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ABSTRACT

RaMP-DB 2.0 is a web interface, API, relational database and R package designed for straightforward

and comprehensive functional interpretation of metabolomic and multi-omic data. Since its first release in

2018, RaMP-DB 2.0 has been upgraded with an expanded breadth and depth of functional and chemical

annotation. Content from the source databases (Reactome, HMDB, and Wikipathways) has been

updated, and new data types related to metabolite annotations have been incorporated. Structural

information incorporated in RaMP-DB 2.0 includes SMILES strings, InChIs, InChIKeys. Chemical classes

have been sourced from ClassyFire and LIPID MAPS. Accordingly, the RaMP-DB 2.0 R package has

been updated and supports queries on pathways, common reactions, ontologies, chemical classes, and

chemical structures. Additionally, RaMP-DB 2.0 now supports enrichment analyses on pathways and

chemical classes. Our process for integrating annotations across resources has also been upgraded to

lessen the burden of harmonization, thereby supporting more frequent updates. The code used to build all

components of RaMP-DB 2.0 is freely available on GitHub at https://github.com/ncats/ramp-db and

https://github.com/ncats/RaMP-Backend.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476987doi: bioRxiv preprint 

https://github.com/ncats/ramp-db
https://github.com/ncats/RaMP-Backend
https://doi.org/10.1101/2022.01.19.476987


INTRODUCTION

The impact of metabolomics and multi-omics on biomedical and translational research continues to grow.

Multi-omic studies that combine metabolomics data with genomic, transcriptomic, or proteomic data

provide additional perspectives that capture the many complex interactions occurring between genes,

proteins, and metabolites1–4. However, interpretation of multi-omic data raises many hurdles for

researchers. Challenges associated with multi-omic integration include the large variety of identifier types

for metabolites, genes, and proteins, the scarcity of up-to-date comprehensive and integrated

gene/protein and metabolite annotation sources, and the tools to work across these omics types. With

these issues in mind, we created RaMP-DB 2.0, the relational database of metabolic pathways5.

RaMP-DB 2.0, originally released in 2018, is a comprehensive relational database that integrates

functional and other biologically relevant annotations for metabolites, genes, and proteins, where the

latter are harmonized across the multiple sources HMDB6–9, Reactome10,11, WikiPathways12,13, and

KEGG14–16 (through HMDB). Our intent for building RaMP-DB 2.0 was to provide up-to-date and

comprehensive annotations that could be readily used to interpret metabolomic and multi-omic data by

using the associated R package and web interface, or by integrating the publicly available relational

database (e.g., available as a mySQL dump) directly into one’s own tools.

Among tools that harmonize multiple sources and support multi-omic analyses, RaMP-DB 2.0 is notable

for its inclusion of multi-omic pathways from multiple sources, its ability to accept mixed ID types for

genes, proteins, and metabolites, its focus on lipid and chemical structure annotations, and its ability to

compute enrichment statistics using the aforementioned IDs and pathway (Supplementary Table 1) . In

fact, many tools rely only on a single pathway database, limiting the pathways that are considered in

enrichment analysis. It is also worth noting that public knowledge sources and associated tools that draw

information from multiple databases are oftentimes built for a specific purpose.  For example,

ConsensusPathDB17 focuses on physical interactions and supports interaction network exploration and

single-omic enrichment analyses. IMPaLA18 focuses on multi-omic pathway analysis of

transcripts/proteins and metabolites, but lacks special focus on metabolite functional enrichment in the

form of lipid and chemical structure annotations. For each tool, only a portion of the original resources is

parsed and included to meet the analysis needs.  Analogously, RaMP-DB 2.0 was specifically built to

support multi-omic biological pathway enrichment analysis and chemical class enrichment analysis of

metabolites. RaMP-DB 2.0 is actively maintained, and its underlying processes are fully transparent with

a GitHub page that allows users to ask questions, submit issues, and browse and download the source

code for the R package, web interface, and database construction.
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We present here on the recent enhancements to our RaMP-DB 2.0 platform. First and foremost,

