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Abstract 19 

Transcranial alternating current stimulation (tACS) can influence cognitive functions by modulating 20 

brain oscillations. However, results regarding the effectiveness of tACS in regulating cognitive 21 

performance have been inconsistent. In the present study, we aimed to find EEG characteristics 22 

associated with the improvements in working memory performance, to select tACS stimulus targets 23 

and frequency based on this feature, and to explore effects of selected stimulus on verbal working 24 

memory. To achieve this goal, we first investigated the EEG characteristics associated with 25 

improvements in working memory performance with the aid of EEG analyses and machine learning 26 

techniques. These analyses suggested that 8 Hz activity in the prefrontal region was related to 27 

accuracy in the verbal working memory task. The tACS stimulus target and pattern were then 28 
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selected based on the EEG feature. Finally, the selected tACS frequency (8 Hz tACS in the prefrontal 29 

region) was applied to modulate working memory. The performance of working memory was 30 

improved significantly using the selected stimulation than using 40 Hz and sham stimulation 31 

(Especially for participants with low verbal working memory). In conclusion, using EEG features 32 

related to positive behavioral changes to select brain regions and stimulation patterns for tACS is an 33 

effective intervention for improving working memory. Our results contribute to the groundwork for 34 

future tACS closed-loop interventions for cognitive deterioration. 35 

1 Introduction 36 

Over the past few decades, the development of non-invasive brain stimulation (NIBS) techniques has 37 

provided a new and effective approach to modulate memory for both researchers and clinicians 38 

(Misselhorn et al., 2020; Reinhart & Nguyen, 2019; Rombouts et al., 2005; Benussi et al., 2021; 39 

Grover  et al., 2021). Among NIBS techniques, transcranial alternating current stimulation (tACS) 40 

can alter specific frequencies of brain oscillations in predefined brain regions and further modulate 41 

human cognition (Zaehle et al., 2010; Vosskuhl et al., 2015; Riddle et al., 2021). Working memory 42 

deterioration is a key feature of cognitive decline in old age (Li et al., 2001). Although some 43 

researchers have proposed that NIBS can help to regulate memory and attenuate age-related cognitive 44 

decline (Reinhart & Nguyen, 2019), results regarding the effectiveness of tACS in regulating 45 

working memory performance have been inconsistent. Given that verbal and visual working memory 46 

involve different cognitive structures, these inconsistencies may have been due to improper selection 47 

of stimulation targets and parameters. Therefore, in the current study, we want to select tACS 48 

stimulus targets and frequency based on the EEG characteristics associated with improvements in 49 

verbal working memory, and to explore the effect of selected stimulus on verbal working memory.  50 

Several studies have indicated that theta and gamma tACS can improve verbal working memory. 51 

Based on the positive association between gamma band activity and task performance reported in 52 

previous studies, Hoy et al. (2015) applied 40 Hz tACS to the F3-contralateral supraorbital area in 18 53 

healthy participants. Participants underwent 20 min of tES (40 Hz or sham) while completing a 54 

verbal two -back task, as well as two-back and three-back tasks before and after tACS. Compared 55 

with sham-tACS and transcranial direct current stimulation (tDCS), 40 Hz tACS resulted in increased 56 

performance in terms of d prime (an accuracy discriminability index). Biel et al. (2021) also recently 57 

reported that frontoparietal in-phase and in-phase focal theta tACS substantially improved verbal 58 

three-back task performance when compared with placebo stimulation. 59 

However, some studies have reported that tACS was not effective or was only effective in a limited 60 

number of people for verbal working memory. For example, Pahor & Jaušovec (2018) applied tACS 61 

over many regions (F3-F4, F3-P3, F4-P4, P3-P4) in healthy adults to investigate working memory 62 

using two-back and three-back tasks. The rationale of the electrode montage and frequency band was 63 

based on previous correlational research, which showed that frontotemporal theta and gamma 64 

frequency bands are involved in working memory. Nevertheless, only theta-tACS improved 65 

performance on the three-back task in the F4-P4 region. In an earlier study, Vosskuhl et al. (2015) 66 

applied individual theta frequency stimulation at Pz-FPz. When compared with sham stimulation, 67 

tACS was associated with improved short-term memory performance. However, there was no 68 

significant difference in improvements on the verbal three-back task between tACS and sham 69 

stimulation. Kilian et al. (2020) further compared the effects of tDCS and 6-Hz tACS applied at F3-70 

FP2 in healthy participants, reporting no significant difference in verbal n-back task performance 71 

among the experimental groups (sham, tDCS, and tACS), but they observed that tDCS and tACS 72 

exert different modulatory effects on fMRI-derived network dynamics. 73 
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In the abovementioned studies, stimulation targeted the prefrontal, frontal, and parietal lobes using 74 

theta and gamma frequencies. In NIBS studies, specific targets and parameters for stimulation are 75 

usually selected in the following two ways: (a) frequency bands and regions are determined based on 76 

previously reported findings regarding their association with verbal working memory or (b) the 77 

parameters are simply selected based on those used in previous studies. While these methods have 78 

been somewhat successful, there is no guarantee that each combination of parameters will regulate 79 

working memory.  80 

We hypothesized that after identifying the brain regions and frequency bands associated with 81 

working memory, further exploration of changes in electroencephalogram (EEG) activity that 82 

correspond to positive behavioral changes can help to improve the effectiveness of tACS by enabling 83 

researchers to set stimulation targets and parameters based on such EEG activity. Repeated 84 

assessments of verbal working memory and EEG activity may therefore help to elucidate the 85 

electrophysiological features that vary with improvements in behavioral performance. To test this 86 

hypothesis, we conducted two experiments that mainly focused on working memory. Experiment 1 87 

was an EEG study, wherein participants completed three n-back tasks, and the electrophysiological 88 

features related to improvements in working memory were extracted. In Experiment 2, the 89 

participants were divided into three groups and received different frequencies of online tACS: the 90 

frequency in group 1 was the evident band in experiment 1, the frequency in group 2 was the non-91 

evident band in experiment 1, and group 3 was the sham group. The results of the comparison 92 

between group 1 and the other groups can answer the research question. 93 

2 Experiment 1: EEG features related to performance 94 

2.1 Materials and Methods 95 

 2.1.1 Participants 96 

A total of 35 healthy adults aged 22–26 years of age participated in Experiment 1. All participants 97 

had normal or corrected-to-normal vision and were right-handed. 98 

In experiment 1, ten participants were excluded because they did not complete the experiment and 25 99 

participants (five females; mean age 23.76±1.14 years) were included in the analyses. 100 

When analyzing the results of Experiment 1, we considered that some volunteers would exhibit 101 

naturally high performance on the verbal working memory task, leading to a ceiling effect over 102 

multiple measurements that may impede identification of the EEG characteristics associated with 103 

improvements in performance. We also considered that individuals with high and low levels of 104 

verbal working memory ability may exhibit differences in EEG activity and that the same tES 105 

parameter may exert different modulatory effects in each group (Daffner et al., 2011, Tseng et al., 106 

2012). For the behavioral analyses, participants were divided into two groups based on their 107 

performance in block 1. The grouping method was selected in reference to previous studies (Daffner 108 

et al., 2011, Tseng et al., 2012). The scores of the three-back and four-back tasks were summed. The 109 

participants who scored lower than the median scores were assigned to the low-performance group, 110 

while those who scored higher than the median scores were assigned to the high-performance group. 111 

Following grouping, four participants were excluded due to extreme values (target accuracy [target-112 

ACC] or reaction time (RT) exceeding two standard deviations from the mean). The final low-113 

performance group (LP) and high-performance groups (HP) included nine and 12 participants, 114 

respectively.  115 
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For the EEG analyses, two participants were excluded because they had not sufficient number of 116 

good quality EEG trials after artifact removal (LP group: n = 8; HP group: n = 11). 117 

