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ABSTRACT

Circadian clocks are 24-hour endogenous
oscillators in physiological and behavioral
processes. Though recent transcriptomic
studies have been successful in revealing the
circadian rhythmicity in gene expression, the
power calculation and study design for omics
circadian analysis have not been explored. In
this paper, we develop a statistical package,
namely CircaPower, to perform power calculation
for circadian pattern detection. Our theoretical
framework is determined by three key factors
in circadian gene detection: sample size,
intrinsic effect size and sampling design. Via
simulations, we systematically investigate the
impact of these key factors on circadian power
calculation. We demonstrate that CircaPower
not only has fast and accurate computing but
also is robust against variety of violations of
model assumptions. In real applications, we
demonstrate the performance of CircaPower
using mouse pan-tissue data and human post-
mortem brain data, and illustrate how to perform
circadian power calculation using mouse skeletal
muscle microarray pilot data as a case study. Our
method CircaPower has been implemented in an R
package, which is made publicly available on GitHub
(https://github.com/circaPower/circaPower).

INTRODUCTION

Circadian rhythms are endogenous ∼24 hour oscillations
of behavior, physiology, and homeostasis in adaption to
the diurnal cycle caused by the earth’s daily rotation. The
circadian clock is found in virtually all cells throughout
the body and controls oscillations in a wide variety
of physiological processes, including sleep-wake cycles,
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body temperature, and melatonin (2, 4, 9, 19). From the
literature, the mechanism that drives circadian rhythms is
a transcriptionial-translational feedback loop encoded by a
set of core clock genes (44), including CLOCK, BMAL1
as the transcriptional activators; and period family (PER1,
PER2, PER3) and cryptochrome family (CRY1, CRY2) as the
major inhibitors. In addition to core clock genes, genome-
wide transcriptomic studies have revealed additional circadian
genes in post-mortem brain (5, 39), skeletal muscle (13),
liver (17), and blood (31). Human pan-tissue transcriptomic
circadian analysis (37) and mouse pan-tissue transcriptomic
circadian analysis (49) have shown that the circadian
pattern in gene expression could be tissue-specific. Beyond
transcriptomic data, circadian rhythmicity was also discovered
in other types of omics data including DNA methylation
(25), ChIP-Seq (chromatin immunoprecipitation assays with
sequencing) (21), proteomics (47), and metabolomics (8).
From epidemiology and animal studies, the disruption in clock
and circadian gene expression was found to be linked to
diseases including type 2 diabetes (42), sleep (31), major
depression disorder (23), aging (5), schizophrenia (39), and
Alzheimer’s disease (24).

Circadian omics studies have become increasingly popular
over the years (Figure 1a), because of their capability to
decipher circadian rhythms at the molecular level. Though
promising, less attention has been paid to the statistical
power calculation and sampling design in omics circadian
studies. Previous studies have reported the lack of overlapping
circadian genes because of smaller number of samples (15,
17). This indicates that statistical power, i.e., the probability
of successfully detecting the underlying circadian pattern, is
not fully considered/justified. In addition to power calculation,
the optimal design of collected samples has not been carefully
investigated, where the design refers to the distribution of the
collected Zeitgeber time (ZT; standardized diurnal time with
ZT0 for the beginning of day and ZT12 for the beginning
of night). In this paper, we consider two types of sampling
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design: passive or active sampling design. In passive design,
investigators have no control of the collected ZT. Such a
passive design is commonly seen in studies with human tissues
that are difficult to obtain (e.g., post-mortem brain tissues
(5, 23, 39)) and the irregular sampling distribution should
be considered in power calculation. In contrast, investigators
have full control of the sample collection time in an active
sampling design. Such an active design is commonly seen in
animal studies (49) or human blood studies (31).

For active sampling design, 6 time points (every 4 hours)
per cycle across one or multiple full cycles have been widely
adopted in many studies (26, 27, 38). Hughes et al. (16)
recommended evenly sampling at least 12 time points per
cycle (i.e., every 2 hours) across 2 full cycles. For the
ease of discussion, we refer to this type of design as the
“evenly-spaced sampling design”. Though these empirical
practices and guidelines were presented and well-received,
there were almost no theoretical justifications. Questions
remaining include: (i) Is the evenly-spaced sampling design
better than irregular (active or passive) sampling design?
(ii) More time points in a circadian cycle require more
experimental effort and cost. Is 6 or even 12 time points per
cycle necessary? (iii) When a pilot dataset is available, how to
utilize the circadian effect size information to guide the (active
or passive) design of a new study (i.e., the number of samples
required to achieve certain pre-set statistical power)?