RaMP-DB 2.0 now utilizes a new semi-automated entity resolution method that verifies compound

structural elements when mapping metabolite entries across different databases. This entity resolution

method is augmented by manual curation to verify metabolite identifier mappings as well as implied

relationships. The semi-automation process allows for frequent updates to be performed.  Second,

RaMP-DB 2.0 now also includes chemical structure and class annotations for metabolites.  This

information is useful for exploring the breadth of chemical classes and space covered by a collection of

metabolites under study. Overrepresentation of chemical classes in a metabolite set of interest relative to

a larger collection of quantified metabolites can also be calculated, providing complementary information

to biological pathway enrichment, which typically informs on a much smaller fraction ofmetabolites19.

Pathway and chemical enrichment analyses support the inclusion of a custom background (e.g.

metabolites evaluated in a study). Lastly, RaMP-DB 2.0's contents have been updated to reflect

expansions of its constituent pathway databases. For example, the most recent ontologies from HMDB

5.0, including relevant portions of the new chemical functional ontology (CFO), are now included.

MATERIAL AND METHODS

Backend Code Base: Parsing and Harmonization

Python scripts acquire data from our primary data sources  (Table 1) and parse annotations associated

with pathways, common reactions, ontologies, chemical structures, and chemical classes. Each primary

data source has a dedicated python class that fetches on-line data files to a local data store, then reads

and parses the data source-specific input data and writes the key data to a collection of intermediate files

of a standard format. A processing class reads the collection of all intermediate files for all data sources

and populates a collection of entity classes that are organized into natural relationships between genes,

metabolites, pathways, and related information. This data structure allows a well-controlled process of

data harmonization, with error checking at redundancy checks. This data aggregation and harmonization

step uses a configuration file that controls the database refresh and a python class for database loading

to write a final set of files that are formatted to ease database upload.

Supplementary Figure 1C diagrams the RaMP 2.0 database schema. The analyte table contains a list of

internal and unique RaMP analyte IDs that correspond to genes, proteins, and metabolites.

Meta-information associated with these analytes are featured in the source table and the analytesynonym

table. The source table includes all IDs and common names that map to each RaMP analyte entity.

Analytesynonyms provides 779,175 common name synonyms for the metabolites and genes in RaMP.

Two mapping tables (analytehaspathway and analytehasontology) connect our analyte entity IDs with

tables that contain information on pathways and metabolite annotations held in the ontology table.
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Separate tables contain metabolite information on chemical classes from HMDB (v5.0)6–9 and Lipid

Maps20,21 (release 2021-11-09), and chemical properties from HMDB6–9 (v5.0), ChEBI22–24 (release

2021-11-03) and Lipid Maps20,21 (release 2021-11-09). Three tables contain meta-information that

characterizes the current database build: the db_version table holds the build version and build timestamp

of the entire RaMP 2.0 database, the version_information table holds information on each data source

including the data sources version and release date, and the entity_status_info table contains a tally of

current RaMP 2.0 entities within the build.  Entities include counts for unique metabolites, genes/proteins,

pathways, chemical property records for metabolites, and mappings between analytes and pathways in

RaMP. The catalyzed table contains 1,542,009 associations between metabolites and genes that

participate in metabolic reactions together.

All scripts to build the MySQL database are available through a public GitHub repository at

https://github.com/ncats/RaMP-BackEnd. The resulting MySQL database dump is available for download

through the public RaMP R package (https://github.com/ncats/ RaMP-DB).

Semi-Automated Entity Resolution

The RaMP-DB 2.0 database holds data from multiple data sources with each source contributing entities

such as genes, proteins, and metabolites, and their annotations such as pathways, reactions, and

ontologies. Associations between these entities and related annotations support interrogation of biology

and chemistry, drawn across multiple sources, from any of these entity starting points. A depiction of the

various entity types and their relationships is shown in Supplementary Figure 1B. This entity resolution

allows users to input mixed ID types when performing batch queries, which is particularly relevant for

metabolomic data that seldom report a single ID type.  The different ID types supported for each analyte

type are shown in Table 2.