This study was approved by the Ethics Committee of the Shenzhen Institute of Advanced 118 

Technology. The experimental procedures conformed to the principles of the Declaration of Helsinki 119 

regarding human experimentation. All participants provided oral consent, signed informed consent 120 

documents, and received 270RMB for their participation. 121 

 2.1.2 Experimental Design and Schedule 122 

In Experiment 1, all subjects received the same treatment. Participants were required to visit the 123 

laboratory twice to complete three n-Back tasks (blocks 1, 2, and 3). On day 1, participants 124 

performed the block 1 n-back task. After 1 week, the subjects returned to the laboratory and 125 

completed blocks 2 and 3. There was a 10 min break between blocks 2 and 3. In each task, task-state 126 

EEG data were recorded. 127 

2.1.3 N-back Task 128 

Kirchner (1958) first proposed the n-back task. Subsequently, the n-back task has been widely 129 

employed to investigate and measure working memory. In Experiment 1, we employed the two-back 130 

task as an exercise, and the three-back and four-back tasks to measure the working memory 131 

performance of volunteers. As illustrated in Figure 1, in n-Back task (e.g., two-back task), each trial 132 

started with a stimulus consisting of an uppercase letter presented for 2 s, followed by a fixation “+” 133 

for 0.5 s. After the nth trial (e.g., 2nd in the two-back task), participants were required to determine 134 

whether the current letter was the same as the previous nth letter (e.g., 2nd in the two-back task). If 135 

they were the same, the participants were required to press the ‘match’ button. The current trial was 136 

defined as a target trial. Otherwise, the participants pressed the ‘non-match’ button, and the current 137 

trial was defined as a non-target trial. The accuracy of the target trials is defined as “target-ACC”. 138 

For each trial, participants had 2.5 s to respond and were instructed to press the button as quickly as 139 

possible. The instructions were similar in the three-back and four-back tasks. 140 

Each load condition (three-back and four-back) had one sequence of 60+n trials. Each sequence 141 

consisted of 20 trials for targets and 40 trials for non-targets. To help participants understand the n-142 

back task requirements, practice trials were provided for each task. Each n-back task took 10-15 143 

minutes to complete. The paradigms were programmed in MATLAB using PsychToolbox (Brainard, 144 

1997; Pelli, 1997). 145 

2.1.4 Electrophysiological Recordings 146 

The EEG was recorded during each n-back task with an online reference against the CPz electrode 147 

using a 64-channel wireless EEG amplifier with a sampling rate of 1000 Hz (NeuSen. W64, 148 

Neuracle, Changzhou, China). The ground electrode was located on the forehead (between the FPz 149 

and Fz electrodes). Electrode impedances were maintained at <5 kΩ. 150 

2.1.5 Initial EEG analysis 151 

Initial EEG analysis includes two steps: (a) EEG signal preprocessing to remove artifacts and to 152 

improve the reliability of data and; (b) Preliminary exploration of brain regions and frequency bands 153 

with the activity corresponding to improvements in performance. 154 
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For EEG signal preprocessing, all data were analyzed using EEGLAB version 13.0.0b running in 155 

MATLAB (The MathWorks, USA). Only correctly responded trials were used in the analysis. 156 

Preprocessing steps included filtering (1-48 Hz), epoching (1000 ms before and 1500 ms after 157 

stimulus onset), baseline correction (500 ms before stimulus onset), and large artifact removal. 158 

Ocular artifacts were removed from the independent component analysis (ICA) results. The EEG 159 

data were then average-referenced. Finally, epochs that contained signals >100 µV from baseline 160 

were rejected. 161 

In the second step, we used the function pop_newtimef (Arnaud Delorme, CNL/Salk Institute, 2001) 162 

in EEGLAB for time-frequency analysis. To compare the changes of EEG activity between block 1 163 

and block 3. The number of cycles in each analysis wavelet was [3 0.5], the padratio was 2, and the 164 

window length was 350 ms. Meanwhile, the filter bank common spatial pattern (FBCSP) was used to 165 

explore spatio-frequency modes corresponding to improvements in performance.  166 

FBCSP is a machine learning approach used to extract the optimal spatial features from different 167 

frequency bands (Ang et al., 2008). The original FBCSP algorithm consists of four steps: (1) band 168 

filtering, (2) spatial filtering, (3) mutual information (MI)-based feature selection, and (4) 169 

classification. MI is a useful statistical measure that can be used to quantify the relationship between 170 

variables (Timme & Lapish, 2018). Here, we dropped the classification step. Instead, we focused on 171 

the spatio-frequency modes (i.e., the brain regions and frequency bands) of the selected features. 172 

Figure 2 illustrates the workflow. To begin this process, FIR band-pass filters were employed to filter 173 

the EEG signals into three frequency bands: theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz). 174 

𝐸𝑖,𝑞 ∈ ℝ𝐶×𝑇 denotes the i-th trial of the qth frequency band EEG. In the spatial filtering step, we first 175 

calculated a spatial filter 𝑊𝑖,𝑞 for each frequency band using the CSP algorithm (Blankertz et al., 176 

2007; Pfurtscheller & Neuper, 2001). Notably, 𝑊𝑖,𝑞
−1 is the spatial distribution pattern of EEG 177 

signals. The spatial filter 𝑊𝑖,𝑞  was then applied to the EEG matrix 𝐸𝑖,𝑞, 178 

𝑍𝑖,𝑞 = 𝑊𝑞𝐸𝑖,𝑞 (1) 179 

where the projected EEG matrix is 𝑍𝑖,𝑞 ∈ ℝ𝐶×𝑇. We selected the m first and rows of 𝑍𝑖,𝑞 to maximize 180 

the variation for one class while minimizing the variance for the other class. The normalized feature 181 

vector 𝑋𝑖,𝑞
𝑝

 was then computed as follows: 182 

𝑋𝑖,𝑞
𝑝 = log [

𝑣𝑎𝑟(𝑍𝑖,𝑞
𝑝 )

∑ 𝑣𝑎𝑟(𝑍𝑖,𝑞
𝑝2𝑚

𝑖=1 )
] , 𝑝 ∈ {1,2,… ,2𝑚} (2) 183 

In the third step, the MI-based feature selection method was adopted to find the spatio-frequency 184 

modes containing the most discriminating features (Battiti, 1994). We defined the binary labels set as 185 

𝑙 ∈ 𝐿 = {0,1}, where label 0 is for the lower-capacity subjects and label 1 is for the higher-capacity 186 

subjects. The mutual information 𝐼(𝑋𝑖,𝑞
𝑝 ; 𝐿) (MI-value) was defined as (Cover, 1999): 187 

𝐼(𝑋𝑖,𝑞
𝑝 ; 𝑙) = 𝐻(𝑋𝑖,𝑞

𝑝 ) − 𝐻(𝑋𝑖,𝑞
𝑝 |𝐿) (3) 188 

where the entropy for the T-dimensional feature vector 𝑋𝑖,𝑞
𝑝

 is 189 

𝐻(𝑋𝑖,𝑞
𝑝 ) = −∑𝑝

𝑇

𝑖=1

(𝑋𝑖,𝑞
𝑝 )log

2
𝑝(𝑋𝑖,𝑞

𝑝 ) (4) 190 
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and the conditional entropy for the random variable 𝑋𝑖,𝑞
𝑝

 and 𝐿 is 191 

𝐻(𝑋𝑖,𝑞
𝑝 |𝐿) = −∑𝑝

𝑙∈𝐿

(𝑙|𝑋𝑖,𝑞
𝑝 )log

2
𝑝(𝑙|𝑋𝑖,𝑞

𝑝 ) (5) 192 

We selected the top two largest MI values for each n-back test. The corresponding brain regions and 193 

frequency bands were considered the most important spatio-frequency modes for n-back performance 194 

discrimination. 195 

2.1.6 Graph Convolutional Neural Network (GCNN) 196 

We adapted the original Graph Convolutional Neural Network (GCNN) by adding an attention layer 197 

to capture brain network dynamics and identify the channel providing the greatest contribution to the 198 

n-back tasks. The GCNN is a generalized version of the convolutional neural network (CNN) 199 

