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Abstract 

Introducing altered visual feedback of the hand results in quick adaptation of 

reaching movements. And while this may be partly due to explicit strategies, our lab has 

shown that implicit changes like reach aftereffects and shift in estimates of the unseen 

hand, can also emerge and even saturate within a few training trials. The goal of the 

current study is to determine whether these rapid changes in unseen hand position that 

occur during classical visuomotor adaptation are diminished or slowed when feedback 

during training is reduced. We reduced feedback by either providing visual feedback 

only at the end of the reach (terminal feedback) or constraining hand movements to 

reduce efferent contribution (exposure). We measured changes as participants 

completed reaches with a 30° rotation, a -30° rotation and clamped visual feedback, 

with these two “impoverished” training conditions, along with classical visuomotor 

adaptation training, while continuously estimating their felt hand position. Classic 

continuous-cursor training produced exemplary learning curves and rapid and robust 

shifts in felt hand position. Training with terminal feedback slightly reduced the initial 

rate of change in overall adaptation and but not the magnitude of shifts in felt hand 

position. Finally using a robot to constrain and deviate hand movement direction, called 

exposure training, only delayed saturation of proprioceptive changes by a single trial 

and these changes were slightly smaller than those during classical training. Taken 

together, adaptation and shifts in felt hand position are a rapid and robust responses to 

sensory mismatches and are only slightly modulated when feedback is reduced. This 

means that, given a visuo-proprioceptive mismatch, the resulting shift in sense of limb 

position can contribute to movements from the start of adaptation.  

Introduction 

Our lab has recently demonstrated that changes in direct measures of implicit 

learning, such as reach aftereffects and shifts in estimates of the unseen hand position, 

during visuomotor adaptation develop surprisingly quickly. We find reach aftereffects 

and changes in estimates of hand location saturating within 3 and 1 training trials 

respectively. In this study, we aim to better understand and characterize this change in 

hand localization during adaptation but measuring whether the speed by which these 

localization shifts saturate during adaptation can be reduced when feedback during 

adaptation is also diminished. To do so, we use two common paradigms with reduced 

visual feedback that still leads to visuomotor adaptation: terminal feedback and cross-

sensory exposure. We characterize both the rate of adaptation and shift in hand 

localization in these two paradigms and compare it with that produced during classical 

visuomotor adaptation.  

In terminal feedback training  the cursor representing the unseen hand is 

provided only at the end of the reach movement. Reducing visual feedback to the end of 

the reach during visuomotor rotation training has been shown in some studies to reduce 

the extent of learning and the magnitude of reach aftereffects (Barkley, Salomonczyk, 

Cressman, & Henriques, 2014; Hinder, Riek, Tresilian, De Rugy, & Carson, 2010; 
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Hinder, Tresilian, Riek, & Carson, 2008; Taylor, Krakauer, & Ivry, 2014) although this is 

not always the case (Brudner, Kethidi, Graeupner, Ivry, & Taylor, 2016; Heuer & 

Hegele, 2008; Rand & Rentsch, 2016). Whether terminal feedback also affects the rate 

of adaptation is usually not quantified. Compared to continuous cursor feedback, 

training with terminal feedback has been shown to also reduce or slow down the 

changes in estimate of hand location (Barkley et al., 2014; Izawa & Shadmehr, 2011) 

but the rate of change has not been determined on a trial-by-trial basis.  