To faithfully represent entities across various data sources, we have implemented a data model that

accurately encapsulates associated entity meta-data (e.g. identifiers, synonyms, chemical properties,

data source tags, etc.) and groups individual entities that represent the same molecule, as prescribed by

the source data (Figure 1).  Metabolite and gene entities are then connected to their corresponding

biological pathway, chemical, and ontology annotations which contain names, external accessions, and

links to other related gene/protein and metabolite entity records.

The data intake process starts with reading configuration files that instruct back-end processes to fetch

data from external data sources. The source data files are then parsed with data-source specific parsers

into intermediate consistently formatted files prior to combining and harmonizing data from the various

data sources. The EntityBuilder class harmonizes the data by constructing all source data into a data
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model that deduplicates metabolites and holds all associations between metabolites and their chemical

properties, genes, pathways and associated information. The harmonized data is written into final files

prior to bulk loading into the relational database schema (Supplementary Figure 1A).

Most data sources link metabolite entities to a collection of additional ID types, such as PubChem CID,

ChemSpider, HMDB ID, ChEBI ID, and LIPID MAPS ID. ID cross-references of mappings help to suggest

metabolites that are in common across different data sources. Two metabolites drawn from different

sources that share a common metabolite ID are mapped to a common RaMP-DB 2.0 metabolite entity.

Following the construction of these entities and relationships, the linked metabolites in the data model are

verified by comparing molecular weights taken from the data source that publishes the identifier (HMDB,

ChEBI, PubChem, Lipid Maps, or KEGG). Molecular weight variance of 10% or more from the lower

molecular weight metabolite is flagged as a bad annotation and subsequently manually verified. During

the automated assessment of all ID-based compound associations, suspect associations are flagged and

exported to a list for manual curation. If it is deemed through subsequent manual curation that two IDs

refer to different metabolites, then the metabolite ID pair goes into a list of associations to skip. After

manual curation of all such issues, the data is built, skipping associations within the exclusion list. This

results in both entities being represented, but skipping any merge suggested by the bad cross reference.

This mis-mapping exclusion list is referenced on every subsequent database build. Reported

discrepancies in the association between two metabolites IDs are added to the exclusion list as they are

reported so that later database builds will use the latest curation patches.

RaMP IDs

During the data harmonization and database loading, internal RaMP IDs are generated. These RaMP IDs

are not intended to be used by the general user. Instead, they produce database-internal values for

compound, gene, ontology, and pathway entities that act as keys that relate entities to one another, which

are sourced from multiple sources, in the database. The values are used to reference RaMP entities

within the database. While consistent within a database update, these IDs are not conserved across

database versions. Entity IDs from external data sources are maintained as primary authoritative IDs to

be used in result tables and in work derived from RaMP-DB 2.0 analyses. The RaMP-DB 2.0 primary

analyte source information table and pathway table maintain a field that tracks the associated primary

data source so that all RaMP-DB 2.0 entities maintain a record of data provenance.
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R Package

RaMP-DB 2.0 functions are annotated with roxygen v7.1.2 blocks to generate Rd help files, with working

examples that can be opened in R. The package includes an extensive Vignette tutorial

(https://ncats.github.io/RaMP-DB/RaMP_Vignette.html) that features the primary functions available within

the package. Instructions on the GitHub page describe setting up the MySQL database locally and

installing the RaMP-DB 2.0 R package. Importantly, the RaMP-DB 2.0 MySQL full database dump is

included in the RaMP-DB 2.0 Package GitHub site and can also be explored independently of the R

package.  Like all parts of RaMP-DB 2.0, the RaMP-DB 2.0 Package is open source R, housed at

https://github.com/ncats/RaMP-DB.