(Defferrard et al., 2016). By employing spectral graph theory (Chung & Graham, 1997), GCNN can 200 

reveal the underlying topological information of high-dimensional data. In the second step, we 201 

investigated the intrinsic spatial patterns of multichannel EEG data using a GCNN model, in which 202 

each vertex represents an EEG channel and each edge represents the connection between two 203 

electrodes. Although the GCNN approach is effective for elucidating the spatial patterns of 204 

multichannel EEG, one limitation is the requirement for a fixed graph representation. In other words, 205 

the adjacent matrix must be predetermined before applying the GCNN to the data. However, the brain 206 

states of participants can exhibit time variance during long recording periods. Consequently, inspired 207 

by graph attention network (GAT) methods (Veličković et al., 2017), we adapted the original GCNN 208 

by adding an attention layer to capture brain network dynamics and identify the channel providing the 209 

greatest contribution in the n-back tasks.  210 

By definition, a graph can be represented as 𝐺 = {𝑉, 𝐸, 𝐴}, in which 𝑉 is the set of vertices with the 211 

number of 𝑁 = |𝑉|. 𝐴 represents the adjacent matrix, in which each entry denotes the connection 212 

relationship (i.e., the edge) between two vertices. The set of input features can be denoted as ℎ = {ℎ⃗ 1,213 

ℎ⃗ 2, ℎ⃗ 3,⋯ , ℎ⃗ 4}, where each feature vector corresponds to a vertex. We first initialized the adjacent 214 

matrix randomly. The initial adjacent matrix can be updated by the graph attention layer (Veličković 215 

et al., 2017) during the training process. The updating rule is presented as follows: 216 

First, the graph attention layer computes the attention coefficient matrix 𝛼 ∈ ℝ𝐹′×𝐹′
,where 𝐹′ is the 217 

size of the output feature set. The coefficients can be computed as 218 

𝛼𝑖,𝑗 =
exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(�⃗⃗� 𝑇[𝐴ℎ⃗ 𝑖 ∥ 𝐴ℎ⃗ 𝑗 ]))

∑ exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(�⃗⃗� 𝑇[𝐴ℎ⃗ 𝑖 ∥ 𝐴ℎ⃗ 𝑘  ]))𝑘∈𝑁𝑖

(1) 219 

where 𝑁𝑖 is the set of adjacent vertices of the vertex 𝑖, �⃗⃗� ∈ ℝ2𝐹′
 is the parameter vector of the graph 220 

attention layer, and ∥ is the concatenation operation.  221 

The adjacent matrix 𝐴 can be updated by multiplying the coefficient matrix and the original adjacent 222 

matrix, as follows: 223 

                                                                      𝐴′ = 𝛼𝐴                                                                              (2) 224 

Meanwhile, the graph attention layer also updates the feature set according to the following: 225 
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                                                                    ℎ⃗ 𝑖
′ = 𝜎(∑ 𝛼𝑖,𝑗𝐴ℎ⃗ 𝑖𝑗∈𝑁𝑖

)                                                       (3) 226 

Then, two GCNN layers are used to classify the performance of the participants. 𝐿 denotes the 227 

Laplacian matrix, which can be written as 228 

                                                                  L = D − W ∈ ℝ𝑁×𝑁                                                             (4)   229 

where 𝐷 represents the degree matrix. 𝐿 can then be decomposed as follows: 230 

                                                                  L = UΛUT                                                                               (5) 231 

The convolution in the non-Euclidean domains can be computed as 232 

                                                    y = gθ(L)x = gθ(UΛUT)x = Ugθ(Λ)UTx                                    (6) 233 

where gθ is the non-parametric filter with learnable parameters. A fully connected layer is then 234 

adopted to predict behavioral performance. 235 

2.1.7 Further EEG Analysis 236 

Further EEG analysis based on the results of initial EEG analysis and GCNN, which we explored the 237 

frequency change (4 Hz, 5 Hz, 6 Hz, 7 Hz, 8 Hz) most closely associated with improvements in 238 

performance. To obtain the EEG activity patterns that most closely corresponded to the integer 239 

frequency values of 4, 5, 6, 7, and 8 Hz, we changed the padratio to 8 in further EEG analysis. 240 

Comparing the changes of each integer frequency (4 Hz, 5 Hz, 6 Hz, 7 Hz, 8 Hz) activity between 241 

block 1 and block 3. Measured the MI between power features (4 Hz, 5 Hz, 6 Hz, 7 Hz, 8 Hz) and n-242 

back performance to investigate which frequency was more sensitive to changes in behavior. 243 

Specifically, the frequency with the largest MI magnitude is chosen as the stimulation frequency and 244 

was applied to modulate working memory.  245 

2.2 Results 246 

 2.2.1 Behavioral Analyses 247 

The target-ACC of the n-Back task was analyzed using a mixed-design analysis of variance 248 

(ANOVA) employing one between-subject factor of group (HP or LP) and two within-subject factors 249 

of back (three-back or four-back) and block (block 1, 2, or 3). As shown in Figure 4, the main effect 250 

of block was significant (F2, 38 = 23.015, p =.000, MSE =3266.76, 𝜂2 =.55), suggesting that target-251 

ACC increased as the participants practiced more (target-ACCblock3 > target-ACCblock2 > target-252 

ACCblock1, ps. <.05). The main effect of back was also significant (F1, 19 = 25.778, p =.000, MSE 253 

=5831.80, 𝜂2 =.58), suggesting that target-ACC was significantly better on the four-back than the 254 

three-back task (ps. <.05). The main effect of group was significant (F1, 19 = 15.003, p =.001, MSE 255 

=5630.21, 𝜂2 =.44), suggesting that target-ACC was significantly better among the HP group than 256 

among the LP group (ps. <.05). We also observed a significant interaction effect between block and 257 

group (F2, 38 = 6.02, p =.005, MSE =828.77, 𝜂2 =.24), suggesting that target-ACC increased with 258 

practice in the LP group (target-ACCblock3 > target-ACCblock1, target-ACCblock3 > target-ACCblock1, ps. 259 

<.05). In the HP group, only block 3 target-ACC was significantly greater than that in block 1. 260 

Further comparisons indicated that target-ACC significantly improved as the number of practice 261 

trials increased in the LP group (three-back: target-ACCblock3 > target-ACCblock1, ps. <.05; four-back: 262 

target-ACCblock3 > target-ACCblock2 > target-ACCblock1, ps. <.05). However, this effect was not 263 

observed in the HP group. 264 
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The same mixed-design ANOVA was conducted for the RT of the correct target trials. Only the main 265 

effect of block was significant (F1.49, 28.22 = 13.26, p =.000, MSE =.43, 𝜂2 =.41, with Greenhouse-266 

Geisser correction), suggesting that the reaction time decreased as the participants practiced more 267 

(RTblock1 > RTblock3, RTblock2 > RTblock3, ps. <.05). Further comparisons indicated that RT 268 

significantly decreased as the number of practice trials increased in the relatively simple three-back 269 

task (For three-back, RTblock1 > RTblock3, RTblock2 > RTblock3, ps. <.05, in both the HP and LP groups), 270 

but not in the relatively difficult four-back task. 271 

Our analysis of behavioral outcomes indicates that the target-ACC was affected by naturally capacity 272 

of the verbal working memory, and in block 3 the target-ACC was significantly higher than block 1 273 

within the LP group. RT was affected by the difficulty of the task, and the practice effect was only 274 

observed in the simpler three-back task. 275 

 2.2.2 Initial EEG Analyses 276 

After EEG signal preprocessing, we conducted an initial analysis to explore the brain regions and 277 

frequency bands exhibiting changes that corresponded to increases in target-ACC in the LP group. 278 

