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 19 

Lay Summary 20 

 The estimation of variance components is computationally expensive under large-scale 21 

genetic evaluations due to several inversions of the coefficient matrix. Variance components are 22 

used as parameters for estimating breeding values in mixed model equations (MME). However, 23 

resulting breeding values are not Best Linear Unbiased Predictions (BLUP) unless the variance 24 

components approach the true parameters. The increasing availability of genomic data requires 25 

the development of new methods for improving the efficiency of variance component 26 

estimations. Therefore, this study aimed to reduce the costs of single-step genomic REML 27 

(ssGREML) with the Algorithm for Proven and Young (APY) for estimating variance 28 

components with truncated pedigree and phenotypes. In addition, we investigated the influence 29 

of truncation on variance components and genetic parameter estimates. Under APY, the size of 30 

the core group influences the similarity of breeding values and their reliability compared to the 31 

full genomic matrix. In this study, we found that to ensure reliable variance component 32 

estimation it is required to consider a core size that corresponds to the number of largest 33 

eigenvalues explaining around 98% of the total variation in G to avoid biased parameters. In 34 

terms of costs, the use of APY slightly decreased the time for ordering and symbolic 35 

factorization with no impact on estimations. 36 

 37 

Teaser Text 38 
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 Estimation of variance components is becoming computationally challenging due to the 39 

increasing size of genomic information. We investigated the impacts of using the algorithm for 40 

proven and young (APY) in genetic evaluations. The use of APY has no impact on variance 41 

components and genetic parameters estimation. 42 

Abstract:  43 

Efficient computing techniques allow the estimation of variance components for virtually any 44 

traditional dataset. When genomic information is available, variance components can be 45 

estimated using genomic REML (GREML). If only a portion of the animals have genotypes, 46 

single-step GREML (ssGREML) is the method of choice. The genomic relationship matrix (G) 47 

used in both cases is dense, limiting computations depending on the number of genotyped 48 

animals. The algorithm for proven and young (APY) can be used to create a sparse inverse of G 49 

(GAPY
-1 ) with close to linear memory and computing requirements. In ssGREML, the inverse of 50 

the realized relationship matrix (H-1) also includes the inverse of the pedigree relationship 51 

matrix, which can be dense with long pedigree, but sparser with short. The main purpose of this 52 

study was to investigate whether costs of ssGREML can be reduced using APY with truncated 53 

pedigree and phenotypes. We also investigated the impact of truncation on variance components 54 

estimation when different numbers of core animals are used in APY. Simulations included 150K 55 

animals from 10 generations, with selection. Phenotypes (h2 = 0.3) were available for all animals 56 

in generations 1-9. A total of 30K animals in generations 8 and 9, and 15K validation animals in 57 

generation 10 were genotyped for 52,890 SNP. Average information REML and ssGREML with 58 

G-1 and GAPY
-1  using 1K, 5K, 9K, and 14K core animals were compared. Variance components 59 

are impacted when the core group in APY represents the number of eigenvalues explaining a 60 
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small fraction of the total variation in G. The most time-consuming operation was the inversion, 61 

with more than 50% of the total time. Next, numerical factorization consumed nearly 30% of the 62 

total computing time. On average, a 7% decrease in the computing time for ordering was 63 

observed by removing each generation of data. APY can be successfully applied to create the 64 

inverse of the genomic relationship matrix used in ssGREML for estimating variance 65 

components. To ensure reliable variance component estimation, it is important to use a core size 66 

that corresponds to the number of largest eigenvalues explaining around 98% of total variation in 67 

G. When APY is used, pedigrees can be truncated to increase the sparsity of H and slightly 68 

reduce computing time for ordering and symbolic factorization, with no impact on the estimates. 69 

Keywords: variance components, genomic information, sparse genomic matrix, old data 70 

Abbreviations 71 

A  pedigree relationship matrix 72 

AIREML average information restricted maximum likelihood 73 

APY  algorithm for proven and young 74 

BLUP  best linear unbiased prediction 75 

EBV  estimated breeding value 76 

G  genomic matrix 77 

GAPY  genomic matrix created using APY 78 

GEBV  genomic enhanced breeding value 79 

GREML genomic restricted maximum likelihood 80 

IOD  iteration on data 81 

LHS  left hand side of mixed model equations 82 
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MME  mixed model equations 83 