Cross-sensory exposure training involves either passively moving the unseen 

hand or using a force-channel that deviates its direction, while the cursor moves directly 

to a target. Despite minimizing the motor or efferent signals involved, this passive 

exposure to a discrepancy between seen and felt hand location leads to similar or 

smaller but significant reach aftereffects (Cressman & Henriques, 2010; Mostafa, ’t Hart, 

& Henriques, 2019; Ruttle, ’t Hart, & Henriques, 2018; Salomonczyk, Cressman, & 

Henriques, 2013) and can facilitate subsequent adaptation to the same perturbation in a 

classic visuomotor paradigm (Bao, Lei, & Wang, 2017; Sakamoto & Kondo, 2015; Tays, 

Bao, Javidialsaadi, & Wang, 2020). Not surprisingly, such training also leads to changes 

in hand localization, which are similar in size to those elicited when the reaches are self-

generated during classical visuomotor adaptation. This suggests that this proprioceptive 

recalibration is primarily driven by the visual-proprioceptive mismatch between the hand 

and the cursor. We have previously measured hand localization shifts on a trial-by-trial 

basis, allowing us to assess the rate of change for these shifts. Given these shifts in 

hand localization saturates within a single trial during classical visuomotor adaptation, 

our aim was to determine if a similar saturation rate occurs when the motor system is 

less engaged.  

While it is reasonable to assume that reducing and removing availability of 

certain types of feedback, like that for terminal feedback or exposure training, should 

affect the time-course and/or asymptotic level of adaptation, this is far from settled. 

Moreover, it is unknown whether reducing this feedback can also slow down the rapid 

saturation of shifts in hand localization. Our goal is to qualify and model the rate by 

which these changes in felt hand position saturate on a trial-by-trial basis and how they 

compare across exposure, continuous or terminal feedback training. By measuring 

shifts in felt hand position after every training trial with these three feedback types, we 

can identify the role feedback has during ongoing adaptation and proprioceptive 

recalibration.  

Methods 

Participants 

96 (mean age=22.17, range=18-46, males=22) right-handed, healthy adults 
participated in this study, and gave prior, written, informed consent. All procedures were 
in accordance with institutional and international guidelines and were approved by the 
York Human Participants Review Subcommittee.  
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Apparatus 

The experimental set-up is illustrated in Fig 1A. While seated, participants held a 
vertical handle on a two-joint robot manipulandum (Interactive Motion Technologies Inc., 
Cambridge, MA, USA) with their right hand such that their thumb rested on top of the 
handle. A reflective screen was mounted horizontally, 14 cm above the robotic arm. A 
monitor (Samsung 510 N, 60 Hz) 28 cm above the robotic arm presented visual stimuli 
via the reflective screen to appear in the same horizontal plane as the robotic arm. A 
Keytec touchscreen 2 cm above the robotic arm recorded reach endpoints of the left 
hand, to unseen, right hand targets (see (Cressman & Henriques, 2009) for more 
details). Subject’s view of their training (right) arm was blocked by the reflective surface 
and a black cloth, draped between the touch screen and their right shoulder. The 
untrained, left hand was illuminated, so that any errors in reaching to the unseen, right 
target hand could not be attributed to errors in localizing the left, reaching hand. 

 

Figure 1. Experimental setup and design. A: Side view of the experimental set-up. The top layer is the monitor, 
middle layer is the reflective screen, and the bottom opaque layer is the touchscreen. The robot is depicted beneath 
with the participants’ right hand grasping it. B-D: Top views of task specific set-ups. B: Continuous training trial. The 
home position is represented by a green circle with a 1 cm diameter; located approximately 20 cm in front of the 
subject . Targets are represented by white circles with a 1 cm diameter located 12 cm radially from the home position 
at 60°, 80°, 100° and 120°. Participants hand cursor was also a 1 cm diameter blue circle. C: Terminal training trial. 
The same hand cursor was only visible at the end of the movement for 500 ms to allow for comparison to the visible 
target. D: Exposure training trial. The robot constrained the participants movements (denoted by solid black lines 
either side of white dashed line), so they perfectly countered the rotation and only decided the distance they moved. 
E: Localization test trial. Participants were passively moved to one of the eight target locations, 55°, 65°, 75°, 85°, 
95°, 105°, 115° and 125°. Subsequently, participants used a touch screen to indicate on a white arc spanning 180° 
where their unseen right hand was.  
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Stimuli 

 At the beginning of each trial, we displayed one of four potential targets, white 1 
cm diameter circles, 12 cm from the start position at 60°, 80°, 100° and 120°. The home 
position (green 1 cm circle) and the participants hand cursor (blue 1 cm circle) were 
also visible at the beginning of the trial (for 2 of the 3 paradigms). During proprioceptive 
localization trials a white arc, 12 cm from the home position, was visible on the screen 
spanning from 0° to 180°. Participants were required to hold their hand still at the home 
position for 250 ms before any trial would begin.  