To fill in these research gaps, we propose a model-
based approach to accurately calculate the circadian power
(namely CircaPower), based on a cosinor model (7, 10).
In the literature, several other computational or non-model-
based algorithms have been developed to detect circadian
rhythmicity, including Lomb-Scargle periodograms (12),
COSOPT (43), ARSER (48), RAIN (45), and JTK CYCLE
(18). These methods assume either mixture of multiple cosinor
curves with distinct periods or non-parametric curve fitting
to facilitate detection of oscillating transcripts with irregular
shape. Although these methods have advantages to detect
irregular curves beyond cosinors, the evaluation of power
calculation and experimental design using these methods
are not feasible since the effect size and data variability
are not explicitly defined and modeled (15, 22). Moreover,
in many human studies with passive sampling design (e.g.,
post-mortem brain studies in our later applications), the non-
cosinor irregular curves cannot be accurately estimated and
validated due to small sample size and larger heterogeneity in
human. Therefore, we build our power calculation framework
based on the cosinor model and rigorously evaluate its type I
error control, statistical power, and robustness against model
assumptions. To the best of our knowledge, this is the
first theoretical methodology developed for circadian power
calculation in omics data. The unique contribution of this
paper includes: (i) identifying factors related to the statistical
power of circadian rhythmicity detection, including sample
size, intrinsic effect size and sampling design; (ii) developing
CircaPower, an analytical solution based on a closed-form
formula, for fast and accurate circadian power calculation;
(iii) demonstrating via simulations that the evenly-spaced
sampling design is superior because of its phase-invariant
property, which is also corroborated by theoretical proofs; (iv)
illustrating how to calculate statistical power and to design
a circadian experiment with pilot data via a case study; (v)
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Figure 1. (a) Annual number of publications on PubMed that contain the
keywords “circadian/clock” and one of the following omics type: “ChIPseq”,
“Metabolomics”, “Methylation”, “Proteomics”, “Transcriptomics”. (b) The
sinusoidal wave curve underlying circadian rhythmicity power calculation
framework. (c) The relationship between power and type I control in detecting
circadian rhythmicity. The black curve represents the density function of
the F statistics under the null distribution (no circadian pattern); the blue
curve represents the density function of the F statistics under the alternative
distribution. The red dashed line represents the decision boundary (i.e.,
F ∗) such that the type I error rate is controlled at α (shaded gray). The
corresponding type II error β is the area with lightblue color and the detection
power is 1−β.
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collecting, calculating, and summarizing the intrinsic effect
sizes of existing human and animal studies, which serves as
a useful reference resource when no pilot data is available;
and (vi) providing an open-source R package.

The superior performance of our method is demonstrated
in comprehensive simulation studies, as well as multiple
transcriptomic applications in human and mouse. We
demonstrate the performance of CircaPower using gene
expression data throughout this manuscript, but our method
is also applicable in other types of omics data, including but
not restricted to ChIP-Seq, DNA methylation, proteomics,
metabolomics, and even non-omics data.

MATERIALS AND METHODS

The CircaPower framework assumes the relationship of the
expression level of a gene and the Zeitgeber time (ZT) fits a
sinusoidal wave curve, and is based on the F statistics of a
cosinor model (7). Below we introduce the model notations,
the construction of the F statistics, the null and alternative
distribution of the F statistics, the closed-form formula for
circadian power calculation, and factors affecting the power
calculation of circadian rhythmicity detection.

Notations and basic model
As illustrated in Figure 1b, denote y as the expression value
for a gene; t as the ZT;M as the MESOR (Midline Estimating
Statistic Of Rhythm, a rhythm-adjusted mean); A as the
amplitude. ω is the frequency of the sinusoidal wave, where
ω= 2π

Period . Without loss of generality, we set period=24
hours to mimic the diurnal period. φ is the phase shift of
the sinusoidal wave curve. Whenever there is no ambiguity,
we will omit the unit “hours” in period, phase, and other
related quantities. Due to the periodicity of a sinusoidal wave,
(φ1, φ2) are not identifiable when φ1 =φ2 +24. Therefore,
we will restrict φ∈ [−6,18). φ is not intuitive to read from a
sinusoidal wave (See Figure 1b), and a closely related quantity
is the peak time tP . The connection between φ and tP is that
φ+tP =6±24N , where N is an arbitrary natural number.

For a given sample i (1≤ i≤n, n is the total number of
samples), denote by yi the expression value of a gene and ti
the observed ZT. We assume the following sinusoidal wave
function:

yi=Asin(ω(ti+φ))+M+εi, (1)

where εi is the error term for sample i; we assume εi’s
are identically and independently distributed (i.i.d.) from
εi∼N(0,σ2), where σ is the noise level. To benchmark the
goodness of sinusoidal wave fitting, we define the coefficient

of determination R2 =1−
RSS

TSS
, where RSS=

∑n
i=1(yi−

ŷi)
2, TSS=

∑n
i=1(yi− ȳ)2, ŷi=Âsin(ω(ti+φ̂))+M̂ , ȳ=∑

iyi/n, with Â, φ̂, and M̂ being the fitted value for A, φ,
andM in Equation 1 under least squared loss.R2 ranges from
0 to 1, with 1 indicating perfect sinusoidal wave fitting, and
0 indicating no fitting at all. Equivalently, we could re-write
Equation 1 as

yi=Esin(ωti)+H cos(ωti)+M+εi, (2)

where E=Acos(ωφ), and H=Asin(ωφ), which turns into a
linear regression problem.

Analytical power calculation
According to linear model theories, the F statistics for the
circadian model in Equation 1 can be derived as:

F stat=
TSS−RSS

r−1
RSS
n−r

where n is number of independent samples, r=3 is number of
parameters (i.e., A, φ, and M in Equation 1).

The null hypothesis is that there is no circadian rhythmicity.
In other words, A=0 in Equation 1 (equivalently, E=H=0
in Equation 2). Under the null hypothesis,

F stat∼f0(·|2,n−3),

where 2 and n−3 are the degrees of freedom of the F
distribution, 0 in f0 indicates this is a regular F distribution
with non-centrality parameter 0 (32).

The alternative hypothesis is that there exists a circadian
rhythmicity pattern. In other words, A 6=0 in Equation 1
(equivalently, E 6=0 or H 6=0 in Equation 2). Under
the alternative hypothesis, the F statistics follows a
non-central F distribution, with non-centrality parameter
λ= A2

σ2

∑
isin

2(w(ti+φ)). The non-centrality parameter λ
controls the location parameter of the non-central F
distribution. A larger λ will lead to a larger expected value
(i.e., mean value) of the non-central F distribution.