QTL  quantitative trait loci 84 

REML restricted maximum likelihood 85 

ssGBLUP single step genomic BLUP 86 

ssGREML single step genomic restricted maximum likelihood 87 

YAMS  yet another MME solver 88 

 89 

Introduction 90 

Restricted maximum likelihood (REML), described by Patterson and Thompson (1971), 91 

is a popular method for parameter estimation. Because it uses the mixed model equations 92 

(Henderson, 1975), it is resistant to selection bias, and efficient implementations are currently 93 

available. With the Average Information (AI) algorithm, convergence is often achieved in a few 94 

rounds. With traces obtained by sparse matrix factorization and inversion (Meyer, 1997), 95 

computing variance components is feasible even with large models.  96 

 When genomic information is available, two versions of REML may be applicable. When 97 

only genotyped animals have phenotypes, genomic REML (GREML) can be applied with a 98 

genomic relationship matrix (G). In general, such a matrix is dense, and the cost of dense matrix 99 

operations would limit computations depending on the models. When only a fraction of animals 100 

are genotyped, a single-step genomic REML is applicable (ssGREML). In the latter, the 101 

combined relationship matrix (H) has dense blocks due to the genomic information, limiting the 102 

efficiency of sparse matrix operations. Lately, Masuda et al. (2015) developed a sparse matrix 103 

package YAMS that identifies dense blocks and computes them efficiently. For ssGREML, with 104 
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genomic computation, such a package resulted in up to 100 times speedup, allowing four trait 105 

models with 20,000 genotyped animals (Masuda et al., 2015). 106 

 In general, it is of interest to include many genotyped animals in parameter estimation 107 

and evaluations to account for genomic selection or pre-selection (Patry and Ducrocq, 2011). For 108 

instance, the greatest reliability in a single-step genomic BLUP was obtained using 50% of the 109 

heritability computed with a non-genomic REML (Misztal et al., 2017). The number of 110 

genotyped animals is increasing fast for some species. As an example, almost 3 million Holsteins 111 

have been genotyped in the US (https://queries.uscdcb.com/Genotype/cur_freq.html). However, 112 

the cost of dense matrix operations with G in REML using YAMS is quadratic for memory and 113 

cubic for operations, which limits computations to around 50,000 animals.  114 

 The genomic information has a limited dimensionality due to the limited effective 115 

population size (Stam, 1980; VanRaden, 2008; Misztal, 2016). Such dimensionality varied from 116 

4,000 in pigs and chickens to 15,000 in Holsteins (Pocrnic et al., 2016c). Assuming limited 117 

dimensionality, the inverse of G (G-1) – as needed by REML – can be sparsely constructed using 118 

the APY algorithm, with close to linear memory and computing requirements. Subsequently, the 119 

inverses for over 2 million animals can be computed and stored (Tsuruta et al., 2021). However, 120 

the inverse of H also includes the inverse of a pedigree-based relationship matrix for genotyped 121 

animals (Aguilar et al., 2010). Such a matrix can be dense with a long pedigree, but it is sparser 122 

with a shorter pedigree. Thus, it could not be efficiently stored in large populations but had to be 123 

accommodated indirectly (Strandén and Mäntysaari, 2014; Masuda et al., 2017). 124 

The first purpose of this study was to find whether the costs of ssGREML can be reduced 125 

using the APY algorithm with truncated pedigree and phenotypes. We hypothesize the truncation 126 

could help to preserve the system’s sparsity, given that APY G-1 is sparser than the inverse of the 127 
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pedigree relationship matrices for deep pedigrees. The second purpose was to investigate to what 128 

extent such truncation influences variance components and heritability estimates when different 129 

numbers of core animals are used in APY.  130 

 131 

Material and Methods 132 

 Animal care and use committee approval was not needed because data were simulated. 133 

 134 

Data simulation 135 

 To evaluate the computational effectiveness of the proposed approach for estimating 136 

variance components using genomic information, we simulated data using the QMSim software 137 

(Sargolzaei et al., 2011). The simulator generated a historical population undergoing drift and 138 

mutation and a recent population undergoing selection. The historical population consisted of 139 

1,000 generations with a constant size of 50,000 individuals. Then, 800 more generations were 140 

simulated where the number of individuals was reduced to 20,000, mimicking a bottleneck event. 141 