For each frequency band (i.e., theta, alpha, beta) and each block (i.e., block1, block3), the average 279 

power between 100 ms and 700 ms was computed and was further averaged among the two n-back 280 

tasks. Figure 5 shows the event-related synchronization distribution from block 1 to block 3 281 

(𝑃𝑜𝑤𝑒𝑟𝑏𝑙𝑜𝑐𝑘 3 − 𝑃𝑜𝑤𝑒𝑟𝑏𝑙𝑜𝑐𝑘 1). According to this figure, the power seemed relatively stable in the 282 

central and parietal regions, regardless of the group or frequency band. Compared with those in block 283 

1, theta and alpha activity was significantly enhanced in the prefrontal, frontal, and occipital lobes in 284 

block 3. Considering that the occipital lobe is more involved in visual processing, while the 285 

prefrontal and frontal lobes are more closely related to working memory processing, we focused 286 

further analyses on theta and alpha activity in the prefrontal and frontal lobes. After preliminary 287 

identification of brain regions and frequencies, the theta and alpha power in Fp1, Fp2, F3, and F4 of 288 

the n-back task was analyzed using a mixed-design ANOVA employing one between-subject factor 289 

of group (HP or LP) and two within-subject factors of back (three-back or four-back) and block 290 

(block 1, 2, or 3). For theta activity, the main effect of block was significant (F2, 34 = 5.18, p =.011, 291 

MSE =22.99, 𝜂2 =.23) in Fp1, powerblock3 was significantly greater than powerblock1, and powerblock2 292 

was significantly greater than powerblock1. For theta activity, the main effect of block was significant 293 

(F2, 34 = 6.39, p =.004, MSE =26.12, 𝜂2 =.27) in Fp2, powerblock3 was significantly greater than 294 

powerblock1, and powerblock2 was significantly greater than powerblock1. For theta activity, the main 295 

effect of block was significant (F2, 34 = 7.30 p =.002, MSE =16.79, 𝜂2 =.30) in F3, and powerblock2 was 296 

significantly greater than powerblock1. For alpha activity, the main effect of block was significant (F2, 297 

34 = 3.86 p =.031, MSE =16.06, 𝜂2 =.19) in Fp2, and powerblock3 was significantly greater than 298 

powerblock1. No other main effects were significant (see Table 1). These findings suggested that, when 299 

compared with other combinations (i.e., theta in frontal region, alpha in frontal region, alpha in 300 

prefrontal region), theta activity in the prefrontal region exhibited trends similar to those observed for 301 

changes in behavior (i.e., Compared with block 1, the behavior [target-ACC and RT] and theta 302 

activity in block 3 were changed significantly).  303 

Meanwhile, to determine the most discriminative spatio-frequency, we performed quantitative 304 

analysis on the 2m (m=2) selected spatial features by measuring MI. We selected the top two largest 305 

MI values for each test (see Table 2) and visualized the corresponding EEG topographies (see Figure 306 

6). Table 2 and Figure 6 show that all selected MI values were obtained from the lower band (theta, 307 

alpha) activities in frontal and prefrontal region, indicating that lower band activities in frontal and 308 

prefrontal region can provide more information for predicting performance on the n-back test. (i.e., 309 
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more sensitive to n-back performance differences). In particular, among the three tests, the features 310 

extracted from the theta band had larger MI values than those extracted from the alpha band, aside 311 

from those in the three-back test. Thus, we believe that theta band activity in frontal and prefrontal 312 

region may be a better indicator of changes in working memory performance. 313 

 2.2.3 Graph Convolutional Neural Network (GCNN) 314 

We use an adapted graph attention mechanism to capture brain network dynamics and find the 315 

channel contributing most to performance in the n-back tasks. The proposed model achieved a 316 

classification accuracy of 80.4%. We selected the top 15 largest weights from the output optimal 317 

adjacent matrix and normalized the chosen weights. The edge between Fp1 and Fp2 had the largest 318 

weight at 0.78, suggesting that the functional connection between Fp1 and Fp2 was most important 319 

for n-back task performance.  320 

The result of GCNN was similar to the initial EEG analysis, indicating that the brain activity in 321 

prefrontal region was associated with the changes in working memory performance. 322 

 2.2.4 Further EEG Analysis 323 

In further EEG analysis, we investigated the frequency (4 Hz, 5 Hz, 6 Hz, 7 Hz, and 8 Hz) for which 324 

changes in activity were most closely associated with improvements in behavior. The same mixed-325 

design ANOVA was conducted for EEG powers of 4, 5, 6, 7, and 8 Hz in Fp1 and Fp2. Table 3 lists 326 

the significant results. We observed that 8 Hz activity in the prefrontal region (especially Fp2) was 327 

most closely related to target-ACC. Specifically, for both the three- and four-back tasks, 8 Hz activity 328 

was significantly greater in block 3 than in block 1 in the LP group, as was the target-ACC. 329 

Prefrontal activity at 6 and 7 Hz appeared to be related to both target-ACC and RT.  330 

Meanwhile, we measured the MI between power features (4 Hz, 5 Hz, 6 Hz, 7 Hz, and 8 Hz) of the 331 

two selected regions (Fp1 and Fp2) and n-back performance (see Table 4). We observed that the 8 Hz 332 

power of both regions had larger MI values than other frequencies. Since the magnitude of MI is an 333 

indicator of shared information between variables, we inferred that dependency was greatest between 334 

8 Hz power and n-back task performance when compared with that for the other four frequency–335 

performance pairs. 336 

Considering the specificity of the stimulus, these findings indicated that applying 8-Hz stimulation to 337 

the prefrontal lobe may be effective for improving verbal working memory performance. 338 

2.2.5 Summary 339 

EEG analysis indicated that 8 Hz activity in the prefrontal lobe was associated with the correct 340 

response rate in the verbal working memory task, while 6 and 7 Hz activity appeared to be associated 341 

with both the correct response rate and response time. Dependency was greatest between 8 Hz power 342 

in the prefrontal cortex and n-back task performance when compared with that for the other four 343 

frequency–performance pairs. In addition, machine learning results suggested that the functional 344 

connection between Fp1 and Fp2 was most important for performance in the n-back tasks. These 345 

EEG and machine learning results were used to design Experiment 2, in which the prefrontal lobe 346 

was selected as the target for stimulation at a frequency of 8 Hz. In Experiment 2, we compared the 347 

modulatory effects of 8 Hz (selected stimulation), 40 Hz (control) and sham stimulation on verbal 348 

working memory. 349 

3 Experiment 2  350 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476885doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.19.476885
http://creativecommons.org/licenses/by-nc-nd/4.0/


   EEG-based tACS on working memory 

 
10 

3.1 Materials and Methods 351 

 3.1.1 Participants 352 

In Experiment 2, we recruited 67 young healthy volunteers, but only 48 were included in the 353 

behavioral data analysis (20-30 years old). The exclusion criteria were as follows: 1) participants who 354 

did not follow the instructions, 2) participants who had outstanding performance in pre-stimulation 355 

(target-ACC of >90% in the pre-stimulation tasks), and 3) extreme values (target-ACC or RT 356 

exceeding two standard deviations from the mean). Among the 48 included participants, 12 were 357 

excluded from the EEG analysis because of poor signal quality, and 36 participants (12 females; 358 

mean age 23.67±1.97 years) were included in the analyses. 359 

All participants had normal or corrected-to-normal vision and were right-handed. A preliminary 360 

questionnaire screening with each subject ensured that all inclusion criteria for transcranial electric 361 

stimulation applications were met (i.e., no history of neuropsychiatric disorders [e.g., epilepsy], no 362 

brain injuries, no pregnancy, no intake of neuroleptic or hypnotic medications, and no metallic or 363 

electrical implants in the body). 364 

This study was approved by the Ethics Committee of the Shenzhen Institute of Advanced 365 