F stat∼fλ(·|2,n−3),

where 2 and n−3 are the degrees of freedom of the
F distribution, λ in fλ indicates this is a non-central F
distribution with non-centrality parameter λ. The proof is
given in Supplementary Section 1.

Figure 1c shows the relationship between the null and
alternative distributions. We further denote F ∗ as the decision
boundary, such that we declare a gene to be rhythmic if
F stat≥F ∗. By assuming the type I error rate corresponding
to the decision boundary F ∗ is α, we have α=1−
F0(F ∗|2,n−3), where F0(x|df1,df2) represents cumulative
density function of f0(·|df1,df2) evaluated at x. The power
at the decision boundary F ∗ is 1−β=1−Fλ(F ∗|2,n−3),
where Fλ(x|df1,df2) represents cumulative density function
of fλ(·|df1,df2) evaluated at x.

As shown in Figure 1c, the non-centrality parameter λ
controls the degree of separation of the null distribution
f0 and the alternative distribution fλ. The larger the λ
is, the more likely the alternative distribution will be
away from the null distribution, and the higher power a
gene will achieve. We thus define λ as the total effect
size for the circadian power calculation. By inspecting the
total effect size λ= A2

σ2 n
1
n

∑n
i=1sin2(w(ti+φ)), this non-

centrality parameter can be decomposed into three parts: (i)
sample size n, (ii) intrinsic effect size r=A/σ (closely relate
to the goodness of fit statistics R2), and (iii) sampling design
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effect d= 1
n

∑n
i=1sin2(w(ti+φ)). Therefore, λ=ndr2. We

then discuss the impact of each of these components on the
circadian rhythmicity power calculation and show their impact
by simulation in the Results section.

Sample size Fixing d and r, a larger sample size n will result
in a larger total effect size λ, and achieve a higher statistical
power. This is not a surprising conclusion since the sample
size is an important factor in all power calculation procedures.

Intrinsic effect size Intuitively, a larger circadian amplitude
A with smaller residual variability σ will lead to a better
sinusoidal curve fitting (i.e. larger R2). Our formula suggests
that circadian fitting parameters A and σ work together
as an intrinsic effect size r(r=A/σ) and has a quadratic
effect on the total effect size λ. This implies the two curve
fitting parameters that need to be specified in conventional
Monte-Carlo based power calculation can be reduced to one
parameter r (shown in the Results section).

Sampling design effect The sampling design effect d=
1
n

∑n
i=1sin2(w(ti+φ)) is more complicated, because it

involves the collected ZT ti from each individual, and the
unknown parameter phase shift φ. In general, given an
arbitrary circadian sampling design, we need to estimate the
circadian phase shift φ before performing power calculation.
Fortunately, the power calculation for the evenly-spaced
sampling design is independent of the phase value (i.e., phase-
invariant). For example, (16) recommended a collection of 12
time points (every 2 hours) per cycle across 2 full cycles,
which belongs to the evenly-spaced sampling design. Such
active design is commonly seen in animal studies or human
blood studies, where researchers can control the exact time
to sacrifice the animal or to collect blood. The following
theorem (phase-invariant property) shows that the sampling
design effect d is a constant under the one-period one-sample
evenly-spaced design. In other words, the ZT points are spread
within one period, and there is only one sample per time point.

THEOREM 1 (Phase-invariant property - one-period
one-sample). Assuming there is a total of n ZT points ti(1≤
i≤n) within a circadian period 2π/ω, which are ordered such
that ti<ti+1 for all 1≤ i≤n−1. If n≥3, and ti is evenly-
spaced over the period (i.e., ti+1−ti=C for all 1≤ i≤n−1,
C>0 is a fixed time interval, (t1 +2π/ω)−tn=C), then
regardless of the value for φ, we have

1

n

n∑
i=1

sin2(w(ti+φ))=
1

2

The above theory shows sampling design effect is phase-
invariant for the one-period one-sample evenly-spaced design.
The proof is given in the Supplementary Section 2. It can
immediately be extended to the following corollary for multi-
period (two or more cycles), multi-sample, evenly-spaced
design.

COROLLARY 1 (Phase-invariant property - multi-period
multi-sample). For multi-period multi-sample evenly-spaced

design, the sampling design effect is phase-invariant.

1

n

n∑
i=1

sin2(w(ti+φ))=
1

2

This is because the multi-period multi-sample evenly-
spaced design just replicates the one-period one-sample
evenly-spaced design, therefore the average of them remains
to be 1/2.

Assumptions underlying the circadian modeling
framework
The proposed circadian modeling framework has two
underlying assumptions: (i) the relationship between the
expression level of a gene and the ZT forms a sinusoidal
wave curve; (ii) the error terms of each sample on top of
the sinusoidal wave curve follows independent and identical
Gaussian distribution. In the Result section, we not only
demonstrate that the F statistics is robust against various
types of violation of model assumptions including (i) heavy
tail error distributions, (ii) existence of outliers, and (iii)
non-independent error distributions, but also discuss the
implication of sinusoidal assumption on sampling design.

Alternative power calculation method by Monte-Carlo
simulation
Without the proposed analytical method CircaPower, a
conventional method for circadian detection power calculation
is by Monte-Carlo simulation (MC), which assumes knownA,
φ, M , σ and ti,1≤ i≤n in Equation 1. Detailed algorithm for
MC is described as following:

1. Given the ZT t′is for n samples (1≤ i≤n) and key
parameters (A, φ, M , and σ), we simulate gene
expression ygi based on Equation 1, where 1≤g≤G is
the gene index and G is the total number of genes.

