level, thus providing a higher level of resolution, and allowing further 355 

investigation to unveil their symbiotic or pathogenic potential. Moreover, some species 356 
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detected in low-reads count were also identified by extended culturomics, which supports that 357 

FUM bacterial diversity reported from DNA-based studies may be underestimated, as also 358 

pointed out by other studies (34). Overall, the complementarity of both methodological 359 

approaches allowed for a more comprehensive description of the FUM diversity. 360 

Clustering FUM at genus level revealed that the most prevalent CST was 361 

characterized by the combination of highly abundant Lactobacillus and other genera, 362 

confirming previously reported high occurrence of Lactobacillus in the urinary microbiome (3, 363 

10, 13, 17). At species level the diversity largely increased, with the majority of the CST being 364 

represented by different Lactobacillus or Gardnerella species in different RA, and in 365 

combination with species from other genera, including low-abundant FUM members, as 366 

observed in our previous study (17).  367 

Remarkably, we identified for the first time a CST dominated by Atopobium vaginae 368 

(RA 33-87%) in an asymptomatic individual (U15a) (Fig. 2), in combination with Gardnerella 369 

swidsinskii (RA ~ 50%) (Fig. 1) (Supplementary Tables S5 and S6). Although Atopobium 370 

vaginae is associated with bacterial vaginosis (35, 36), this woman did not report any 371 

symptoms associated with urogenital diseases. Potentially, presence of Atopobium vaginae, 372 

opportunistic uropathogens (e.g., E. coli, C. koseri, or E. faecalis), or species more frequently 373 

isolated from women with specific urinary disorders (e.g., Aerococcus urinae, Lactobacillus 374 

gasseri) (Table 3, Fig. 1) (37, 38), might not be sufficient biomarkers of urogenital 375 

infections/disorders, since there are high functional variations at strain level. Further 376 

elucidation of the function of urinary microbiome members, including characterization 377 

(presence and expression) of virulence factors sensu stricto playing a significant role in 378 

pathogenesis, will likely help to understand the development of urogenital diseases (39, 40).  379 

Interestingly, we detected an outstandingly high diversity of Corynebacterium species 380 

and Lactobacillaceae members that was never reported in previous studies characterizing the 381 

asymptomatic FUM (Supplementary Tables S5 and S6) (1–3, 7, 10, 13, 41–43). We also 382 

identified 4 Gardnerella species in healthy FUM, according to recent genus reclassification 383 

(15). This demonstrates that the high number of colonies studied and reliable identification of 384 
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isolates by specific genotypic markers, together with the usage of cutting-edge long-read third 385 

generation sequencing of the 16S rRNA gene increase the knowledge on the composition of 386 

bacterial community to the species level in microbiome studies (17, 18, 44).  387 

Additional strengths of this study include sample processing up to 2 hours after 388 

collection, allowing us to identify anaerobic bacteria that seems to significantly contribute to 389 

the urinary microbiome repertoire (34), but are rarely or not reported by other healthy FUM 390 

culturomics studies (e.g., Prevotella corporis) (3, 7, 45). Methodological improvements include 391 

also the use of a larger volume sample size (20 ml), compared to previously used urine volume 392 

(mostly 1 ml) in DNA extraction protocols, which increased high-quality microbial DNA yield 393 

required for high-resolution sequencing, and unveiled detection of species not previously 394 

reported in DNA-based studies (e.g., Alistipes putredinis) (1, 10, 12, 34). Another important 395 

improvement was the use of a cutting-edge sequencing technique, including near full-length 396 

16S rRNA gene sequencing using PacBio SMRT cell technology (18, 46–48), and appropriate 397 

gene markers to identify cultured isolates at species level, which enable increased taxonomic 398 

resolution, as well as validation of several low-read sequencing data (< 0.1% RA) by our 399 

extended culturomic protocol.  400 

One limitation of this study was the small cohort size, yet our strictly selected participants 401 

(e.g., no antibiotics for any medical reason within the month prior to urine collection and 402 

samples collected on 3rd week of menstrual cycle) represented a homogeneous healthy 403 

female group. Another limitation of this study could be the use of voided urine instead of urine 404 

collected by suprapubic aspiration or urethral catheterization (49, 50). However, suprapubic 405 

aspiration or catheterization of participants who were not at a high risk of bacterial infection or 406 

without any clinical urinary symptoms was not ethically feasible as per our local ethics 407 

committee and, in fact, voided urine is a sample commonly used for diagnosis of urinary tract 408 

pathologies. Additionally, voided urine samples capture the urethral bacteria which can play 409 

an important role in urinary tract conditions. Moreover, in our study, careful vaginal swabbing 410 

was employed right before urine collection, for i) minimizing vulvo-vaginal bacterial 411 
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contribution; ii) assessing similarity of paired urinary tract and vaginal microbiome, which 412 

according to our preliminary data, is substantially different for most women (unpublished data). 413 