The recent population (P1) consisted of 20 males and 15,000 females randomly sampled from 142 

the last historical generation based on high phenotypic values. Individuals were mated along ten 143 

generations producing a litter size of 1 with an equal probability of being male or female, 144 

following a random mating design. Moreover, we considered a sire replacement rate of 0.50 and 145 

a dam replacement rate of 0.20. Genomic information was available for 45,000 animals from 146 

generations 8 through 10 (three youngest generations). 147 

A total of 29 chromosomes of different lengths (ranging from 40 to 146 cM) were 148 

simulated. Biallelic markers (n = 52,890) were evenly spaced along the chromosomes with equal 149 
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frequency in the first generation of the historical population. Potentially, 1,242 quantitative trait 150 

loci (QTL) affected the trait and explained all the additive genetic variation; QTL allele effects 151 

were sampled from a Gamma distribution with a shape parameter of 0.4. The mutation rate for 152 

markers (recurrent mutation) and QTL was assumed to be equal to 2.5 ´ 10-5 per locus per 153 

generation (Solberg et al., 2008). 154 

The simulated trait had phenotypic variance and mean of 1.0, heritability and QTL 155 

heritability of 0.30, and residual variance of 0.70. The simulated phenotypes were composed of: 156 

! = # + % + & 157 

where ! is the vector of phenotypes, # is the vector of overall mean, % is the vector of weighted 158 

sum of QTL effects (i.e., additive genetic effect or animal effect), & is the vector of residuals. 159 

The standard error of estimates was small using 5 replicates during preliminary investigations of 160 

this study. Because of that, the results are based on one replicate.  161 

 162 

Variance components 163 

 164 

 Variance components were estimated using the average information (AI) REML 165 

algorithm as implemented in the AIREMLF90 software (Misztal et al., 2002), which was 166 

modified to incorporate the YAMS package (Masuda et al., 2014; Masuda et al., 2015). The 167 

incorporation of YAMS was essential for this kind of task when using genomic information. The 168 

package applies the supernodal method using multi-core optimized libraries (i.e., parallel 169 

computing). The most computationally expensive part of the variance component estimation is 170 

obtaining the inverse of the coefficient matrix used in traces. To that, efficient algorithms are 171 

used to invert large and sparse matrices, which are based on three steps (i) ordering, (ii) 172 
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factorization (i.e., symbolic and numerical), and (iii) sparse inversion. Ordering is not 173 

mandatory, but it saves a large amount of memory and time in the factorization step as it reduces 174 

the fill-in effect (zero elements in the original matrix could become nonzero elements in the 175 

factorized matrix). This effect can be minimized by ordering using appropriate techniques. In the 176 

next step, the coefficient matrix (LHS of the mixed model equations) is factorized into two 177 

triangular matrices by LU decomposition – L matrix. Finally, the Takahashi algorithm can be 178 

used for inversion. The supernodal method is expected to provide faster inversions because they 179 

find and process dense blocks in sparse matrices. Note that LHS inversion is only required to 180 

estimate variance components or compute prediction error variance (PEV, obtained from 181 

diagonal elements of an inverted LHS). If the objective is to solve the system of equations to 182 

obtain breeding values, iterative methods as the preconditioned conjugate gradient (Lidauer et 183 

al., 1999; Tsuruta et al., 2001) can be efficiently applied. 184 

The model used to estimate variance components was based on the single-step method, in 185 

which the inverse of the realized relationship matrix ('!") is used in the mixed model equations 186 

instead of  (!". Single-step genomic BLUP (ssGBLUP) is used for breeding value estimation, 187 

whereas ssGREML is used for variance components estimation. The inversion of H is computed 188 

as follows (Aguilar et al., 2010): 189 

 190 

'
!"
= (

!"
+ )

0 0

0 +#$%
!"

− (&&
!"- 191 

 192 

where (!" is the inverse of the pedigree relationship matrix, (&&!" is the inverse of the pedigree 193 

relationship matrix for genotyped animals, computed by the algorithm described in Colleau 194 

(2002). The genomic relationship matrix (+) was computed as follows:  195 
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 196 

+ =

..′

2∑2'(1 − 2')
 197 

 198 

where Z is the matrix of gene content centered by the current allele frequencies, and 2' is the 199 

allele frequency of SNP j. Inbreeding coefficients were considered when constructing the three 200 

relationship matrices. This provides a better equivalence between genomic and pedigree-based 201 

relationship matrices, leading to a more similar genetic base (Aguilar et al., 2020). The +#$%!"
 is 202 

the inverse of the genomic relationship matrix obtained using the algorithm for proven and 203 

young (APY) (Misztal et al., 2014; Misztal, 2016). This algorithm considers that genotyped 204 

individuals are arbitrarily divided into core (c) and noncore (n). Breeding values for noncore 205 