Trial Types 

Classic training trials 

Participants (N=32) reached as accurately as possible with their right hand to one 
of four possible target locations, while their hand cursor was continuously visible (Fig 
1B). In all reaching trials, i.e., with cursor and with clamped cursor, participants had to 
reach out 12 cm from the home position to a force cushion within 800 ms. Participants 
received auditory feedback throughout training indicating if they met the distance-time 
criteria or not. The target would then disappear, and the robot manipulandum returned 
the right hand to the home position where they waited 250 ms for the next trial. The 
hand cursor was aligned with the hand for the first 64 training trials, then rotated 30° 
CW for 160 training trials and then rotated 30° CCW for 16 training trials. This was 
followed by 48 error-clamped trials, dashed lines in Fig 2, which were identical to the 
reach training trials except that the cursor always moved on a straight line to the target. 
The distance of the error-clamped cursor from the home position was identical to the 
distance of the hand from the home position. 

Figure 2. Experimental Schedule. Participants reached to visual targets with a perturbation denoted by the black line. 
The dotted line at the end of the paradigm signifies clamped trials where there was no visual error as the cursor 
always moved to the target regardless of the participants movement direction. Trials included in analysis are as 
follows: early=trials 65-68; late=trials 221-224; reversed=trials 237-240; clamped=273–288. 

Terminal training trials 

 Terminal training trials were identical to classic training trials, except that the 
participants’ (N=32) hand cursor was not visible during the entire reach movement, from 
the home position to the target (Fig 1C). Once the participant moved their hand 12 cm 
from the home position, the robot locked their hand in place and the hand cursor 
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became visible for 500 ms for the participant to be able to see any potential movement 
errors. The auditory cues were present to encourage consistent speed throughout the 
experiment. These participants also experienced a phase of error clamped trials which 
were identical to the classical clamp trials, with the cursor being visible the entire trial, 
not just at the end.  

Exposure training trials 

 Exposure training trials differ from those in the previous two paradigms (Fig 1D). 
Participants (N=32) were not in control of the direction they moved during reach training 
trials. The handle at the end of the robot arm they were grasping was constrained to a 
force channel, so participants only chose the distance they moved, not direction, 
removing any performance error. If they attempted to move outside of the pathway, a 
resistant force, proportional to the depth of penetration with a stiffness of 2 N/mm and a 
viscous damping of 5 N/(mm/s), was created perpendicular to the pathway (Henriques & 
Soechting, 2003). During the error clamp phase of the experiment, participants were 
instructed to actively move their hands thus these trials were identical to the previous 
two paradigms. Participants still heard the auditory feedback to encourage consistent 
speed across training paradigms.  

Localization test trials 

 All three groups completed a passive localization of their hand position after 
every training trial. These proprioceptive localization trials (Fig 1E) were executed to 
one of two targets, 5° on either side of the previous training target. The localization 
targets were close to the preceding training targets to maximize generalization, but not 
on the same location to be able to detect if participants simply touched the remembered 
visual target from the previous trial. All eight hand-targets (55°, 65°, 75°, 85°, 95°, 105°, 
115° and 125°; one on each side of each of the training targets) were cycled through 
before being repeated. After the white arc appeared on the screen, participants’ right 
unseen, adapted hand was dragged to one of the target locations. Then once their 
target hand was locked in place, participants used their visible, left index finger, to 
indicate on the touchscreen, along a 180° arc, where they believed their right, 
stationary, unseen hand was. The arc was continuously visible until the touchscreen 
registered the participants estimate. We tested if localization responses were biased 
towards the preceding visual target in both the end of the aligned and the end of the 
rotated phase in all three conditions, but there was no bias in 5 of 6 tests. There is a 
2.4° bias in the aligned phase of the terminal condition, which is much smaller than the 
10° distance between the localization target pairs. 