 414 

Conclusions 415 

Our study substantially enlarged the knowledge on bacterial species diversity in 416 

healthy FUM and provided extensive taxonomic characterization of Gardnerella, 417 

Lactobacillaceae, and Corynebacterium which are prevalent members in this niche. We 418 

demonstrated that, at species level, healthy FUM is highly diverse within and between 419 

individuals, and the most prevalent FUM members are low-abundant bacteria, potentially 420 

playing an important role in urinary tract eubiosis. 421 

This study provides a fine-grained analysis using improved culture- and DNA-based 422 

approaches that were shown to be highly beneficial to capture FUM species-level diversity. 423 

Additionally, the data provided here can be useful to estimate the bias resulting from using 424 

just one methodology.  425 

Finally, our findings provide essential species level information for further studies on 426 

microbiome dysbiosis associated with urinary tract infection and lower urinary tract symptoms, 427 

required for development of more effective diagnostic and/or therapeutic strategies. As we 428 

begin to detect near full composition and diversity of the urinary microbiome, future studies 429 

accessing the functionality of the resident microbiome in the human urinary tract should 430 

receive high priority. 431 

 432 

List of abbreviations 433 

BAP: Columbia agar with 5% sheep blood plate 434 

CAP: chromogenic agar plate 435 

CFU: colony forming unit 436 
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FUM: female urinary microbiome 439 
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IVD: in vitro diagnostic 440 

malB: maltose operon protein B 441 

MALDI-TOF MS: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 442 

ND: not detected 443 

OTU: operational taxonomic unit 444 

PCoA: principal coordinates analysis 445 

pheS: phenylalanyl-tRNA synthetase alpha subunit 446 

RA: relative abundance 447 

recN: DNA repair protein 448 

rpoB: RNA polymerase beta subunit 449 

SDS: sodium dodecyl sulfate 450 

sodA: superoxide dismutase 451 

UT: urinary tract 452 

UTI: urinary tract infection 453 
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 665 

Figures and tables 666 

Figure 1. Species-level community structure types of healthy FUM by culturomics. 667 

(i) Hierarchical clustering of Bray-Curtis dissimilarity distance matrices on the relative 668 

proportions of CFU/ml within individual urine samples. (ii) Bars below dendrogram denote 669 

community structure types. (iii) Heatmap of RA of bacterial species within each urinary 670 

microbiome. Only species that are at least 1% abundant in at least one sample are shown in 671 

order of decreasing prevalence (from top to bottom). Asterisk denotes detection only by 672 

culturomics and not by amplicon sequencing. 673 
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 675 

 676 

Figure 2. Species-level community structure types of healthy FUM by amplicon 677 

sequencing. 678 

(i) Hierarchical clustering of Bray-Curtis dissimilarity distance matrices on the relative 679 

proportions of reads for each OTU within individual urine samples. (ii) Bars below dendrogram 680 

denote community structure types. (iii) Heatmap of RA of bacterial species within each urinary 681 

microbiome. Only species that are at least 1% abundant in at least one sample are shown in 682 

order of decreasing prevalence (from top to bottom). Asterisk denotes detection only by 683 

amplicon sequencing and not by culturomics. 684 
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Figure 3. Biplot of the principal coordinate analysis (PCoA) based on the species-level 686 

Bray-Curtis dissimilarity matrices. 687 

Two-dimensional distances identify dissimilarities between bacterial community structures 688 

detected by culturomics and amplicon sequencing. The biplot, based on weighted average of 689 

the species scores, shows the top 10 species with the largest contributions to dissimilarities. 690 

Same colour indicates the same sample.  691 

 692 

 693 

 694 

Figure 4. Common bacterial species of healthy FUM detected by culturomics and 695 

amplicon sequencing. 696 
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(a) RA per sample of species present in more than 50% of samples by culturomics and 697 

amplicon sequencing. Only species that are detected by culturomics or amplicon sequencing 698 

with at least 1% abundance in at least one sample are presented in order of decreasing 699 

prevalence (from left to right). Same colour indicates the same sample. (b) Close-up of section 700 

of Fig. 4(a) showing the RA range 0.01-5%. 701 

 702 

 703 

Table 1. Overview of all healthy community structure types and their characteristic species by 704 

culturomics. Shared species within a structure type are presented in order of decreasing 705 

relative abundance (relative abundance > 1%, only top 5 shown). 706 

 707 

Structure 

type 

Characteristic species 
Samples 

Shannon index  

(mean H′ ± Standard Deviation) 

1 Citrobacter koseri U26a 0.001 

2 Gardnerella vaginalis U29a 0.33 
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Lactobacillus gasseri 

3 

Gardnerella leopoldii 

Alloscardovia omnicolens 

Bifidobacterium spp. 