(%() can be described as a linear function of breeding values of core (%)): 206 

 207 

 %( = 6(%) +7( 208 

 209 

where 6( = .((.′).) + 89)!*.′) is a matrix that relates breeding values of noncore and core, 210 

and 7( is the mendelian sampling term which has non-diagonal variance but can be 211 

approximated to diagonal. In cases where the number of core is large enough, breeding values of 212 

noncore depend only on breeding values of core (see Misztal (2016) for additional details). The 213 

inverse of +#$% is constructed as following:  214 

 215 

+#$%
!"

= :
8 − 6))+ −6)(
; 8

< =

>))!* ;

; >((!*
? )

8 − 6)) ;

−6() 8
- 216 

 217 
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 If +))!" = (8 − 6′)))>))!"(8 − 6))) is known, the complete inverse can be simplified to: 218 

 219 

+#$%
!"

= )
+))!* ;

; ;

- + :
−6)(
8

<>((!*[−6() 8] 220 

 221 

where 6)) = +))+))!", >))((() = BCDE{E.,. − p.,":.!"g.,":.!"
+

} for individual i in the core 222 

(noncore) group. Because +#$%!"  is conditioned only on the genotypic information of core 223 

animals, the matrix is sparser than the full +!* regularly used in ssGBLUP (Misztal, 2016). Note 224 

that the covariance between two noncore individuals is null, but variances are stored in the 225 

matrix. 226 

 The construction of the genomic matrix using APY in BLUPF90 software can be done in 227 

two possible implementations. The first construction builds a single matrix for all core and 228 

noncore. The second construction builds the genomic matrix in blocks and it aims to save 229 

computing memory as it require less operations than single matrix (Masuda et al., 2016). 230 

Currently, the single matrix construction is implemented for variance component estimation. 231 

 232 

Scenarios  233 

 234 

 The scenarios below were built to evaluate the impact of the (1) size of the core group in 235 

APY and the (2) influence of skipping zero elements from the LHS under different amounts of 236 

pedigree and phenotypic data used in variance components estimation.  237 

 238 

Core group of different sizes 239 

 240 
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Pocrnic et al. (2016a) evaluated the prediction accuracy using APY in simulation tests. 241 

The authors suggested the greatest accuracy was found by selecting the number of core 242 

individuals equal to the number of largest eigenvalues explaining 98% of G (a number from now 243 

on referred to as eigen98). This study tested core groups of different sizes to evaluate the impact 244 

on variance components and heritability estimates. A total of four scenarios were tested by 245 

allocating 1K (one thousand), 5K, 9K, and 14K randomly sampled out of 45,000 genotyped 246 

individuals. For each of those scenarios, the largest variation explained was 72.03% (eigen70), 247 

91.09% (eigen90), 95.70% (eigen95), and 98.07% (eigen98), respectively. For computational 248 

reasons, the singular value decomposition of Z was calculated instead of the eigenvalue 249 

decomposition of +. 250 

 251 

Evaluating the influence of pedigrees and phenotypes 252 

 253 

Using +#$%!"  helps to reduce computing time for genomic predictions because of its 254 

sparsity (Fragomeni et al., 2015; Masuda et al., 2016); however, in the single-step approach, the 255 

combined '!" contains also (!" and (&&!", which are relatively dense. The APY method was 256 

earlier applied to the construction of (&&!" without success (Breno Fragomeni, personal 257 

communication). Although the sparsity of (&&!" may not be a requirement for genomic 258 

predictions, it becomes essential for reducing computing time for variance components 259 

estimation to follow the sparsity of +#$%!" . A reduction in the number of generations was 260 

attempted to increase the sparsity in (!" and (&&!". A total of seven different scenarios were 261 

designed, differing on the number of pedigree generations used for variance components 262 

estimation. Reduction in the generations of phenotypes was also used to follow pedigree 263 
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incompleteness and avoid bias. The scenarios were designed to mimic a real situation where the 264 

actual founder population is usually unknown. Only three genotyped generations (45,000 most 265 

recent animals) were kept in the genomic file for further analyses. Subsequent scenarios were 266 

constructed by removing one generation of phenotypes and pedigree at a time, from the oldest to 267 