Technology, and all experimental procedures conformed to the principles of the Helsinki Declaration 366 

regarding human experimentation. All participants provided oral consent, signed informed consent 367 

documents, and received 200RMB for their participation. 368 

 3.1.2 Experimental Design and Schedule 369 

Experiment 2 was conducted using a single-blinded sham-controlled design. Participants were 370 

randomly divided into a selected group (n = 14), sham group (n = 18), and control group (n = 16). 371 

They completed three sessions (pre-stimulation, stimulation, and post-stimulation). Each session 372 

included one n-back task (blocks 1, 2, or 3). In the pre-stimulation session, resting-state EEG data 373 

were collected for 5 min before the block 1 n-back task. The participants then underwent tACS while 374 

performing the block 2 n-back tasks in the stimulation session. The post-stimulation session was the 375 

same as that in the pre-stimulation session. Task-state EEG data were recorded for block 1 (the pre-376 

stimulation session) and block 3 (the post-stimulation session). Finally, subjects completed an 377 

electrical stimulation sensitivity questionnaire to report their experienced regarding phosphenes, 378 

dizziness, tingling, and itching. 379 

3.1.3 N-Back Tasks 380 

Compared with the n-Back tasks of Experiment 1, those in Experiment 2 included an additional five-381 

back task to further investigate the effect of tACS on performance on a more difficult working 382 

memory task. In addition, there are nine sequences in total, and each back included three sequences. 383 

Each sequence contained 33+n trials, including 11 target trials and 22 non-target trials. 384 

3.1.4 EEG Recordings and Data Preprocessing 385 

EEG data recording, processing, and time-frequency analyses were the same as those in Experiment 386 

1. 387 

3.1.5 Transcranial Alternating Current Stimulation 388 

tACS was delivered via a pair of 4.5 × 5.5 cm2 gel electrodes connected to a battery-driven 389 

stimulator. The gel electrode impedances were <500 Ω. One of the electrodes was placed over FP1-390 
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AP7 and the other was placed over FP2-AF8. The stimulation intensity was 2.0 mA (peak-to-peak 391 

current) and was applied for 20 min during the stimulation session in Experiment 2. The selected 392 

group received 8 Hz tACS (8 Hz group) and the control group received 40 Hz tACS (40 Hz group). 393 

The sham group was also equipped with tACS electrodes but did not receive stimulation. 394 

3.2 Results 395 

 3.2.1 Behavioral Analyses 396 

The target-ACC of the n-Back task was analyzed using a mixed-design ANOVA employing one 397 

between-subject factor of group (8 Hz, 40 Hz, or sham) and two within-subject factors of back 398 

(three-back, four-back, or five-back) and block (block 1 or 2). As shown in Figure 7A, the main 399 

effect of block was significant (F1, 39 = 62.56, p =.000, MSE =6059.908, 𝜂2 =.62), suggesting that 400 

target-ACC was greater in block 3 than in block 1. The main effect of back was also significant (F1.56, 401 

60.87 = 42.90, p =.000, MSE =611.80, 𝜂2 =.52, with Greenhouse-Geisser correction), suggesting that 402 

target-ACC decreased significantly as the difficulty of the task increased (target-ACCthree-back > 403 

target-ACCfour-back >target-ACCfive-back, ps. <.001). We also observed a significant interaction effect 404 

between block and group (F2, 39 = 7.11, p =.002, MSE =689.06, 𝜂2 =.27), suggesting that target-ACC 405 

was significantly greater for block 3 than for block 1 at 8 Hz, 40 Hz, and in the sham condition (ps. 406 

<.05). The interaction effect between back and block (F2,78 = 3.38, p =.039, MSE =178.69, 𝜂2 =.08) 407 

was also significant, suggesting that target-ACC was significantly greater in block 3 than in block 1 408 

for three-back, four-back, and five-back tasks (ps. <.05). Further comparisons indicated that block 3 409 

target-ACC in the 8 Hz group was significantly higher than that in block 1 for the three-back, four-410 

back, and five-back tasks (ps. <.05). Furthermore, in the sham group, target-ACC was significantly 411 

higher in block 3 than in block 1 for the three-back and four-back (ps. <.05). However, in the 40 Hz 412 

group, target-ACC was significantly greater in block 3 than in block 1 for the three-back task only.  413 

The same mixed-design ANOVA was conducted to examine RT for correct target trials. As shown in 414 

Figure 7B, the main effect of block was significant (F1, 39 = 87.58, p =.000, MSE =4.18, 𝜂2 =.69), 415 

suggesting that block 3 RTs were shorter than those in block 1. The main effect of back was also 416 

significant (F1.59, 62.18 = 25.12, p =.000, MSE =.16, 𝜂2 =.39, with Greenhouse-Geisser correction), 417 

suggesting that RT increased significantly as the difficulty of the task increased (RTfour-back > RTthree-418 

back, RTfive-back > RTthree-back, ps. <.001). Further comparisons indicated that RT was significantly 419 

shorter in block 3 than in block 1 for all three groups (8 Hz, 40 Hz and sham) and in all three task 420 

conditions (three-back, four-back, and five-back) (ps. <.05).  421 

As shown above, the strong practice effect resulted in better performance in block 3 than in block 1. 422 

Therefore, we used the improvements in target-ACC (i.e., target-ACCblock3 – target-ACCblock1) and 423 

RT (i.e., RTblock3 – RTblock1) as behavioral indices to compare which stimulation setting induced the 424 

greatest improvements in verbal working memory. Improvements in target-ACC in each n-back task 425 

were analyzed using a mixed-design ANOVA employing one between-subject factor of group (8 Hz, 426 

40 Hz, or sham) and one within-subject factor of back (three-back, four-back, or five-back). As 427 

shown in Figure 8A, the main effect of back was significant (F2, 78 = 3.38, p =.039, MSE =357.38, 𝜂2 428 

=.08), indicating a smaller degree of improvement in target-ACC in the five-back task than in the 429 

three-back task. The main effect of group was significant (F2, 39 = 7.11, p =.002, MSE =1378.12, 𝜂2 430 

=.27), indicating that the target-ACC improvement was significantly greater in the 8 Hz group than in 431 

the 40 Hz and sham groups (ps. <.05). Further comparisons revealed that the target-ACC 432 

improvement of 8 Hz group was significantly greater than that of the 40-Hz group and sham group 433 

(ps. <.05) in the three-back and four-back tasks. In the five-back task, the improvement in target-434 
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ACC was significantly greater in the 8 Hz group than in the 40 Hz group (ps. <.05). The same 435 

analysis was conducted to examine improvements in RT. However, no significant effects were 436 

observed in the RT analysis.  437 

We further aimed to explore the effects of the three stimulation conditions on verbal working 438 

memory in the HP and LP groups, which were determined based on performance in block 1. Scores 439 

for the three-back, four-back, and five-back tasks were summed, and participants who scored lower 440 

than the median were assigned to the LP group, while those who scored higher than the median were 441 

assigned to the HP group. Eventually, the volunteers were divided into six groups: an LP group 442 

receiving 8-Hz stimulation (LP-8 Hz) (n = 6), an HP group receiving 8-Hz stimulation (HP-8 Hz) (n 443 

= 8), an LP group receiving sham stimulation (LP-sham) (n = 10), an HP group receiving sham 444 

stimulation (HP-sham) (n = 8), an LP group receiving 40-Hz stimulation (LP-40 Hz) (n = 8), and an 445 