Pathway and Chemical Enrichment Analysis

We have implemented functions for testing enrichment of pathways and chemical classes in a list of

metabolites and/or genes and proteins.  Enrichments are calculated using a Fisher’s Exact test, based on

a 2x2 contingency table. These contingency tables are used to test the null hypothesis that the number of

altered metabolites belonging to that pathway is less than or equal to the number expected by random

chance. Where n is the total number of metabolites in the reference background, a is the count of

differentially expressed analytes in the pathway being tested, b is the count of background analytes in

pathway being tested c is the count of differentially expressed analytes outside of the pathway being

tested, and d is the count of background analytes outside the pathway being tested, the Fisher’s p-value

is calculated using Equation 1.

𝑝 =  (𝑎+𝑏)!(𝑐+𝑑)!(𝑎+𝑐)!(𝑏+𝑑)!
𝑎!𝑏!𝑐!𝑑!𝑛!

Equation 1

The reference background for the test can be defined in several ways. First, it can be defined as the

number of metabolites contained in the pathway database that the pathway being evaluated is found in

(e.g in this case, the entire RaMP-DB 2.0). Second, the reference background can be described as the

full set of metabolites that were identified in the study. Last, it can be defined as the collection of

metabolites that are known to be present in the biospecimen of interest (e.g. urine or blood metabolites

only).

As in RaMP-DB 1.0, the RaMP-DB 2.0 R package includes a function for clustering pathways based on

the overlap of their constituent analytes. This function is useful for easing interpretation of pathway

analysis results, as RaMP-DB 2.0 contains many pathways that significantly overlap with other pathways
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contained in the database. As a new feature to RaMP-DB 2.0, we have implemented a “lollipop plot”

function for plotting pathway analysis results that displays pathway cluster membership, database of

origin for pathways, the number of altered analytes mapping to that pathway, and Fisher’s p value with

multiple test correction of choice applied.

RESULTS

RaMP-DB 2.0 ecosystem

RaMP-DB 2.0 has two main components: 1) building of the back-end MySQL database that draws from

multiple sources, and 2) an R package that supports queries and analyses using RaMP-DB 2.0. The

RaMP R package supports four different batch query types along with two different enrichment analyses

(Figure 2A). Queries are available for lists of genes, proteins, and metabolites,  returning pathways,

biochemical reactions, and/or ontologies that contain those analytes. Users may also query a list of

pathways and return analytes associated with those pathways. Lastly, for lists of metabolites only, users

may query ontologies from HMDB, chemical structure, or chemical class information. Mappings returned

from pathway and chemical class queries can be leveraged for functional enrichment analysis using the

Fisher’s exact test.

Queries supported include: 1) Retrieve Analytes From Input Pathway(s); 2) Retrieve Pathways From Input

Analyte(s); 3) Retrieve Metabolites from Metabolite Ontologies; 4) Retrieve Ontologies from Input

Metabolites; 5) Retrieve Analytes Involved in the Same Reaction; 6) Retrieve Chemical Properties from

Input Metabolites; 7) Retrieve Chemical Classes from Input Metabolites.  The package also supports

pathway and chemical class enrichment analysis of metabolites/genes/proteins and metabolites,

respectively.

RaMP-DB 2.0 Structure and Contents

The data for RaMP-DB 2.0 is drawn from six distinct sources (Figure 2B), and parsed using python

scripts available at https://github/ncats/RaMP-BackEnd. The parsed data are organized into RaMP-DB

2.0, an analyte-centric relational database containing 13 tables (Supplementary Figure 1C). As in

previous iterations, the relational structure offered by MySQL is designed for efficient retrieval of

annotations related to a list of analytes of interest input by the user.

RaMP-DB 2.0 incorporates pathway annotations from four popular public metabolite pathway databases:

HMDB6–9, Reactome10,11, WikiPathways12,13, and KEGG14–16 (through HMDB) (Table 2). RaMP-DB 2.0
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contains pathway associations for both genes/proteins and metabolites. In total, following entity

resolution, RaMP-DB 2.0 contains 151,526 metabolites, 14,362 genes, and 52,573 pathways (see

Semi-Automated Entity Resolution in Methods for details on entity resolution).