2. We apply the cosinor method (7) to derive the rhythmic
p-value pg for each gene g(1≤g≤G). Given a pre-
specified alpha level α, the MC power is calculated

as
∑

g I(pg≤α)

G . We set the alpha level α=0.001 and
simulate G=10,000 genes throughout the simulation
studies in this manuscript, unless otherwise specified.

Both the CircaPower and the MC rely on the F statistics
for rhythmicity detection, which is generally robust against
violation of Gaussian assumptions (shown in the Result
section). However, the CircaPower has several obvious
advantages over the MC. First of all, the explicit representation
of total effect size in CircaPower provides insights on the
three determining factors (n,r,d) in circadian detection power
calculation while it is hard for MC simulation to determine
selections and trends on the many parameters (A,φ,M,σ,
and ti,1≤ i≤n). In addition, our simulation in the Result
section shows the closed-form solution by CircaPower is
at least 10,000 folds faster than the MC approach. More
importantly, even though both approaches can calculate
power given sample size, only CircaPower can directly solve
the inverse problem of deriving the smallest sample size
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Figure 2. Impact of the intrinsic effect size r=A/σ on circadian power calculation. (a) shows the impact of amplitude (i.e.,A=0.4,0.8,1.2) when the noise
level is fixed at σ=1; (b) shows the impact of noise level (i.e.,σ=1,2,3) when the amplitude is fixed at A=1. (c) shows the impact of intrinsic effect size by
co-varying A and σ simultaneously (i.e.,A=1,2,3, σ=1,2,3) while keeping their ratio as a constant (i.e.,r=A/σ=1).

meeting the desired detection power, while MC needs repeated
interpolation to obtain an answer.

RESULTS

Throughout simulations and real applications, we control type
I error α=0.001 for circadian power calculations to account
for potential multiple comparisons.

Impact of sample size and intrinsic effect size in
simulation
To evaluate the impact of sample size n and intrinsic
effect size r=A/σ, we assume the ZT is from the one-
period one-sample evenly-spaced design, which enjoys the
phase-invariant property (d=1/2, Theory 1). The impact of
sampling designs will be discussed in next section. Since
phase shift φ has no impact on power calculation under
the phase-invariant property, we fix φ=0 unless otherwise
specified. We vary n=12,24,...,180 to show the sample size
effect (Figure 2). As expected, a larger n will lead to larger
statistical power regardless of the choice of the intrinsic effect
size r.

To examine the impact of intrinsic effect size r=A/σ. We
first vary A=0.4,0.8,1.2 while fixing σ=1, which is also
equivalent to varying r=0.4,0.8,1.2. As shown in Figure 2a,
we observe a larger A (or larger r) will result in larger
statistical power. We then vary σ=1,2,3 while fixing A=
1, which is also equivalent to varying r=1,0.67,0.33. As
shown in Figure 2b, we observe a larger σ (or smaller r)
will result in smaller statistical power. We finally co-vary A
and σ simultaneously (i.e., A=1,2,3 and σ=1,2,3) while
fixing their ratio as a constant (i.e., r=A/σ=1). As shown in
Figure 2c, we observe the power trajectories remain identical
as long as the r is fixed as a constant (i.e., r=1). These results
demonstrate that the proposed r=A/σ is sufficient to capture
the effect size information in relation to the goodness-of-fit of
the cosinor model.

Impact of sampling design in simulation
In this section, we explore the impact of different sampling
designs on circadian power calculation using CircaPower.
Since the sample collection scheme for active design and
passive design are quite different, we will discuss them
separately. For all these different sampling design schemes,
we vary the intrinsic effect size r=0.4,0.8,1,1.2. Due to the
fact that not all designs have the phase-invariant property, we
also vary the phase shift φ=0,3,6.

For a typical active design, researchers usually need to
control (i) the number of ZT points per cycle, (ii) the number
of replicated samples at each time point within a cycle, and
(iii) the number of cycles. Because of the periodicity property
of the sinusoidal curve in the cosinor model, the number of
replicated samples at each time point within a cycle and the
number of cycles are equivalent in the sense that 2 replicated
samples at each time point across 1 cycle will result in the
same statistical estimation with only one sample at each time
point across 2 cycles. Therefore, for the ease of discussion,
we summarize the following two key parameters for an active
design: (i) number of ZT pointsNT per cycle; (ii) total number
of samples n. The number of replicated samples (at the same
ZT across all cycles) could be calculated as n/NT .

We denote the active design scheme with NT ZT points
per cycle as FixTimeNT . To investigate the impact of NT
on the circadian power calculation, we perform simulations
by varying NT =3,4,6,n. NT ≥3 is necessary for the phase-
invariant property (Theory 1 and Corollary 1). When NT =
n, the FixTime-n design is the same as the one-period
one-sample evenly-spaced design (denoted as the EvenSpace
design). Figure 3a shows the power trajectories of these
evenly-spaced sampling designs. We observe that (i) the power
curves are the same regardless of the phase shift value,
confirming the phase-invariant property of the evenly-spaced
sampling design; (ii) the power trajectories for different N ′T s
are also identical, which implies that under evenly-spaced
sampling design, the detection power only depends on the total
number of samples n but not the NT as long as it is greater
or equal to 3. Note that these arguments on the number of
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Figure 3. Sampling design effect on circadian power calculation. (a) shows the sampling design effect for active design; (b) shows the sampling design effect for
passive design.

ZT points NT are purely based on the statistical power given
sinusoidal wave assumption. In reality, less number of time
points may result in unstable circadian curve fitting (See next
section for details).