HP group receiving 40-Hz stimulation (HP-40 Hz) (n = 8). The target-ACC of the n-Back task was 446 

analyzed using a mixed-design ANOVA employing one between-subject factor of group (LP-8 Hz, 447 

HP-8 Hz, LP-sham, HP-sham, LP-40 Hz, and HP-40 Hz) and two within-subject factors of back 448 

(three-back, four-back, or five-back) and block (block 1 or 3).  449 

As shown in Figure 9A, the main effect of block was significant (F1, 36 = 69.90, p =.000, MSE 450 

=6183.12, 𝜂2 =.66), suggesting that target-ACC was significantly greater in block 3 than in block 1. 451 

The main effect of back was also significant (F1.49, 53.44 = 51.48, p =.000, MSE =6607.74, 𝜂2 =.59, 452 

with Greenhouse-Geisser correction), suggesting that target-ACC decreased significantly as the 453 

difficulty of the task increased (target-ACCthree-back > target-ACCfour-back > target-ACCfive-back, ps. 454 

<.001). The main effect of group was significant (F5, 36 = 19.47, p =.000, MSE =4190.33, 𝜂2 =.73), 455 

suggesting a complex difference between groups. We also observed a significant interaction effect 456 

between block and group (F5, 36 = 4.46, p =.003, MSE =394.32, 𝜂2 =.38), indicating that target-ACC 457 

in block 3 was significantly greater than that in block 1 in both the LP-sham and HP-sham groups 458 

(ps. <.05). The analysis also indicated that block 3 target-ACC was significantly greater than block 1 459 

target-ACC in the LP-8 Hz and HP-8 Hz groups (ps. <.001). Further comparisons indicated that 460 

target-ACC in block 3 was significantly greater than that in block 1 in the three-back, four-back, and 461 

five-back tasks within the LP-8 Hz group (ps. <.05). Within the HP-8 Hz group, block 3 target-ACC 462 

was greater than block 1 target-ACC for the three- and four-back tasks only (ps. <.05). We also 463 

observed improvements in target-ACC between block 1 and 3 of the three-back task in the LP-40 464 

Hz, HP-40 Hz, and HP-sham group (ps. <.05). Target-ACC was significantly greater in block 3 than 465 

in block 1 for the five-back task in the LP-sham group (ps. <.05).   466 

To weaken the effect of practice on the results, the target-ACC improvement in the n-back task was 467 

analyzed using a mixed-design ANOVA employing one between-subject factor of group (LP-8 Hz, 468 

HP-8 Hz, LP-sham, HP-sham, LP-40 Hz, and HP-40 Hz) and one within-subject factor of back 469 

(three-back, four-back, or five-back). As shown in Figure 9B, the main effect of group was 470 

significant (F5, 36 = 4.46, p =.003, MSE =788.64, 𝜂2 =.38), indicating that the target-ACC 471 

improvement was significantly greater in the LP-8 Hz group than in the other groups. Further 472 

comparisons revealed that the target-ACC improvement was significantly greater in the LP-8 Hz 473 

group than in the LP-sham, HP-sham, LP-40 Hz, and HP-40 Hz groups in the three-back and four-474 

back tasks (ps. <.05). In the five-back task, the target-ACC improvement of the LP-8 Hz group was 475 

significantly greater than that of the LP-40 Hz and HP-40 Hz groups (ps. <.05). As our previous 476 

analysis revealed no differences in the effects of the three stimulation conditions on RT, we did not 477 

analyze RT results here. 478 
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 3.2.2 EEG Analyses 479 

The theta power in Fp1 and Fp2 during the n-back task was analyzed using a mixed-design ANOVA 480 

employing one between-subject factor of group (8 Hz, 40 Hz, or sham) and two within-subject 481 

factors of back (three-back, four-back, or five-back) and block (block 1 or 2). In Fp1, the main effect 482 

of block was significant (F1, 33 = 4.23, p =.048, MSE =95.32, 𝜂2 =.11), and the theta power was 483 

significantly greater in block 3 than in block 1. Further comparisons indicated that theta power during 484 

the three-back and four-back tasks was significantly greater in block 3 than in block 1 in the 8 Hz 485 

group (ps. <.05), while that during the five-back task was only marginally significantly greater 486 

(ps.=.056). No significant effects were observed in the 40 Hz and sham groups. In Fp2, the main 487 

effect of block was marginal significant (ps. = .056), and the theta power was greater in block 3 than 488 

in block 1. Furthermore, no effect was significant in the theta power analysis for Fp2. 489 

In addition, we explored the effects of the three stimulation conditions on EEG activity associated 490 

with verbal working memory in the HP and LP groups. The theta power in Fp1 and Fp2 during the n-491 

back task was analyzed using a mixed-design ANOVA employing one between-subject factor of 492 

group (LP-8 Hz, HP-8 Hz, LP-sham, HP-sham, LP-40 Hz, and HP-40 Hz) and two within-subject 493 

factors of back (three-back, four-back, or five-back) and block (block 1 or 2). No effect was 494 

significant in the theta power analysis for either Fp1 or Fp2. 495 

 3.2.3 Adverse Effects Ratings 496 

Participants were required to rate their adverse experiences during and after stimulation. The 497 

questionnaire used a four-point Likert scale ranging from 1 (none) to 4 (extreme). Overall, tACS was 498 

well-tolerated. For 8-Hz and 40-Hz stimulation, participants reported phosphenes (100%), dizziness 499 

(40%), tingling (73.33%), and itching (46.67%) during stimulation. These effects were attenuated 500 

after the stimulation, and participants reported phosphenes (3.45%), dizziness (24.14%), tingling 501 

(0%), and itching (6.9%). According to the one-way ANOVA, most of the ratings of adverse 502 

experiences that occurred during stimulation significantly differed between groups, including 503 

phosphenes (F2, 45 = 20.52, p<.001), tingling (F2, 45 =14.15, p<.001), and itching (F2, 45 = 3.71, p 504 

=.032). For phosphenes and tingling, the ratings of the 8 Hz and 40 Hz groups were significantly 505 

greater than those of the sham group (ps <.001). For itching, the rating of the 40 Hz group was 506 

significantly greater than that of the sham group (p =.034). However, the rating of dizziness that 507 

occurred during stimulation did not significantly differ between the groups (F2, 45 = 1.52, p =.230). 508 

The ratings of adverse experiences that occurred after stimulation did not significantly differ between 509 

groups. 510 

4 Discussion 511 

4.1 EEG activities related to positive behavior changes 512 

In Experiment 1, participants complete three n-back tasks (blocks 1, 2, and 3). One week between 513 

block 1 and block 2. Ten minutes between block 2 and block 3. The result showed that the practice 514 

effect was not affected by the interval time. Practice effect of target-ACC was mainly affected by 515 

participant’s naturally verbal working memory capacity. Low performance subjects showed stronger 516 

practice effects than high performance participants. Practice effect of RT was mainly affected by the 517 

task difficulty. Subjects showed stronger practice effect in relatively simple three-back task than in 518 

relatively difficult four-back task.  519 

In initial EEG analysis, we first locked the EEG characteristic regions and frequency bands by 520 

observing the differences of the topographic maps between block 3 and block 1. We found that theta 521 
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and alpha activation of block 3 was greater than block 1 in prefrontal and frontal regions. 522 

Specifically, theta activity in the prefrontal region exhibited trends similar to those observed for 523 

changes in behavior. Meanwhile, the result of FBCSP suggested that theta band activity in frontal 524 

and prefrontal regions may be a better indicator of changes in working memory performance. In 525 

addition, we used an adapted graph attention mechanism to capture the brain network dynamics and 526 

to find the channel contributing most to the performance in n-back tasks. The result was similar to 527 