New additions to RaMP-DB 2.0 include ontologies derived from HMDB (v5.0)6–9, chemical structure and

class information. Most notably, the inclusion of 43,448 lipids from LIPID MAPS has greatly expanded the

number of lipids for which information is available in RaMP-DB 2.0. RaMP-DB 2.0 now contains 170,654

chemical structures associated with its collection of metabolites. These structures, obtained from HMDB

(v5.0)6–9, ChEBI (release 2021-11-03)22–24 and LIPID MAPS (release 2021-11-09)20,21, provide a rich

source of information for chemical compounds of interest and can be used as a basis for cheminformatics

analysis. RaMP-DB 2.0 also contains chemical class, superclass, and subclass as dictated by the

ClassyFire25 taxonomy and the LIPID MAPS database, which can also be used as a basis for chemical

class enrichment analysis. Lastly, RaMP-DB 2.0 contains a collection of 807,362 metabolic

enzyme/metabolite reactions and 699 ontologies from HMDB6–9 (v 5.0).

Integrating data from multiple resources expands the number and type of annotations for analytes.  With

RaMP-DB 2.0, an analysis of overlapping content in each of the constituent databases is thus possible,

highlighting the value of a united database for these annotations. Out of the 151,526 unique metabolites

found in RaMP-DB 2.0, 103,616 metabolites (68%) are only found in one of the source databases (99% of

these unique metabolites are derived from HMDB, Figure 3). Out of 56,840 metabolites that have at least

one pathway association in RaMP, 12,758 are only found with pathway mappings in one source database

(22%). Similarly, out of 14,362 genes/proteins in RaMP-DB 2.0, 3,323 genes/proteins (23%) are unique to

their source database.

Resolving Entity Mismappings

Because RaMP-DB 2.0 relies on accurate ID mappings for a metabolite in one resource (e.g. metabolite

X mapping to multiple IDs YYY), mis-mappings could create errors in linking one metabolite to another

from different sources.  As an example, we found an occurrence where a data source provides a

metabolite record for a diglyceride and provides corresponding valid PubChem ID (Supplementary

Figure 2). Another metabolite record from the same source represents 11-Oxo-androsterone glucuronide

but has an external ID reference to the PubChem diglyceride record. Naively following ID associations

would collapse these two metabolites into one entity due to the common PubChem CID. In this case our

steroid-based compound has a molecular weight of 480.55 Da, while the diglyceride has a molecular

weight of 681.12 Da so the error in linking was identified automatically through molecular weight

comparison.
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Notably, these mis-mappings would propagate to errors in pathways or other annotation mappings and

introduce false positives in enrichment analyses. To address this issue, we have developed a heuristic

based on MW weight to automatically flag potential mis-mappings that could occur between database

sources (described in Semi-automated entity resolution above).  These flagged mis-mappings are then

manually investigated and fixed as appropriate.  Mis-mappings are recorded and used to automatically

correct future updates of RaMP-DB 2.0.

RaMP-DB 2.0 curation revealed a total of 955 distinct metabolites involved in incorrect associations

linking disparate molecules. Within the 955 metabolites, 351 metabolites had incorrect ID-based cross

reference associations to 604 distinct metabolites. Curation eliminated the propagation of these errors

and the resulting mis-associations that could arise between these metabolites and pathways.

DISCUSSION

To the best of our knowledge, RaMP-DB 2.0 is the only knowledge source and associated tool that

supports batch queries of analyte annotations, multi-omic pathway and chemical class enrichment

analysis with ability to input mixed ID types, and batch queries of pathway and chemical annotations

using mixed identifier schemes for both genes and metabolites.  Incorporating multiple sources into

enrichment analyses greatly expands the mappability of analytes to pathways, thereby enhancing the

user’s ability to functionally interpret complex data. RaMP-DB 2.0 verifies the accuracy of mapping

analyte entities across its various source databases using a semi-automated process followed by manual

curation. The updated RaMP-DB 2.0 now includes 151,526 metabolites, 13,927 genes, 52,573 pathways,

408,232 mappings between metabolites and pathways, and 463,447 mappings between genes and

pathways. Improving the accuracy of mappings between analyte identifiers will increase the accuracy of

downstream insights gleaned from data.