 

Data Analysis 

 We analyzed reach training and hand localization trials separately from each 
other, but their rates of change (see Table 1) can be compared.  

Reaching with a cursor and clamp trials: To quantify reach performance during training, 
the angular difference between a straight line from the home position to the target and a 
straight line from the home position and the point of maximum velocity is computed. 
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This was calculated for all training trials both classic and terminal training but only for 
the error clamp trials for exposure training. 

Hand Localization: Estimates of hand location were based on the angular endpoint error 
between the movement endpoint of the right unseen hand and the left hands responses 
on the touchscreen, relative to the home position.  

Analyses 

All data was visually screened for incorrect trials. Subsequently, outliers of more 
than three standard deviations across participants within each trial were also deleted. 
All measures were normalized, by subtracting out each subjects’ average performance 
during the second half of the aligned session (e.g. trials 33-64). To see if there were 
changes in training and test trials, we conducted ANOVAs consisting of a within-
subjects factor of trial set and a between-subjects factor of training paradigm. The trial-
set factor consisted of four levels: the first 4 rotated trials (early), the final 4 trials from 
the first rotation (late), the final 4 trials from the second rotation (reversed) and the last 
16 trials, to allow for a less noisy estimate, from the clamp phase (clamped). All 
analyses ignored target location, but each bin of four trials contains a trial to each of the 
four training targets. Significant main effects and interactions were followed-up by 
pairwise comparisons, using a Welch t-test and an alpha of .05, where necessary with 
an FDR correction applied using the p.adjust function in R (Benjamini & Hochberg, 
1995).  

Two-Rate Model 

We fitted the two-rate model (Smith, Ghazizadeh, & Shadmehr, 2006) to our 
data. This two-rate model is composed of a slow process that slowly increases over 
time until it is the driving force of performance, and a fast process that rises quickly but 
eventually decays back to zero. The sum of these two processes determines the overt 
behaviour and can explain the rebound seen in the error-clamp phase. During error-
clamps, neither process learns, but the fast process will forget how it adapted to the 
counter rotation, while the slow process still exhibits part of its adaptation from the long 
initial training, resulting in a rebound.  

This model postulates the reaching behavior exhibited on trial t (Xt1), is the sum of the 
output of the slow (Xs,t1) and fast process (Xf,t1) on the same trial: 

𝑋𝑡1 = 𝑋𝑠,𝑡1 + 𝑋𝑓,𝑡1 

Both processes learn from errors on the previous trial (et0) by means of a 
learning rate (Ls and Lf), and they each retain some of their previous state (Xs,t0 and 
Xf,t0) by means of their retention rates (Rs and Rf):  

𝑋𝑠,𝑡1 = 𝐿𝑠 ∗ 𝑒𝑡0 + 𝑅𝑠 ∗ 𝑋𝑠,𝑡0 

𝑋𝑓,𝑡1 = 𝐿𝑓 ∗ 𝑒𝑡0 + 𝑅𝑓 ∗ 𝑋𝑓,𝑡0 

 The model is further constrained by making sure the learning rate of the slow 
process is lower than that of the fast process: Ls < Lf, and by having the retention rate of 
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the slow process be larger than that of the fast process: Rs > Rf. We constrained the 
parameters to the range [0,1]. 

 All model fitting was done on the mean angular reach deviation at peak velocity 
during all training reaches, regardless of target angle. The error term was set to zero 
during the final error clamp phase of the experiment, as the participants did not 
experience any performance error. The model was fit in R 3.6.1 (R Core Team, 2020) 
using a least mean-squared error criterion on the six best fits resulting from a grid-
search. The parameter values corresponding to the lowest MSE between data and 
model was picked as the best fit, and this was repeated for continuous and terminal 
paradigms.  