EEG analysis, finding that brain activity in prefrontal region was associated with the changes in 528 

working memory performance. Thus, we concluded that theta activity in prefrontal region was 529 

associated with improvements in verbal working memory performance.  530 

In further EEG analysis, we investigated the frequency (4 Hz, 5 Hz, 6 Hz, 7 Hz, and 8 Hz) for which 531 

changes in activity were most closely associated with improvements in behavior. The result indicated 532 

that 8 Hz activity in the prefrontal lobe was associated with the correct response rate in the verbal 533 

working memory task, while 6 and 7 Hz activity appeared to be associated with both the correct 534 

response rate and response time. Considering the specificity of the stimulus, these findings indicated 535 

that applying 8-Hz stimulation to the prefrontal lobe may be effective for improving verbal working 536 

memory performance. 537 

4.2 The modulatory effects of 8 Hz (selected stimulation), 40 Hz (control), and sham 538 

stimulation on verbal working memory 539 

In experiment 2, we compared the modulatory effects of 8 Hz (selected stimulation), 40 Hz (control), 540 

and sham stimulation on verbal working memory. The strong practice effects showed better 541 

performance in block 3 than block 1. Therefore, we used the improvements in target-ACC and RT as 542 

behavioral indices to compare which stimulation setting induced the greatest improvements in verbal 543 

working memory. The target-ACC improvement of 8 Hz group was significantly greater than that 40 544 

Hz group and sham group in the three-back and four-back tasks. However, no significant effects were 545 

observed in RT analysis. Those results confirmed to the inference of experiment 1, 8 Hz activity in 546 

prefrontal region was associated with the correct response rate in verbal working memory task.  547 

We further explored the effects of three stimulation conditions on verbal working memory in HP and 548 

LP groups, which were determined based on performance in block 1. In a relatively simple three-549 

back task, target-ACC for most of subjects had a significantly higher in block 3 than block 1. In 550 

relatively difficult four-back and five-back tasks, only LP-8 Hz group maintained a stable and 551 

significant improvement in target-ACC. The improvements in target-ACC of LP-8 Hz was 552 

significantly greater than 40 Hz and sham group. The target-ACC of verbal working memory was 553 

improved significantly using 8 Hz stimulation than 40 Hz and sham stimulation (Especially for 554 

participants with low verbal working memory). 555 

Overall, accordance to with several previous studies (Biel et al., 2021; Kilian et al., 2020; Pahor & 556 

Jaušovec, 2018; Vosskuhl et al., 2015), our findings indicated that theta band activity was strongly 557 

associated with verbal working memory, and that theta tACS improved verbal working memory 558 

performance. Moreover, our study extends these findings, as we investigating the EEG characteristics 559 

correspond to the improvements in working memory performance in both HP and LP groups. Our 560 

analysis revealed that the changes in 8 Hz activity prefrontal region exhibited trends similar to those 561 

for the correct response rate in verbal working memory tasks. These results may indicate that 8 Hz 562 

activity in prefrontal region supports response accuracy. In Experiment 2, we applied 8 Hz tACS in 563 

prefrontal region, representing the biggest difference between the current investigation and previous 564 

studies. Although our stimulus targets and frequencies differed from those used in previous research, 565 
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the performance of verbal working memory was improved significantly by using 8 Hz stimulation 566 

than 40 Hz and sham stimulation (Especially for participants with low verbal working memory). The 567 

result suggested that 8 Hz tACS at prefrontal region had an effective intervention on improving 568 

verbal working memory. 569 

In EEG analysis, the theta power of prefrontal region during n-back tasks was greater in block 3 than 570 

block 1 whith 8 Hz group. No significant effects were observed in 40 Hz and sham groups. The 571 

results suggested that after stimulation 8 Hz tACS improves brain oscillations of the theta frequency 572 

band. It is worth considering that the degree of change in EEG is relatively subtle compared to the 573 

change in behavior. 574 

4.3 Conclusions 575 

The results of Experiment 1 showed that prefrontal lobe theta power was particularly sensitive to the 576 

amount of practice. Specifically, 8 Hz activity in the prefrontal region was related to improvements in 577 

response accuracy among participants with low verbal working memory ability, while activity at 6 578 

and 7 Hz was related to both response accuracy and RT. Meanwhile, machine learning also indicated 579 

that frontal lobe theta power (especially for 8 Hz activity) is sensitive to improvements in 580 

performance. In Experiment 2, we utilized a frequency of 8 Hz to target the prefrontal region during 581 

tACS. The results of Experiment 2 showed that 8 Hz tACS could effectively improve performance on 582 

verbal n-back tasks, and the brain oscillations of the theta frequency band increased after stimulation. 583 

In addition, when 8 Hz stimulation was delivered, the target-ACC improvement was significantly 584 

higher in the LP group than other participants in sham and 40 Hz groups. These results suggest that 585 

applying 8 Hz electrical stimulation to the prefrontal region can effectively improve verbal working 586 

memory performance (especially in individuals with low ability), while stimulation at 40 Hz and 587 

sham stimulation exert no such effects. In conclusion, using EEG features related to positive 588 

behavioral changes to select brain regions and stimulation patterns for tACS is an effective 589 

intervention for improving working memory. 590 

4.4 Significance  591 

The current study indicated that employing 8 Hz tACS in the prefrontal region can improve 592 

performance on n-back tasks that assess working memory. Delivery of tACS at 8 Hz may be 593 

especially helpful for improving verbal working memory in participants with generally low initial 594 

ability. Moreover, few studies to date have focused on stimulation at Fp1 and Fp2.  595 

More importantly, the current study provides new insight into the selection of appropriate parameters 596 

for tACS. Researchers can first investigate the neurophysiological features associated with positive 597 

behavioral changes in specific cognitive tasks. Then, selecting tACS targets and parameters based on 598 

the feature. This method could be particularly helpful when the source of brain oscillations of 599 

specific cognitive functions is not clearly understood. For example, most tACS can influence the 600 

superficial regions of brain cortex only (Brunyé, 2018). The spatial resolution of EEG is relatively 601 

low. If stimulation of superficial brain regions can causally influence cognitive function, the 602 

experiment could indicate that the specific superficial brain region is involved in cognitive function. 603 

Using the same logic, different combinations of neurophysiological and stimulation approaches can 604 

also be employed to study the mechanisms of cognitive functions and aid the development of 605 

interventions for various mental disorders. 606 

4.5 Limitations 607 
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The current study applied various analyses to determine the EEG features associated with 608 

improvements in verbal working memory performance. The results of these analyses were not 609 

homogeneous. The final selection of the parameters was a balance between the results of these 610 

analyses. Therefore, the selection of the parameters was not stable, meaning that selection may 611 

depend on the number and types of analyses used. If more analyses are included, the results may be 612 

more inconsistent, which may make selection difficult. However, the number of analyses was not a 613 

key feature of the current paradigm. It is important to determine the parameters of tACS by analyzing 614 

the electrophysiological online signal, regardless of the number of analyses employed. In addition, 615 

the target region for stimulation was very large and may have covered at least four channel sites in 616 

the EEG cap. This shortcoming was mainly attributed to the tACS design. The more specific the 617 

region, the smaller the electrode, and the more pain the participants would experience. This pain 618 

could drastically reduce cognitive function because it constitutes a significant distraction. 619 