the youngest animals. 268 

 269 

The influence of zero elements in the Mixed Model Equations (MME) 270 

 271 

 Lastly, a scenario aimed to evaluate the impact of discarding zero elements from the LHS 272 

of MME on computing performance and variance components estimation. For that, the OPTION 273 

skip_zero_in_dense_matrix was used in AIREMLF90 (Misztal et al., 2014) to store only non-274 

zero elements of +#$%!"
− (&&

!". When this option was used, the scenario was termed “Reduced”, 275 

and otherwise “Full”. 276 

 277 

RESULTS AND DISCUSSION 278 

Previous studies have investigated the properties of APY, including its implementation 279 

for large-scale genomic evaluations (Fragomeni et al., 2015; Lourenco et al., 2015; Masuda et 280 

al., 2016) and its efficiency in real and simulated populations with different effective population 281 

sizes (Pocrnic et al., 2016b; Pocrnic et al., 2016c). Bradford et al. (2017) studied the impact of 282 

different core definitions, and Misztal et al. (2020) evaluated the GEBV fluctuation when 283 

changing the core group in APY. Additionally, Vandenplas et al. (2018) investigated the impact 284 

of using APY on GEBV estimation in crossbreeding schemes; Hidalgo et al. (2021) compared 285 
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the GEBV variation due to the inclusion of new data and changing the APY core animals. 286 

Finally, Lourenco et al. (2018) studied the impact of using +#$%!"  instead of +!" on the estimation 287 

of SNP effects. Our study evaluated the feasibility of using APY for variance components 288 

estimation, the impact of removing generations of pedigree and phenotypic data on computing 289 

time, and the influence of using a different number of core animals to construct the genomic 290 

matrix. Variance components were estimated using AIREML modified to incorporate the YAMS 291 

package for sparse matrix calculations (Masuda et al., 2014). 292 

 293 

Heritability estimates and computing performance 294 

 295 

Heritability, residual variance, and additive variance estimated using a different number 296 

of generations in the pedigree and cores sizes in APY are shown in Figures 1-3. The standard 297 

deviation of variance components and heritability across generations is shown in Table 1. 298 

Because the simulation involved a certain level of selection, the expected heritability should 299 

slightly deviate from the simulated value of 0.3. Therefore, the scenario with 10 generations of 300 

data (i.e., full pedigree and full phenotypes) was used as a benchmark. 301 

In general, the variance components and heritability estimates approached the simulated 302 

values as the number of core approached eigen98. The scenario using 1K individuals (i.e., 303 

eigen70) in the core was the most sensitive to removing generations, suggesting that variance 304 

components are highly impacted when the core group in APY represents the number of 305 

eigenvalues explaining a smaller fraction of the total variation in G. From a prediction accuracy 306 

standpoint, a similar behavior was also observed in other studies (Pocrnic et al., 2016a; Pocrnic 307 

et al., 2016c); however, the impact on variance components had not been investigated before. 308 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476983doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.19.476983
http://creativecommons.org/licenses/by-nc-nd/4.0/


Although pedigrees were more limited after removing a few generations of data, the combination 309 

of pedigree and genomic information and the use of a proper core size controlled the bias in 310 

variance components and heritability estimation. Small fluctuations on variance components and 311 

heritability were observed when retaining only 4 to 6 generations of pedigree and phenotypes 312 

with a core size equal to eigen98. In these scenarios, the difference in heritability was almost 313 

nonexistent; this was also true when comparing Full and Reduced models. 314 

The ratio J1& J2&⁄  is important when predicting breeding values using the mixed model 315 

equations as it is the shrinkage factor for additive effects. The variability of the ratio under 316 

different core sizes is shown in Figure 4. As the core size approached eigen98, the ratio became 317 

closer to the simulated value of 2.33. Additionally, the ratio became less influenced by the 318 

number of generations used to estimate the variance components as the core size approached 319 

eigen98. Reliable variance components estimates (or at least their ratio and heritability) are of 320 

great importance to ensure the accurate prediction of breeding values. The resulting breeding 321 

values are not BLUP unless the true variances are known or are approaching the true parameters 322 

(Kennedy, 1981). 323 

The adoption of a core group that explains less than eigen98 affected the ability to 324 

represent all the independent chromosome segments segregating in the population, traceback 325 

gene frequencies, and consequently, accurately establish covariances between genotypic values. 326 