Rate of Change 

We used an exponential decay function with an asymptote to estimate the rate of 
change for each of the two trial types. The value of each process on the next trial (Pt1) is 
the current process’ value (Pt0) minus the product of the rate of change (L) multiplied by 
the error on the current trial, which is the difference between the asymptote (A) and the 
process’ value on the current trial (Pt0).  

𝑃𝑡1 = 𝑃𝑡0 − 𝐿 ∗ (𝐴 − 𝑃𝑡0) 

The parameter L was constrained to the range [0,1], and the parameter A to 
[0,2·max(data)]. For all paradigms using only the first rotations data (trials 65-224), the 
model was fit to 1) the reach data, 2) the slow process from the two-rate model and 3) 
localizations. For the latter kind of fit a zero was prepended to account for the fact that 
responses in these trials already changed through the previous training trial. The 
parameters were also bootstrapped (1k resamples per fit) across participants to get a 
95% confidence interval for both parameters. The first trial where the modelled process 
based on the group average fell inside the bootstrapped confidence interval for the 
asymptote is taken as the saturation trial. 

The datasets for the current study are available on Open Science Framework, 
https://osf.io/6q2zd/ while the code and analysis scripts are available on github 
https://github.com/JennR1990/VisualFeedback. 

Results 
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We used multiple approaches to investigate if reducing sensory prediction and 

performance errors during training reduces rate of adaptation in motor learning or slows 

the rapid changes in estimates of hand location. Specifically, we used a combination of 

rate of change computations and mixed ANOVAs. Figure 3 shows reach training trials 

for both the continuous and terminal paradigm, and the error clamp trials for the 

exposure paradigm. Figure 4 shows all paradigms estimates of hand location during 

training. 

Figure 3 Reach directions during training. A. Angle at peak velocity for all three paradigms across the entire training 
paradigm. Solid lines are the averages across participants within each paradigm, and the corresponding shaded 
regions are the 95% confidence intervals. Two-rate model estimates are included as dashed and dotted lines in the 
same color of the paradigms reach data. Colored arrows indicate the average trial at which participants reached 
asymptote, saturation trial. B. Average reach direction during early, late, reversed and EC phases. Individual data is 
shown around the mean for each paradigm.  

Speed of visuomotor adaptation  

Participants in the exposure training paradigm were not in control of movement 

direction during the first three phases of the experiment and thus were not included in 

this analysis. Rates of change in the initial learning phase are faster for continuous 

training [27%, 95%CI: 20.1% - 32.8%] than for the terminal training paradigm [14.2%, 

95%CI 10.0% - 20.0%] as shown in Table 1. This is reflected in the average degree of 

compensation in the early phase of training (Fig 3A) which shows that compensation for 

terminal feedback (5.68°) was lower than that for continuous feedback (12.77°). This 

rate of changes meant learning hit an asymptote of 28.6° by the 12th trial for continuous 

feedback and a similar asymptote of 27.1° by the 19th trial for terminal feedback training 

(Fig 3A). However, a closer inspection of these trial-by-trial reaches in Fig 3A shows 

that while continuous feedback reaches maximum compensation by the 12th trial, by 

that same trial for the terminal feedback shows that compensation is merely a few 

degrees or 10% behind. This last 10% compensation is what requires the additional 7 

training trials to reach a similar asymptote level. Unfortunately, the two-state model can’t 

capture these small differences, so that the model output, as well as slow and fast 

process largely overlap as shown in Fig 3A. When we compare the reach deviations for 

the main blocks of trials (early, late, reversed and clamped) for terminal and continuous 

training, as plotted in Fig 3B, we find a weak effect of paradigm [F(1,62)=8.04, P=.006, 

η2=.04], which is likely driven by the smaller amount of compensation early in the first 
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rotation [t(59.763)=-1.24, P<.001, η2=.36] for the terminal feedback group compared to 

continuous, as all other block comparisons were non-significant [P>.05]. However, given 

the large effect of block (due to large changes in cursor rotation), no interaction was 

found between these two paradigms across these four blocks. Together, these results 

indicate terminal feedback reduces learning rate, but extent of learning is comparable 

after 20 trials (see table 1).  