For passive designs, the collection of the ZT cannot be
controlled. We therefore simulate t′is from (i) uniform

distribution (uniform design): ti
iid∼ UNIF(0,24); and

(ii) bimodal Gaussian distributions (bimodal designs):
ti∼piN(7,sd)+(1−pi)N(17,sd); pi∼Bernulli(0.5). We
vary the standard deviation of bimodal components to be
sd=1,2,3,4 whose Kullback–Leibler divergence (KLD)
against the uniform distribution are 4.93,0.72,0.18,0.08
respectively, suggesting smaller deviation from uniform
as sd increases. KLD is used as a relative measurement
to benchmark the divergence between the uniform and
the bimodal distributions with various spread. Figure 3b
shows that for the uniform design, the power trajectory is
almost phase-invariant. This is expected since the uniform
distribution is a random realization of the evenly-spaced
sampling design, and the impact of phase on the individual ti
will average out. The bimodal designs show phase-dependent
circadian power trajectories and the level of phase influence
increases as the distribution deviates more from uniform (i.e.,
larger KLD). Specifically, Figure 3b shows that the power loss
of bimodal designs when φ=0,3 is significant when KLD
is 0.72 or greater (green and yellow curve) while negligible
when KLD is only 0.18 or smaller (purple and blue curve).
In fact, since the phase shift impacts the sampling design
through d= 1

n

∑n
i=1sin2(w(ti+φ)); it achieves higher power

if the mode of the ZT distribution occurs at the underlying
peak/trough time. In real omics applications, it is expected
that circadian genes have different phase shift values over
the day. If the collected ZT distribution is far away from the
uniform distribution, the detection power of each circadian
gene would be affected by its phase shift differently across
the genome.

Larger number of time points per cycle to ensure
sinusoidal curve fitting
From the perspective of circadian power calculation, Figure 3a
implies that the evenly-spaced sampling design is phase-
invariant as long as the number of time points per cycle
NT is greater or equal to 3. This is further corroborated
by Corollary 1, in which the sampling design effect d=
1/2 for any evenly-spaced sampling design. However, in the
perspective of curve fitting, smaller number of time points may
not necessarily guarantee the goodness-of-fit for a sinusoidal
curve, resulting in potentially false positive findings.

To demonstrate this, we simulate expression data from the
sinusoidal model and perform non-parametric curve fitting to
explore the impact of number of NT on the goodness-of-fit
for a sinusoidal wave. To be specific, we first choose the ZT
points within a cycle to be NT =2,3,4,6,8,12. Then for each
NT , we simulate n=48 samples, and evenly allocated them
at 2NT time points across 2 full cycles (every 24/NT hours,
from -12h to 36h), resulting in 24/NT samples at each time
point. The expression values of samples at each time point tj
are simulated independently from Equation 1, where we set
A=1, M=0, and σ=1. The LOESS regression is then used
to fit a smooth curve through the data points. The rationale for
2 full cycles is to improve the boundary behavior of the curve
fitting within one cycle. Such LOESS regression represents the
smooth curve fitting without the sinusoidal assumption, which
could reflect the minimum of NT that is necessary to capture
the sinusoidal wave curve. In addition, to evaluate the effect of
the phase shift, we set φ=0,1,...,min(24/NT −1,6).

The data points and fitted smooth curves in one circadian
cycle [0, 24] are shown in Figure S1. When the number of
ZT points per cycle NT is 2 or 3, it is uncertain whether the
underlying curve fitting is a sinusoidal wave. When NT =4,
the curve shape is roughly sinusoidal although not smooth.
WhenNT increases to 6 or more, the curve fitting is stable and
almost identical to the underlying sinusoidal wave. Therefore,
considering both circadian power calculation and smooth
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curve fitting, our results suggest NT =4 to be the minimum
number of ZT points per cycle to estimate the circadian curve
shape. But in general, our results imply at least 6 ZT points per
cycle to fully capture the circadian rhythmicity pattern, which
is commonly adopted in the literature.

CircaPower achieves same power value at a much faster
speed compared with the MC approach
We compare CircaPower with the MC algorithm described
in Method section. Specifically, we simulate data for MC
following Equation 1 in the cosinor model.

yi=Asin(ω(ti+φ))+M+εi,

where the error term εi’s are independently identically
distributed (iid), i.e., εi∼N(0,σ2). For both methods, the
ZT points are simulated from one-period one-sample evenly-
spaced design for the ease of discussion, which enjoys the
phase-invariant property (d=1/2, Theory 1). Since phase
shift φ and MESOR M has no impact on circadian detection
power calculation in this case, we fix φ=0 and M=10. We
evaluate their power derived at a grid of A=(0.4,0.8,1,1.2)
and σ=(1,2,3,4). Note that for CircaPower, we only need
the underlying parameters A, σ, ti, and φ to perform power
calculation, which does not rely on the simulated dataset.
We simulate the data for the purpose of evaluating the MC
algorithm.

Figure S2 shows the power calculation results for both
CircaPower and the MC. We observe that the power calculated
from CircaPower is almost identical to the MC, corroborating
the correctness of the closed-form solution in CircaPower.

In terms of computing time, to generate all the results in
Figure S2, it takes 1.84 seconds for the CircaPower using 1
CPU thread on a regular PC (8th Gen Intel Core i5-8250U
Quad-Core processor, 1.60 GHz), while it requires 8 hours
for the MC using the same computing resource. With parallel
computing, the computing time reduces to 0.13 seconds for
CircaPower using 40 CPU threads on a Linux server (Intel
Xeon Gold 6130, 2.10GHz), while it still needs 24 minutes
for the MC.