In this study, we might have three different sources of changes for genetic variances. The first 327 

source is related to the lack of relationships because generations were sequentially removed in 328 

different scenarios. Unknown relationships (i.e., incorrect base population definition) affect the 329 

estimation of Mendelian sampling variance in different intensities depending on the number of 330 

known parents. If both parents are unknown, Mendelian sampling is equal to 0.5J2&, and if only 331 
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one parent is known, it equals [0.75	 − 	0.25 × Q3]J2&, where Q3 is the inbreeding coefficient 332 

(Henderson, 1976). Under mixed models, offspring breeding values are estimated as a function 333 

of parent breeding values and Mendelian sampling. Thus, all individuals with unknown 334 

relationships are treated as samples from the base population with average breeding value of 0 335 

and common variance J2&.  336 

The second source of change in genetic variance is the presence of selection over 337 

generations, which affects the distribution of sire and dam breeding values. Unfortunately, it is 338 

impossible to identify the contribution of each factor separately because this study was not 339 

designed for that purpose. The third source of genetic variation, which is the aim of this study, is 340 

the intentional use of a sparse representation of +!*, i.e., +#$%!" . In APY, it is intrinsically 341 

assumed that the complete genome is divided into many independent chromosome segments 342 

(ICS) containing non-redundant genomic information. The number of ICS is a statistical concept 343 

that depends on the effective population size and the genome length (Stam, 1980). The 344 

consequence of this assumption is that a small error in variance components estimation can be 345 

observed by building the core group considering the dimensionality of G as a function of the 346 

number of eigenvalues explaining a certain proportion of variance. For example, if +#$%!"  is built 347 

based on the number of core animals equal to that of eigenvalues explaining 98% of the variance 348 

in G, the assumed error is 2% (Misztal et al., 2020). Results from the current study add a new 349 

dimension to the factors driving the estimation of reliable variance components in the genomic 350 

era. Thus, if the definition of the core group considers the genetic architecture of the population, 351 

G might contain all the genetic information necessary to estimate reliable variance components 352 

(Junqueira et al., 2017; Junqueira et al., 2020). In addition to the factors evaluated in this study, 353 
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Cesarani et al. (2019) have found that the selection design and genotyping structure can 354 

influence bias in estimating variance components. 355 

 356 

Computing resources 357 

 358 

Nowadays, much effort has been placed on developing faster and computationally 359 

feasible methods for a virtually unlimited number of genotyped individuals. Using large-scale 360 

datasets becomes more problematic when the objective is to estimate variance components. This 361 

is because most algorithms require several rounds of inversion of the LHS of MME before the 362 

convergence is reached. During computations, factorization and inversion are the most 363 

demanding steps in the REML estimation. The possibility to combine APY to compute a sparse 364 

representation of +!*, data reduction, and YAMS (i.e., dense blocks operation) (Masuda et al., 365 

2014; Masuda et al., 2015) seems computationally beneficial. In this study, we evaluated the 366 

factors impacting the timing required for computational operations. Figure 5 shows the average 367 

computing time, relative to total (i.e., in percentage), required for ordering, factorization 368 

(symbolic and numerical), and sparse inversion with data reduction (pedigree and phenotypes). 369 

The most time-consuming operation was the inversion, which took more than 50% of the total 370 

time. This was expected because matrix inversion has a cubic computing cost. Next, numerical 371 

factorization consumed nearly 30% of the total computing time, whereas ordering and symbolic 372 

factorization took approximately 9% and 7.5%, respectively. Skipping zero elements in the 373 

MME did not improve the computing time of any of the inverse operations. 374 

A detailed description of the computing time required by each step after data removal is 375 

in Figure 6. The descriptive statistics of computing time savings across generations is shown in 376 
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Table 2. Ordering showed the most prominent timing decrease due to data removal, followed by 377 

symbolic factorization among the four steps. On average, a 7% decrease in the computing time 378 

for ordering was observed by removing each generation of data. During MME computations, 379 

ordering and symbolic factorization are not mandatory. These operations are mainly 380 

implemented to reduce computing time for numerical factorization and inversion. As more 381 

genotypes and/or pedigree records are included in the model, the time required for numerical 382 

factorization and sparse inversion increases. Using a simulated dataset with +#$%!"  and YAMS, 383 

we observed an opposite behavior where shorter pedigree sometimes caused an increase in 384 

computing time for the numerical factorization and sparse inversion operations. In these 385 

operations, there were no gains in computing performance due to data removal, as shown by the 386 

regression slope, which was close to	0 (Table 2). The greatest savings were around 10% when 387 

using six generations of pedigree and phenotypic data.  It is known that numerical factorization 388 

and sparse inversion are the most demanding operations in REML computations. The fact that 389 

the required time for these operations was not reduced can be explained by the creation of 390 

nonzero elements not present in the coefficient matrix before the numerical factorization is done. 391 