Finally, the approach utilized in the current study may be inconvenient because it requires at least 620 

two separate experiments. It has been suggested that individualized stimulation may be better. For 621 

example, researchers could analyze the neurophysiological data for each participant immediately 622 

after the first test of cognitive function and immediately apply the stimulation in the same 623 

experiment. In this scenario, the difference between correct and incorrect trials could be revealed by 624 

rapid analyses or machine learning methods. However, these issues are much more complicated in 625 

practice. For example, correct trials do not fully reflect true judgment; participants may press a button 626 

based on guesswork. Although researchers could subtract the false alarm rate from the target-ACC to 627 

evaluate function, the number of correct trials wherein participants respond by guessing would be 628 

unknown. Including these trials in the analyses will greatly reduce the reliability of the analyses that 629 

aim to differentiate correct and incorrect trials because different participants might have different 630 

tendencies to guess. In addition, the number of correct and incorrect trials is difficult to control, and 631 

they would directly influence the results of the analyses. 632 

4.6 Further Study 633 

Further studies could employ the same procedures in a cohort of older adults to investigate whether 634 

this method is effective in improving the working memory of the older adults and those with 635 

cognitive decline. 636 

In addition, more cognitive tasks that are used to assess working memory could be included in future 637 

studies, employing a similar design to Experiments 1 and 2. By doing this, the differences and the 638 

common brain activities of working memory among various tasks could be revealed, which may help 639 

to explain the inconsistent results of previous studies. 640 

Future studies should employ AI training to improve cognitive function. Although the differentiation 641 

between correct and incorrect trials may be difficult, differentiation of HP and LP groups using AI is 642 

feasible. The current study already trained AI to differentiate the two groups. In further studies, this 643 

AI could analyze all trials in the first session and classify the case as HP or LP. In the second session, 644 

half of the cases in each group would receive the corresponding stimulation. Comparison of the 645 

stimulated and non-stimulated cases in the LP group may be more convincing because the two 646 

sessions would include the same participants and comparison within a group might make the 647 

difference greater. 648 
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11 Tables 774 

 775 

Table 1 The analysis results of theta and alpha in prefrontal and frontal regions 776 

Frequency Channel Main effect Pairwise comparisons 

Theta 

(4 ~ 8 Hz) 

Fp1 Block(block2>block1, 

block3>block1, p<.05) 

/ 

Fp2 Block(block2>block1, 

block3>block1, p<.05) 

For four-back, block3>block1 

(p<.05) in the LP group 

F3 Block(block2>block1, 

block3>block1, p<.05) 

For three-back, block3>block1 

(p<.05) in the LP group 

F4 / / 

 

Alpha 

(9~12 Hz) 

Fp1 / / 

Fp2 Block(block3>block1, p<.05) 
For three-back, block3>block1 

(p<.05) in the LP group 

F3 / / 

F4 / / 

 777 

Table 2 The largest MI values in each frequency bands and the corresponding components 778 

Test 
Component 

(CSP) 
Frequency band MI 

Three-back 

CSP3 θ 0.2677 

CSP1 α 0.3264 

CSP0 β 0.1241 

CSP0 γ 0.1436 

Four-back 

CSP2 θ 0.2808 

CSP3 α 0.2636 

CSP0 β 0.1395 

CSP0 γ 0.1921 

Abbreviations: CSP, common spatial pattern; MI, 779 

 780 
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Table 3 The analysis results of 4 Hz, 5 Hz, 6 Hz, 7 Hz, and 8 Hz in prefrontal 781 

Channel Frequency Main effect Pairwise comparisons 

Fp1 4 Hz Block(block2>block1, p<.05) / 

5 Hz Block(block2>block1, 

block3>block1, p<.05) 

/ 

6 Hz Block(block2>block1, 

block3>block1, p<.05) 

/ 

7 Hz Block(block2>block1, 

block3>block1, p<.05) 

/ 

8 Hz Block(block2>block1, p<.05) / 

Fp2 4 Hz Block(block3>block1, p<.05) / 

5 Hz Block(block3>block1, p<.05) / 

6 Hz Block(block2>block1, 

block3>block1, p<.05) 

For three-back, block3>block1 

(p<.05) in the HP group, 

For four-back, block3>block1 

(p<.05) in the LP group 

7 Hz Block(block2>block1, 

block3>block1, p<.05) 

For three-back, block3>block1 

(p<.05) in the HP group, 

For four-back, block3>block1 

(p<.05) in the LP group 

8 Hz Block(block2>block1, 

block3>block1, p<.05) 

For three-back, block3>block1 

(p<.05) in the LP group, 

For four-back, block3>block1 

(p<.05) in the LP group 

 782 

Table 4 The mutual information between 4 Hz, 5 Hz, 6 Hz, 7 Hz, and 8 Hz power and working 783 

memory performance in the two selected regions 784 

Channel 

Frequency (Hz) 
Fp1 Fp2 

4 0 0.002 

5 0.006 0 

6 0 0.003 

7 0.002 0.003 

8 0.009 0.012 

 785 
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12 Figure legends 786 

 787 

 

Figure 1 Illustration of the two-back task paradigm in this study 788 

For the first two letters, participants were not required to press buttons, but keep the letters in their 789 

mind instead. Subsequently, for each letter, participants were required to determine whether the 790 

current letter was the same as the previous. In this case, the third letter should be compared with the 791 

first (“E” vs. “A”: non-match) and the fourth should be compared with the second one (“D” vs. “D”: 792 

match). 793 

 794 

 

Figure 2 The workflow of filter bank common spatial pattern-based spatio-frequency mode 795 

selection 796 

We first filtered the raw electroencephalogram into three frequency bands and then performed spatial 797 

filtering to obtain the common spatial pattern (CSP) features. Based on the mutual information, we 798 

selected the two most discriminate features and determined their associated spatio-frequency modes. 799 

 800 
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 801 

Figure 3 The architecture of the attention based GCNN.  802 

The network consists of an attention layer, three GCNN layers, a global pooling layer, and a dense 803 

layer. The graph attention mechanism in the first layer learns the dynamic adjacent matrix and the 804 

graph features. 805 

 806 
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 807 

Figure 4 Target-ACC and RT of each group for each back and each block in experiment 1 808 

(A) Scatterplots with individual data points of target-ACC in three-back and four-back tasks. (B) 809 

Scatterplots with individual data points of RT in three-back and four-back tasks. Error bars are 95%-810 

confidence intervals around the estimates. 811 
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 812 

Figure 5 Event-related synchronization from block 1 to block 3 of each group for each band 813 

and each back in experiment 1 814 

(A) The power change from block 1 to block 3 in three-back task. (B) The power change from block 815 

1 to block 3 in four-back task. The more tend to red, the more positive changes. The more tend to 816 

blue, the more negative changes. The color central region for each group and each frequency band 817 

tends to be green, suggesting that the power of central region tend to remain unchanged among 818 

practices.  819 
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Figure 6 Electroencephalogram topography showing the spatial distribution of the most 821 

discriminate features and the associated frequency bands 822 

(A) Electroencephalogram topography of three-back task. From top to bottom, each row displays the 823 

most important spatio-frequency modes for the theta, alpha, and beta bands, respectively. (B) 824 

Electroencephalogram topography of four-back task. 825 

 

 

Figure 7 Target-ACC and RT of each group for each back and each block in experiment 2  826 

(A) Scatterplots with individual data points of target-ACC in three-back, four-back, and five-back 827 

tasks. (B) Scatterplots with individual data points of RT in three-back, four-back, and five-back tasks. 828 

Error bars are 95%-confidence intervals around the estimates. 829 
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 831 

Figure 8 Improvement in target-ACC and RT of each group for each back in experiment 2 832 

(A) Scatterplots with individual data points of improvement in target-ACC for three-back, four-back, 833 

and five-back tasks. (B) Scatterplots with individual data points of improvement in RT for three-834 

back, four-back, and five-back tasks. Error bars are 95%-confidence intervals around the estimates. 835 
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 841 

Figure 9 Further analysis result of LP and HP in experiment 2 842 

(A) Scatterplots with individual data points of target-ACC for three-back, four-back, and five-back 843 

tasks. (B) Scatterplots with individual data points of improvement in target-ACC for three-back, 844 

four-back, and five-back tasks. Error bars are 95%-confidence intervals around the estimates. 845 
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