F statistics is robust against violations of the iid Gaussian
assumption
To examine the robustness of our method when the iid
Gaussian assumption is violated, we investigate the type I
error control of F statistics in the following scenarios: (i) heavy
tail error distribution (i.e., student t distribution); (ii) existence
of outliers; (iii) non-independent Gaussian errors. For all these
simulations, G=10,000 noisy genes are simulated with error
term εgi’s specified above. By declaring circadian rhythmicity
at 5% nominal α level, we will evaluate the actual type I error
rate of the F test from the cosinor model. Since CircaPower
is built on the F statistics for rhythmicity detection it will be
benchmarked as robust if the actual type I error rate is close
to the nominal α level. Since our goal is to evaluate the type
I error rate control, which does not involve in any multiple
testing issue, we directly use 5% nominal α level.

Heavy tail error distribution Instead of sampling the error

term εgi
iid∼N(0,σ2), 1≤g≤G and 1≤ i≤n, we sample

εgi
iid∼ t(df), where t(df) is the student t distribution with

degree of freedom df . In general, the smaller the df is,
the heavier tail the error distribution is. When df=2, the
error distribution becomes the Cauchy distribution, and when
df→∞, the error distribution converges to standard Gaussian
distribution (i.e., N(0,σ2)). To evaluate the impact of heavy
tail error distribution on CircaPower, we simulate a grid of
df=(2.5,3,5,∞). Figure S3a shows that when there is no
or mild violation of the Gaussian assumption (i.e., df=∞
or df=5), the cosinor method achieves accurate type I error
control (i.e., 5%). When there is moderate to severe violation
of the Gaussian assumption (i.e., df=3 or df=2.5), type I
error rate is only slightly conservative (i.e., below the nominal
α=0.05). Putting together, the type I error rate of the cosinor
method can be correctly controlled against the heavy tail error
distribution. And thus, the CircaPower is robust against heavy
tail error distributions.

Existence of outliers To evaluate the impact of outliers
on type I error control, we replace q% of the expression
values with outliers, where q=(5,10,20). To be specific,
for a gene g, there is q% chance that the expression level

is simulated from ygi
iid∼ UNIF(M−A,M+A); and 1−q%

chance that the expression level is simulated independently
based on Equation 1 under H0 :A=0 (i.e., ygi=M+εgi,

εgi
iid∼N(0,σ2)). Figure S3b shows that the cosinor method

achieves accurate nominal type I error rate control (i.e., 5%),
showing robustness to outliers. And thus, the CircaPower is
robust against the existence of outliers.

Correlated gene structure Instead of assuming all genes are
independent, we simulate every 50 genes as a gene module
with correlation coefficient ρ. The error term for each gene
module ε50∼N(0,Σ50) where Σ50 is a symmetric matrix
with diagonal elements being σ2 and off-diagonal elements
being σ2ρ. We simulate a grid of ρ=(0,0.25,0.5,0.75).
Figure S3c shows that when genes are correlated, the cosinor
method maintains accurate nominal type I error rate control
(i.e., 5%), indicating that the CircaPower is robust against the
dependency assumption.

CircaPower for human studies with passive design
We investigate the power trajectories of human studies using
three human post-mortem brain transcriptomic studies (Chen
(5), Seney (39) and Ketchesin (20)) with different time of
death distribution. Detailed descriptions of each dataset can
be referred in the original papers. Briefly, Chen (5) and Seney
(39) performed gene expression circadian analysis using
microarray (n=147) and RNA-seq (n=104) respectively
using pre-frontal cortex tissues; and Ketchesin (20) performed
RNA-seq gene expression circadian analysis with n=59
participants using dorsal and ventral striatum tissues.

Since investigators in these human post-mortem brain
studies have no control of sample collection time (i.e., time
of death) and can only accept passive sampling design, the
detection power curves are not phase-invariant, which is
unlike evenly-spaced active sampling design. For all three
human studies, the tissue collection time is delayed with a
post-mortem interval (PMI) after time of death so the recorded
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time is only a rough estimate. However, all these studies have
reported successful circadian gene detection so we will ignore
this factor and consider it as part of the model uncertainty
σ. For all these three studies, we use their time of death to
characterize the sampling design factor d.

To estimate the intrinsic effect sizes from the three brain
studies, we apply the cosinor method (7) to identify genes with
rhythmic patterns and obtain estimates for their amplitude
Â and noise level σ̂. We estimate the intrinsic effect sizes
r̂=Â/σ̂ using the 7 core circadian genes, or the top 100
significant rhythmic genes (ranked by p-values from the
cosinor method). The 7 core circadian genes include Arntl,
Dbp, Nr1d1, Nr1d2, Per1, Per2, and Per3, which showed
persistent circadian pattern across 12 mouse tissues (49). The
Homo sapiens section of Table 1 shows the estimated intrinsic
effect sizes for: (i) median r of the 7 core circadian genes; (ii)
minimum r of the 100 most significant circadian genes. The
estimated intrinsic effect sizes for these three human studies
range between 0.44 and 1.06.

To demonstrate the power trajectories in real data, we vary
intrinsic effect sizes r=0.4,0.6,0.8,1, which roughly cover
the estimated range of the intrinsic effect sizes in the post-
mortem brain studies. The ZT points are sampled 1000 times
from the kernel density estimated from the observed time-
of-death distributions in these three studies and a uniform
distribution (See top panels of Figure 4a). Since the sampling
design factor d is not a constant in passive design and the
power calculation is not phase-invariant, we vary phase shift
φ=0,1,2,3,...,12 and use a confidence band to represent the
range of power achieved across phase shifts (See bottom
panels of Figure 4a). For each scenario (i.e., fixed r, n and φ),
the mean power among the 1000 times repetitions is reported.