 

Rate of change 

  Continuous Terminal Exposure 

Reach 
training 

rate of change 
27.0%  

[20.1% - 32.8%] 
14.2% 

[10.0% - 20.0%] - 

asymptote 
28.6°  

[27.8° - 29.5°] 
27.1° 

[26.1° - 29.7°] - 

saturation trial 
12 

[10 - 16] 
19 

[13 - 27] - 

Slow process 

rate of change 
3.5%  

[3.0% - 4.1%] 
3.3% 

[3.0% - 3.7%] - 

asymptote 
25.2°  

[22.5° - 27.2°] 
25.3° 

[23.0° - 27.2°] - 

saturation trial 
65  

[55 - 75] 
72 

[66 - 80] - 

localization 

rate of change 
100%  

[29.0% - 100%] 
43.5% 

[7% - 100%] 
69% 

[47% - 100%] 

asymptote 
6.9°  

[5.9° - 8.0°] 
6.3° 

[5.3° - 7.8°] 
5.1° 

[3.8° - 6.4°] 

saturation trial 
1 

[1 – 7] 
4 

[1 - 23] 
2 

[1 – 3] 

Table 1. Adaptation estimates for reach training trials, estimates hand location and a two-rate models slow process 
prediction. Rate of change estimates, asymptote and average trial participants reached asymptote are provided for 
each training condition and the corresponding slow process and estimates of hand location. 95% confidence intervals 
are included for each estimate. Parameters were estimated using an exponential decay model.  

All participants, including those in the exposure training group, controlled the 

movement direction of their hand during the final clamp phase of the experiment. As can 

be seen in the last block of Fig 3B, we found no difference in the resulting rebound for 

these final 16 trials of the error clamp phase for the three training paradigms 

(continuous, terminal and exposure), [F(2,93)=0.47, P=.62]. This indicates that this 

learning, usually considered a proxy for slow and thus implicit learning, is equally robust 

across different type of feedback during the training.  

Estimates of hand location  

Following every training trial, we measured changes in hand estimate by having 

participants indicate the felt location of their unseen right hand after it was passively 

displaced. All training paradigms produced robust shifts in felt hand position ~6°, 

(asymptotes in table 1). More importantly, the shift saturated within 1-4 rotated training 

trials regardless of training. An exponential decay model fit to the localization data 
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indicates that continuous training produces the fastest and largest shift in hand 

localization. Exposure training and terminal feedback training require a couple of 

additional trials to reach asymptote. The average shift in felt hand location for exposure 

training, 5.1° deg, fell below the confidence intervals for the average shifts produces in 

the other training paradigm (5.9° & 5.3°) as reported in table 1. However, a mixed 

ANOVA including training paradigm and time point showed no significant effect of 

training [F(2,93)=0.05, P=0.9] or interaction between training and time point 

[F(3,279)=1.44, P=.20]. This supports the robustness of shifts in hand localization in 

response to perturbed visual feedback.  

 

Figure 4. Estimates of Hand location for all training paradigms. A. Estimates of hand location throughout the course 
of training. The solid-colored lines are the deviations between actual and indicated hand position averaged across all 
participants within a paradigm, the corresponding shaded regions are 95% confidence intervals. Colored arrows 
indicate the trial participants reached asymptote on average, saturation trial. B. Close-up of estimates of hand 
location for early, late, reversed and error clamped phase. Individual participant data are coded by color along side 

paradigm averages with error bars representing +/- 2 SE. 