Winkia neuii 

Streptococcus anginosus 

U1b 1.61 

4 

Streptococcus mitis/oralis 

Staphylococcus haemolyticus 

Micrococcus luteus 

Actinomyces spp. 

Lactobacillus crispatus 

U4b 1.85 

5 

Lactobacillus iners 

Corynebacterium tuberculostearicum 

Staphylococcus epidermidis 

Staphylococcus hominis 

Staphylococcus capitis 

U5a, 

U22a, 

U25a 

1.61±0.20 

6 

Streptococcus agalactiae 

Streptococcus salivarius/vestibularis 

Micrococcus luteus 

Staphylococcus haemolyticus 

U3b,  

U6a 
1.40±0.35 

7 

Lactobacillus paragasseri 

Lactobacillus delbrueckii 

Brevibacterium spp. 

Pseudoglutamicibacter cumminsii 

Corynebacterium jeikeium 

U7a 1.87 

8 

Enterococcus faecalis 

Staphylococcus epidermidis 

Lactobacillus gasseri 

Streptococcus anginosus 

Corynebacterium aurimucosum 

U2a 1.97 
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9 

Lactobacillus jensenii 

Staphylococcus haemolyticus 

Staphylococcus epidermidis 

Corynebacterium amycolatum 

Corynebacterium coyleae 

U12a 2.65 

10 
Atopobium vaginae 

Streptococcus anginosus 

U15a, 

U23a 
1.21±0.05 

11 

Corynebacterium striatum 

Dermabacter hominis 

Staphylococcus aureus 

Corynebacterium sp. nov. 4 

Lactobacillus crispatus 

U9a 1.72 

12 

Lactobacillus crispatus 

Lactobacillus mulieris 

Staphylococcus epidermidis 

Cutibacterium avidum 

U8a, 

U10a, 

U19a  

1.77±0.45 

13 

Lactobacillus crispatus 

Corynebacterium tuberculostearicum 

Finegoldia magna 

U11a, 

U24a 
1.52±0.58 

 708 

 709 

Table 2. Overview of all healthy community structure types and their characteristic 710 

species by amplicon sequencing. Shared species within a structure type are presented in 711 

order of decreasing relative abundance (relative abundance > 1%, only top 5 shown).  712 

 713 

Structure 

type 

Characteristic species  
Sample

s 

Shannon index  

(mean H′± Standard 

Deviation) 

1 Citrobacter koseri U26a 0.21 
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Citrobacter spp. 

Lactobacillus iners 

2 
Atopobium vaginae 

Sneathia sanguinegens 
U15a 0.59 

3 
Lactobacillus iners 

Prevotella timonensis 

U1b, 

U8a, 

U5a, 

U11a, 

U2a, 

U22a, 

U12a, 

U25a  

0.56±0.42 

4 

Anaerococcus tetradius 

Prevotella timonensis 

Lactobacillus jensenii 

Atopobium vaginae 

Ureaplasma parvum 

U23a 1.78 

5 

Lactobacillus gasseri 

Prevotella timonensis 

Dialister propionicifaciens 

Campylobacter ureolyticus 

U7a, 

U29a 
1.70±1.13 

6 

Ralstonia mannitolilytica 

Streptococcus agalactiae 

Kocuria spp. 

U3b 2.12 

7 

Lactobacillus crispatus 

Corynebacterium spp. 

U4b, 

U9a, 

U19a, 

1.86±0.85 
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Corynebacterium 

tuberculostearicum 

Peptoniphilus spp. 

U10a, 

U24a 

 714 

Table 3. Opportunistic pathogens associated with the urogenital tract. Species are listed 715 

in order of decreasing detection frequency in FUM. 716 

 717 

Species Frequency 

in FUM* 

(%) 

Culturomics Amplicon sequencing 

Frequency in 

20 samples 

(%) 

RA 

(%) 

Frequency in 

19 samples (%) 

RA 

(%) 

Enterococcus faecalis 12/20 

(60%) 

11/20 

(55%) 

0.01-

20 

3/19 

(16%) 

0.04-

0.22 

Streptococcus 

anginosus 

11/20 

(55%) 

10/20 

(50%) 

0.06-

13.33 

7/19 

(37%) 

0.03-

1.31 

Ureaplasma parvum 8/20 

(40%) 

ND ND 8/19 

(42%) 

0.10-

15.10 

Escherichia coli 6/20 

(30%) 

4/20 

(20%) 

0.02-

0.28 

4/19 

(21%) 

0.04-

1.54 

Streptococcus 

agalactiae 

6/20 

(30%) 