As expected, larger sample size n and larger intrinsic
effect size r lead to a larger circadian power and the power
trajectory is almost phase-invariant for the uniform sampling
design with band width close to 0, but not for the passive
sampling designs from the three human studies. As discussed,
the power will depend on the relationship between the mode
of the ZT distribution and the underlying peak/trough time.
To further demonstrate the impact of phase on the non-
uniform distribution for ZT, we fix n=120, r=0.6, while
varying φ=0,1,2,3,...,12. As shown in Figure 4b), the power
trajectories fluctuates across different φ′s when samples
are draw from non-uniform distributions in the three post-
mortem studies, while the trajectory stays almost the same
for uniformly distributed ZT. However, since the KLDs of
the kernel densities estimated from the Chen, Seney and
Ketchesin are relatively low (i.e., 0.12, 0.17, 0.14) in the
context of bimodal designs, the variation of power as a result
of phase shift is small, with 4.8%, 3.5%, and 8.3% maximum
drop, respectively.

CircaPower for animal studies with with active sampling
design
We next examine the power trajectories of actively designed
mouse studies using 14 mouse gene expression circadian data
(1, 3, 6, 11, 14, 17, 28, 29, 30, 33, 34, 36, 41, 49) from
20 types of tissues, including adipose, adrenal gland, aorta,
atrium, brainstem, brown fat, cerebellum, cerebral cortex,
colon, epidermal, fibroblast, heart, hypothalamus, kidney,

liver, lung, muscle, satellite, ventricle and white fat. Sample
sizes of each study tissue are shown in Table 1. To estimate the
intrinsic effect sizes of these tissues, we similarly apply the
cosinor method (7) to identify genes with rhythmic patterns
and obtained estimates for their amplitude Â and noise level
σ̂. The estimated intrinsic effect sizes for the median r of the
7 core circadian genes and the minimum r of the top 100
significant circadian genes are shown in the Mus musculus
section of Table 1, ranging from 0.96 to 6.33, a much larger
magnitude than previous human studies. This is reasonable
since human studies are usually more heterogeneous in terms
of genetics and environmental background. We thus fix the
intrinsic effect sizes to be r=1,2,3,4 in our subsequent
power calculation. Since these experiments employ an evenly-
spaced active sampling design, the sampling design factor is
a constant (i.e., d=1/2, Corollary 1) regardless of the phase
value.. As a result, we employ the one-sample one-period
evenly-spaced design (See left panel of Figure 5) for the
purpose of power calculation. By further assuming the alpha
levels to be α=0.05,0.01,0.001, the power trajectories with
respect to sample size n is shown in Figure 5 (right panel).

Case study: circadian power calculation using mouse pilot
dataset
To demonstrate how to perform circadian power calculation
using pilot dataset from scratch, we utilize a circadian
gene expression data in mouse with skeletal muscle, which
is part of the mouse pan-tissue gene expression circadian
microarray data (49). Detailed description of this dataset
has been described in previous literature (13). Briefly, 24
mouse muscle samples were collected (every 2 hours) across
2 full cycles. With this pilot data, we perform genome-wide
circadian rhythmicity detection using the cosinor method (7).
Under p<0.001, we identify 716 significant genes showing
circadian pattern. We similarly estimate the intrinsic effect
sizes for: (i) median r of the 7 core circadian genes; (ii)
minimum r of the top 100 significant circadian genes. The
resulting intrinsic effect sizes are 3.58 and 2.23 respectively.
By assuming different α to be 0.05, 0.01, 0.001, the power
curves with respect to sample size are shown in Figure S4. We
observe that n=12 can achieve 97.1% and 50.5% detection
power for the two intrinsic effect sizes at α=0.001.

DISCUSSION

In this paper, we propose an analytical framework,
CircaPower, to calculate the statistical power for circadian
gene detection analysis. To the best of our knowledge,
this is the first analytical method to perform circadian
power analysis. In simulations, we not only demonstrate the
CircaPower is fast and accurate, but also show that CircaPower
is robust against violations of model assumptions. In real
applications, we obtain the estimated intrinsic effect sizes
from publicly available human and mouse transcriptomic
circadian data and show the performance of CircaPower.
When a user needs to perform power calculation without pilot
data, information from these public data can be used as a
reference resource to facilitate circadian power calculation. In
case study, we also demonstrate circadian power calculation
step-by-step given a pilot dataset.
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Table 1. Intrinsic effect sizes for public available transcriptomic circadian data, including 3 passively designed human postmortem brain studies and 14 actively
designed mouse studies from 20 types of tissues. These data are processed using the cosinor method (7). Two types intrinsic effect sizes are used: (i) median r
of the 7 core circadian genes; (ii) minimum r of the top 100 significant circadian genes. These intrinsic effect sizes can be used as a reference resource when
investigators need to perform power calculation without any pilot data.