Those elements are known as “fill-in elements.”  392 

Consequently, extra calculations are needed, obviously increasing the amount of time to 393 

complete the sparse inversion. There are several efforts in developing faster algorithms focused 394 

on typical nonzero structures in sparse matrices. The sparse matrix algorithm in YAMS uses 395 

supernodal techniques (i.e., common nonzero pattern between adjacent columns) to speed-up 396 

computations. Computing time might be significantly improved compared to other sparse matrix 397 

packages (e.g., FSPAK) because the memory hierarchy is more effectively exploited in dense 398 
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operations, and multiple columns within a submatrix are simultaneously updated (Masuda et al., 399 

2014). 400 

Conclusions 401 

The algorithm for proven and young (APY) can be successfully applied to create the 402 

inverse of the genomic relationship matrix used in single-step genomic restricted maximum 403 

likelihood for estimating variance components. To ensure reliable variance component 404 

estimation, it is important to use a core size that corresponds to the number of largest eigenvalues 405 

explaining around 98% of total variation in G. When APY is used, pedigrees can be truncated to 406 

increase the sparsity of H and slightly reduce computing time for ordering and symbolic 407 

factorization, with no impact on the estimates. A reduction in computing time for numerical 408 

factorization and sparse inversion is unlike because of fill-in elements.  The savings in 409 

computing time for estimating variance components is far less than the expected efficiency that 410 

APY has shown compared to the use of regular G-1 for breeding values estimation. This 411 

inefficiency is because the block implementation of APY is still not possible for variance 412 

components estimation.  413 
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 527 
 528 

 529 
Figure 1. Heritability calculated along one replicate of simulation considering different 530 
number of generations with pedigree and phenotypic data under different number of 531 
core animal in APY. Two scenarios were considered, where zeros were stored (Full) or 532 
not (Reduced). Error bars represents the standard error of prediction under REML. 533 
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 534 
 535 
Figure 2. Residual variance calculated along one replicate of simulation considering 536 
different number of generations with pedigree and phenotypic data under different 537 
number of core animal for APY calculation. Two scenarios were considered, where 538 
zeros were stored (Full) or not (Reduced). Error bars represents the standard error of 539 
prediction under REML. 540 
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 542 
 543 
Figure 3. Additive variance calculated along one replicate of simulation considering 544 
different number of generations with pedigree and phenotypic data under different 545 
number of core animal in APY. Two scenarios were considered, where zeros were 546 
stored (Full) or not (Reduced). Error bars represents the standard error of prediction 547 
under REML. 548 
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 550 
Figure 4. Distribution of the ratio (J1&/J2&) over different number of generations with 551 
pedigree and phenotypic data using different sizes for the core group in APY. Two 552 
scenarios were considered, where zeros were stored (Full) or not (Reduced). Error bars 553 
represents the standard error of prediction under REML. 554 
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 557 
Figure 5. Average timing in percentage (ratio between total timing) relative to each 558 
operation used in the process of matrix inversion. The average timing and error bars 559 
(standard deviation) were calculated across scenarios using different number of 560 
generations in the pedigree and phenotypic and core sizes. The x-axis represents the 561 
steps required to invert matrices: finding the ordering, symbolic factorization (Symbolic 562 
Fact., setting up the data structure), numerical factorization (Numerical Fact.), and 563 
sparse inversion. Two scenarios were considered, where zeros were stored (Full) or not 564 
(Reduced). 565 
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 566 
Figure 6. Timing (in seconds) relative to each operation to invert matrices using 567 
different number of generations in the pedigree and phenotypes under different number 568 
of core animals for the computation of APY G-1. Matrix inversion steps: finding the 569 
ordering (Ordering), symbolic factorization (Symbolic Fact.), numerical factorization 570 
(Numerical Fact.), and sparse inversion. Two scenarios were considered, where zeros 571 
were stored (Full) or not (Reduced). 572 
 573 
  574 

1K 5K 9K 14K

O
rdering

Sym
bolic Fact.