6/20 

(30%) 

0.03-

55.96 

2/19 

(10%) 

0.85-

23.20 

Ureaplasma 

urealyticum 

5/20 

(25%) 

ND ND 5/19 

(26%) 

0.08-

1.38 

Atopobium vaginae 4/20 

(20%) 

2/20 

(10%) 

21.66-

36.44 

4/19 

(21%) 

0.09-

86.63 

Staphylococcus 

aureus 

3/20 

(15%) 

3/20 

(15%) 

0.33-

16.68 

1/19 

(5%) 

0.04 
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Staphylococcus 

saprophyticus 

3/20 

(15%) 

3/20 

(15%) 

0.79-

6.67 

ND ND 

Corynebacterium 

coyleae 

3/20 

(15%) 

3/20 

(15%) 

0.08-

12.70 

3/19 

(16%) 

0.09-

1.54 

Citrobacter koseri 3/20 

(15%) 

1/20 

(5%) 

99.98 3/19 

(16%) 

0.03-

96.62 

Actinotignum schaalii 2/20 

(10%) 

1/20 

(5%) 

0.28 2/19 

(10%) 

0.08-

0.55 

Aerococcus urinae 2/20 

(10%) 

2/20 

(10%) 

0.12-

3.17 

ND ND 

Alloscardovia 

omnicolens 

1/20 

(5%) 

1/20 

(5%) 

24.55 ND ND 

Pseudomonas putida 1/20 

(5%) 

1/20 

(5%) 

14.72 ND ND 

Stenotrophomonas 

maltophilia 

1/20 

(5%) 

1/20 

(5%) 

0.13 ND ND 

*Total detection in FUM of 20 participants by both methodologies. 718 

ND - not detected; RA - relative abundance 719 

 720 

 721 

Supplementary Figures S1-S5. 722 

 723 
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 763 

 764 

 765 

Figure S1. Corynebacterium putative novel species 1-5. Neighbor-joining tree based on rpoB 766 

gene sequences showing the phylogenetic relationships between Corynebacterium selected 767 

closely related type strains and putative novel species. Nucleotide sequences were extracted 768 

from draft/complete genomes obtained from the NCBI Assembly Database, for which the 769 

accession numbers are shown next to the strain designation. Bootstrap percentages (based on 770 

1000 replications) are shown at nodes. Only values above 80% are shown. Bar, 0.05 substitutions 771 

per nucleotide position. Figure S1.A represents isolates sequenced with primers F- 772 

CGWATGAACATYGGBCAGGT and R- TCCATYTCRCCRAARCGCTG with ~450 bp amplicon, 773 

while figure S1.B includes isolated sequenced with primers F- CNTCBCACTAYGGNCGNATG 774 

and R- GAVCGNGCGTGRATCTTYTC with ~1700 bp amplicon. 775 
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 776 

 777 

Figure S2. Genus-level community structure types of healthy FUM by culturomics. 778 

(i) Hierarchical clustering of Bray-Curtis dissimilarity distance matrices on the relative proportions 779 

of CFU/ml within individual urine samples. (ii) Bars below dendrogram denote community 780 

structure types. (iii) Heatmap of relative abundances of bacterial genera within each urinary 781 

microbiota. Only genera that are at least 1% abundant in at least one sample are shown in order 782 

of decreasing prevalence (from top to bottom). Asterisk denotes detection only by culturomics 783 

and not by community amplicon sequencing. 784 
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 787 

Figure S3. Genus-level community structure types of healthy FUM by community amplicon 788 

sequencing. 789 

(i) Hierarchical clustering of Bray-Curtis dissimilarity distance matrices on the relative proportions 790 

of reads for each OTU within individual urine samples. (ii) Bars below dendrogram denote 791 

community structure types. (iii) Heatmap of relative abundances of bacterial genera within each 792 

urinary microbiota. Only genera that are at least 1% abundant in at least one sample are shown 793 

in order of decreasing prevalence (from top to bottom). Asterisk denotes detection only by 794 

community amplicon sequencing and not by culturomics. 795 
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 802 

 803 

Figure S4. Dendrogram representing species FUM hierarchical clustering including 19 804 

samples characterized by culturomics and amplicon sequencing.  805 

Hierarchical clustering was based on Bray-Curtis dissimilarity distance matrices, for which all 806 

species detected were included. A cutoff value of 0.8 was used to define the clusters (dashed 807 

orange line). 808 
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Figure S5. Venn-Euler diagram showing the number of species (N = 297) detected by 813 

culturomics and/or amplicon sequencing. The size of the circles and intersections is 814 

proportional to the number of species detected. Species detected by both methodologies are 815 

listed in alphabetical order. (RA, relative abundance) 816 
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