Organism Study Data
Availability Tissue Sample

Size

Median r
of the 7 core

circadian genes

Minimum r
of the top 100

circadian genes

Homo
sapiens

Chen (5) GSE71620 Pre-frontal cortex (BA11) 147 0.91 0.46
Pre-frontal cortex (BA47) 147 0.77 0.44

Ketchesin (20) GSE160521*
Striatum (NAc) 59 0.71 1.06

Striatum (caudate) 59 1.04 0.82
Striatum (putamen) 59 0.83 1.02

Seney (39) Common Mind
Consortium* Pre-frontal cortex 104 0.79 0.55

Aguilar-Arnal(1) GSE49638 Fibroblast 18 2.38 2.94

Mus
musculus

Bray(3) GSE10045 Atrium 32 3.43 1.46
Ventricle 32 0.96 1.09

Cho(6) GSE34018 Liver 12 2.84 4.11
Gerstner(11) GSE78215 Cerebral cortex 34 2.46 2.18

Hoogerwerf(14) GSE10644 Colon 18 1.86 1.56

Hughes (17) GSE11922 Fibroblast 48 1.27 1.02
GSE11923 Liver 48 2.00 2.77

Mari(28) GSE52333 Liver 18 4.11 3.39
Masri (29) GSE73222 Liver 18 3.83 2.47
Masri (30) GSE57830 Liver 36 2.69 2.20

Na(33) GSE11516 Liver 36 3.65 3.69
Nikolaeva(34) GSE27366 Kidney 12 2.39 2.61
Paschos(36) GSE35026 Adipose 12 2.48 2.58

Solanas(41) GSE84580 Satellite 24 3.64 2.30
Epidermal 20 5.03 2.62

Zhang(49)

GSE54650

Adrenal gland 24 5.17 2.27
Aorta 24 5.55 2.29

Brainstem 24 3.90 2.07
Brown fat 24 5.05 2.72

Cerebellum 24 3.52 2.01
Heart 24 4.47 2.82

Hypothalamus 24 2.67 1.74
Kidney 24 6.33 3.65
Liver 24 3.51 3.67
Lung 24 5.78 3.47

Muscle 24 3.58 2.23
White fat 24 5.35 2.28

GSE54651*

Adrenal gland 8 5.29 5.40
Aorta 8 3.97 5.23

Brainstem 8 2.21 4.16
Brown fat 8 4.15 5.94

Cerebellum 8 4.06 4.86
Heart 8 4.73 6.23

Hypothalamus 8 2.19 4.19
Kidney 8 5.11 6.44
Liver 8 4.40 6.16
Lung 8 4.57 5.41

Muscle 8 5.26 5.24
White fat 8 3.71 3.87

* denotes RNA-Seq data and others are microarray data.
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Figure 4. (a) demonstrates circadian power calculation using publicly available human datasets. The top panel shows the time of death distribution for Chen,
Seney, and Ketchesin. The bottom panel shows the mean power trajectories of different study designs over 1000 repetitions with different intrinsic effect sizes
r=(0.4,0.6,0.8,1). The confidence bands represent the range of power achieved across phase values at φ=0,1,2,3,...,12 for each scenario. (b) shows mean
power trajectories across different φ when n=120 and r=0.6. For each φ and sampling distribution, we draw sampling times 1000 times and calculate
corresponding power. Vertical bars indicate the 95% confidence interval of power estimates calculated form x̄±1.96s/

√
1000 where x̄ and s are mean and

standard deviation of power estimates respectively. Maximum power drop (calculated by
maxφ(mean Power)−minφ(mean Power)

maxφ(mean Power)
) is 4.8%, 3.5% and 8.3%

respectively.

Our method has several advantages. To begin with, the
theoretical framework suggests that the power calculation is
related to the total effect size, which can be decomposed into
sample size, intrinsic effect size (representing goodness-of-
fit of circadian curve), and sampling design factor. Moreover,
the sampling design factor brings about the concept of active
design and passive design when samples are collected. This is
an important concept in circadian experiment design, since the

ZT collection for human (passive design) and animal (active
design) could be quite different. After that, we demonstrate
the phase-invariant property of the evenly-spaced sampling
design, which provides theoretical foundation for the design
of many published circadian studies. In addition, the closed-
form formula in CircaPower allows unique inverse calculation
of sample size given desired power at fast computing speed
compared with the conventional MC approach. In this paper,
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Figure 5. Circadian power calculation using publicly available mouse datasets. The left panel shows the distribution of one-sample one-period evenly-spaced
design. The right panel shows the power trajectories for each of the type I error control α=(0.001,0.01,0.05) assuming intrinsic effect sizes r=(1,2,3,4).

we also systematically examine the intrinsic effect sizes
of published mouse or human gene expression circadian
data, which could provide guidance for future researchers
to design their transcriptomic circadian experiment when
pilot data are not available. Although we present our work
using transcriptomic data, CircaPower is applicable to other
omics data, such as DNA methylation, ChIP-Seq proteomics,
metabolomics, and clinical data (e.g., body temperature).

Our work has the following limitations and future work.
Firstly, the current framework finds detection power by
assuming the alpha level for type I error control. We
intentionally select a more stringent alpha (e.g., alpha=0.001)
to account for multiple comparison when thousands of
genes are tested. Additional modeling is needed to extend
for valid false discovery rate (FDR) control. Secondly, in
addition to detecting genes with rhythmic pattern, another
important research question is to identify differential circadian
pattern (10, 35, 40, 46) (i.e., the circadian pattern is
disrupted because of the treatment or condition). Extending
the CircaPower framework to include power calculation for
differential circadian analysis will be another future direction.
Lastly, our work is based on a single cosinor model for
circadian rhythmicity detection. While the cosinor model is
advantageous statistically and show better type I error control
when circadian assumption holds (10), extending the current
framework to a more flexible family of circadian pattern is of
biological interests to the general circadian research field.

To allow easy application by other researchers, our
methods have been implemented in the R package
CircaPower, which is publicly available in github
(shttps://github.com/circaPower/circaPower).
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