Num
erical Fact.

Sparse Inversion

10 9 8 7 6 5 4 10 9 8 7 6 5 4 10 9 8 7 6 5 4 10 9 8 7 6 5 4

0
50

100
150
200
250

0

50

100

150

0

200

400

0
250
500
750

1000

Generation

Ti
m

in
g 

(in
 s

ec
on

ds
)

Full Reduced

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476983doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.19.476983
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. Standard deviation of variance components and heritability calculated across 575 
generations using a complete (Full) mixed model equations (MME), and a reduced 576 
MME after skipping zero elements (Reduced). 577 
 578 

Parameter1 Core2 Scenario 
Full Reduced 

J2& 1K 0.037 0.037 

5K 0.011 0.013 

9K 0.008 0.008 

14K 0.005 0.005 
J1& 1K 0.028 0.028 

5K 0.007 0.007 

9K 0.005 0.005 

14K 0.000 0.004 
ℎ
& 1K 0.032 0.032 

5K 0.011 0.011 

9K 0.005 0.005 

14K 0.005 0.005 
1
J2&: additive variance, J1&: residual variance, ℎ&: heritability 579 

2 Number of individuals included as core to build the inverse of genomic matrix using the 580 
algorithm of proven and young (APY) 581 
 582 
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Table 2. Descriptive statistics of computing time savings for the matrix operations and the slope of a regression of 
computing time on generations after removing pedigree and phenotypic data. The benchmark is the model using full 
pedigree and phenotypic data. The comparison is based on using core group of different sizes in algorithm for proven and 
young (APY), and based on a full mixed model equations (Full) and a reduced mixed model equations after skipping zero 
elements (Reduced). 
 

Core Size Matrix Operation 
Full   Reduced 

Min (%) Mean (%) Max (%) SD (%)1 Slope2 3   Min (%) Mean (%) Max (%) SD (%) Slope   
1K Ordering 1.16 24.58 50.94 16.98 -0.07 **  9.10 23.95 52.47 16.99 -0.08 ** 

Symbolic Factorization 0.61 4.77 16.22 6.04 -0.02 **  0.08 4.57 18.44 6.92 -0.02 * 

Numerical Factorization 2.38 7.47 16.92 4.93 -0.02 ns  3.36 6.57 16.32 4.97 -0.02 * 

Sparse Inversion 4.67 8.08 18.25 5.08 -0.02 **  0.59 5.80 16.47 5.71 -0.01 ns 
5K Ordering 21.35 32.13 42.88 8.60 -0.06 **  13.61 26.58 42.48 11.19 -0.07 ** 

Symbolic Factorization 4.98 9.24 13.06 3.08 -0.02 **  3.10 5.50 9.97 2.89 -0.01 ** 

Numerical Factorization 2.13 6.21 11.34 3.47 -0.00 ns  3.22 6.17 8.41 2.22 -0.00 ** 

Sparse Inversion 4.39 6.81 8.52 1.48 -0.00 ns  2.52 5.33 8.51 2.51 -0.00 ns 
9K Ordering 7.94 21.40 36.80 11.13 -0.06 **  6.65 24.55 41.48 13.99 -0.07 ns 

Symbolic Factorization 2.76 6.39 10.33 2.97 -0.01 **  2.48 5.19 7.43 2.20 -0.01 ns 

Numerical Factorization 4.96 7.26 9.98 1.82 -0.00 ns  3.45 7.63 10.33 2.93 -0.00 ns 

Sparse Inversion 0.07 5.52 9.08 3.38 -0.00 ns  3.77 6.59 10.14 2.82 -0.00 ns 
14K Ordering 25.04 38.19 49.13 9.85 -0.07 **  15.79 30.57 41.97 11.27 -0.07 ** 

Symbolic Factorization 8.28 16.33 19.63 4.61 -0.03 **  1.26 5.79 9.71 3.72 -0.02 ** 

Numerical Factorization 5.92 10.15 13.99 2.89 -0.00 ns  4.32 7.91 11.39 2.35 -0.00 ns 

Sparse Inversion 5.34 8.09 10.32 2.14 -0.01 ns   2.85 5.88 9.32 2.25 -0.00 ns 
1 Standard deviation 
2 Slope of a regression of computing time on generations 
3 Slope statistical significance * P<0.05, **P<0.10, nsnot significant 
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