Discussion 

We have previously shown that changes in estimates of unseen hand location 

shift saturate after a single trial of classical visuomotor adaptation with a continuously 

visible cursor. Here we measure the extent that this surprisingly rapid saturation may be 

slowed down with reduced feedback during training, that is, with terminal feedback or 

with robot constrained movements in an exposure paradigm. By measuring estimates of 

unseen hand position every other training trial, we captured this implicit component of 

adaptation in finer detail. We found that even with reduced feedback, changes in felt 

hand position, saturate very quickly during training, earlier than motor adaptation 

saturates. Training with terminal feedback or with passive exposure of a 30° rotation 

only slowed the saturation of these shifts in proprioceptive estimate of hand position by 

a few trials. Terminal visual feedback produced the slowest rate of change, taking 1-13 

trials, compared to 1-7 trials for continuous feedback, but an equally large shift in felt 

hand position. Exposure training led to an equally rapid rate of change but slightly 

smaller shifts (5.1° vs 6.3° & 6.9°) than either of the other paradigms. Exposure training 

does not involve volitional reaches so that a learning rate can not be determined for this 
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condition. However, we identified that reducing feedback to only the endpoint position 

slowed saturation of motor adaptation to a greater extent, requiring 19 trials for 

participants to reach saturation for terminal adaptation compared to only 12 trials for 

classical visuomotor adaptation. Nonetheless, all training paradigms produced 

equivalent rebounds; as well as comparable two-state parameters. In summary, motor 

adaptation and changes in felt hand position saturated quickly even when visual and 

motor signals were reduced during training, with only a small reduction in speed of 

these changes, demonstrating how rapidly implicit changes can emerge. 

Adaptation to Varying Types of Feedback 

Humans are very visually dominant beings and favour vision over many other 

senses for guiding reaching movements. Thus, it is not surprising that reducing visual 

feedback of the reach to the end when adapting to a visual perturbation can result in 

poorer learning performance compared when the cursor is continuously visible. 

Nonetheless, many studies, including ours, find that given enough training trials similar 

levels of asymptote are achieved for both training paradigms (Brudner et al., 2016; 

Heuer & Hegele, 2008; Rand & Rentsch, 2016; Schween & Hegele, 2017; Song, 

Adams, & Legon, 2020; Wijeyaratnam, Chua, & Cressman, 2019), although in some 

cases, learning extent is smaller (Barkley et al., 2014) The exact difference in the rate of 

the learning is not usually measured or reported in previous studies; only a handful of 

studies compare whether the average first block of trials differ between the different 

paradigms (e.g. Taylor et al., 2014). In the current study, we fit a single exponential to 

the two training paradigms, we find that compensation for a terminal feedback 

visuomotor rotation is only half as fast as that for a continuous distortion (14.2% vs 

27%) and takes 30% more training trials (19 vs 12) to saturate. By the 12th trial, 

however, compensation produced with terminal feedback is only 10% lower than those 

for continuous. The overall speed and shape of the learning rate could explain 

conflicting results regarding whether performance in terminal and continuous feedback 

training paradigms differ. Taken together, this indicates the same mechanisms may 

facilitate learning in all three conditions, but the reduced feedback merely diminishes the 

overall speed by which motor and sensory changes hit asymptote levels.  

It has been suggested that terminal feedback relies on cognitive strategies early 

in learning, which is why reaction times are longer and less consistent when reaches 

with terminal-cursor feedback are compared to continuous feedback (Hinder et al., 

2010; Taylor et al., 2014; Wijeyaratnam et al., 2019). However, when we fit a two-rate 

model, where fast and slow rates have been linked to explicit and implicit components 

of learning, we find no noticeable differences between the processes for terminal and 

continuous training and no difference in the size of the rebound for all three paradigms 

as shown in Fig 3A. If the two-rate model reflects differences in explicit and implicit 

components, these components do not seem to differ much for the different training 

paradigms. Moreover, the rebound during the clamped trials emerged and was the 

same size in the exposure training as for the other training groups. As in our previous 
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studies using exposure training (Cressman & Henriques, 2010; Mostafa et al., 2019; 

Ruttle et al., 2018; Salomonczyk et al., 2013), this suggests that visual-proprioceptive 

discrepancies are sufficient to lead to implicit changes in hand movements. 

Learning-induced Changes in Hand Localizations 

Following the completion of every training trial participants indicated the felt 

position of their then passively displaced hand. Shifts in felt hand position have been 

shown to be implicit (Modchalingam, Vachon, ’t Hart, & Henriques, 2019) and driven by 

the visual-proprioceptive mismatch between visible cursor location and felt position of 

the hand (Henriques & Cressman, 2012; Mostafa et al., 2019; Salomonczyk et al., 

2013). Previous work in our lab and others has shown that the shift in felt hand position 

is a robust feature of learning under various conditions (Cameron, Franks, Inglis, & 

Chua, 2012; Henriques & Cressman, 2012; Izawa & Shadmehr, 2011; Ruttle, ‘t Hart, & 

Henriques, 2021; Ruttle et al., 2018). Here we were able to go a step further by 

concurrently measuring and modeling these shifts in felt hand position to be able to 

identify a rate of change and level of asymptote. 

 As in the continuous-cursor training, the changes in unseen hand location 

estimates were rapid; with most participants for all groups saturating within a few trials. 

Nonetheless, terminal feedback required a few additional trials for changes in hand 

localization to reach a similar asymptote compared to continuous training. In our 

previous study comparing terminal and continuous feedback training, we found that the 

proprioceptive recalibration (change in hand estimates) required a third block of 99 trials 

before achieving the same magnitude of proprioceptive recalibration (Barkley et al., 

2014).This is most likely because the method for measuring perceived hand location 

used in the previous study was a two-alternative force choice (2-AFC) method involving 

50 trials to get a single estimate. While the 2-AFC method does an equivalent job of 

measuring the magnitude of proprioceptive calibration as the method used in this and 

other studies, it requires a far more training to saturate (Clayton, Cressman, & 

Henriques, 2014; Ruttle, Cressman, ’t Hart, & Henriques, 2016; Zbib, Henriques, & 

Cressman, 2016). The method used in the current study is able to measure hand 

localization shifts much faster with the same consistency (Clayton et al., 2014).These 

differing methods highlight how sensitive proprioception is to previous exposure to 

misaligned visual feedback, where only short exposures to differing visual environments 

produce fast changes in proprioceptive mapping.  

Exposure training led to a similar rate of change in hand localization as classical 

visuomotor training, requiring only one more training trial to reach asymptote. A 

previous study done by our lab (Ruttle et al., 2018), where we measure changes in 

hand estimate after every 6-12 cursor-rotation training trials, we could not distinguish 

difference in rates in these changes between exposure and classical 30° visuomotor 

training, partly due to the coarser time resolution as well as the larger-than-usual 

changes in perceived hand position for this exposure training. In this previous paper, the 

average proprioceptive recalibration for exposure training was 10°, which is larger than 
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the 5°-7° shift usually seen in both our exposure (Cressman & Henriques, 2010; 

Mostafa et al., 2019; Salomonczyk et al., 2013) and classical training paradigms 

(Barkley et al., 2014; Modchalingam et al., 2019; Ruttle et al., 2016), including those 

measured in the current study. However, all these shifts in perceived hand location are 

within a reasonable range and really emphasize the robustness and rapidness of 

changes in felt hand position that co-occur when experiencing altered visual feedback of 

the hand.  

Conclusion 

 Here we show that implicit changes in felt hand position appear incredibly quick, 

regardless of available feedback during training with a rotated cursor. Reducing 

feedback merely slowed down saturation by one or two trials. The impact was greater 

for reach adaptation, with rate of adaptation for terminal being substantially slower than 

continuous. We find a similar size in rebound, indicating similar slow learning accrued 

with continuous, terminal and exposure training. In conclusion, the implicit changes like 

those estimated with changes in felt hand position, are rapid and resilient feature of 

adaptation which likely contributes to both early and late learning. 
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