New features of the updated version of RaMP-DB 2.0 include the ability RaMP-DB 2.0of users to perform

chemical class enrichment analysis on metabolites of interest. Other recent efforts in metabolomic

software development have noted that chemical class and substructure enrichment analysis can provide

functional insight where pathway annotations are unavailable, as chemical structure annotations for

metabolites typically offer better coverage19,26. The primary benefit of class enrichment is the superior

coverage of chemical class annotations available for metabolites, thanks to the ClassyFire taxonomy25. In

RaMP-DB 2.0, each metabolite has a superclass, class, and subclass designation, while only 36.6% of

metabolites have at least one pathway annotation associated with them. Better coverage allows for the

incorporation of more experimental information into test results. Class enrichment also allows for the

testing of different hypotheses than pathway analysis. For example, in studies where the objective is to

identify putative therapeutic targets, discovery of altered classes can suggest enzymes acting upon
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generic species of that class as potential inhibition targets27. Integrating this functionality into RaMP-DB

2.0 gives users another option for gaining functional insight into their data.

We also note the importance of using an appropriate background/reference list of analytes for pathway

enrichment analysis28,29. Typically, “background” metabolites used for the Fisher’s exact test are defined

as all metabolites in the original database the pathway being tested was derived from.  However, an

alternative definition is the list of all metabolites identified in a study.  Many Fisher’s pathway analysis

tools such as DAVID30 and MetaboAnalyst31,32 enable users to select their choice of background.

Accordingly, we have implemented the option for either background selection in RaMP 2.0. We have also

implemented a novel third option for backgrounds, comprising all metabolites known to occur in a given

biospecimen (as determined by HMDB ontology). Example biospecimen types include “Adipose Tissue”,

“Blood” and “Heart”.  We note that using a broad background could include metabolites that should be

excluded from the analyses because they are absent in the biospecimen under study, or were not

detected for some reason (e.g. failure to ionize or exclusion due to the extraction protocol used). As such,

a more appropriate hypothesis to test is to use a custom background of only those metabolites detected

in the study, or those appropriate for the biospecimen of interest.  A recent study of metabolomics

pathway analysis strategies confirms that choice of background in the Fisher’s exact test exerts large

effects on the list of significant pathways returned by the Fisher’s exact test33. Enabling users to choose

their background based on the information available could thus lead to more reliable outputs for

enrichment analysis. Nonetheless, we preserve the option of using a database background, as the list of

all metabolites identified in an experiment is not always readily available to the researcher.

Despite our recent enhancements, RaMP-DB 2.0 has some limitations, particularly regarding its coverage

and harmonization.  Currently, RaMP-DB 2.0 is limited to human pathways, although metabolite coverage

does include microbial, food, and other exogenous metabolites.  Furthermore, the harmonization of

metabolites across the different resources is not fool-proof.  Metabolite identification in large-scale

metabolomic experiments is still an unresolved issue, and experiments often yield a mix of different levels

of certainty and structural resolution in identified metabolites34–39. These factors are not taken into account

during harmonization or mapping of metabolites across sources. Users should thus carefully assess their

input list of metabolites, particularly for enrichment analysis and double check that mapping of metabolites

is correct. This process is facilitated by the modular design of running enrichment analyses, as described

above, which requires users to review database mappings from their input IDs as well as pathway

mappings before seeing enrichment results. In all cases, we recommend that users input IDs, rather than

names for analyses (this is the default implementation by design).

As a future direction, RaMP-DB will contain reaction-level pathway network information drawn from KEGG

and Reactome to allow for the use of topological pathway analysis algorithms on metabolomic data. A
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notable drawback of Fisher’s exact test is that it treats all metabolites in a pathway as equivalent parts of

a set40. This is a misrepresentation, as pathways are a collection of metabolites undergoing reactions that

result in some signal or biochemical product. More specifically, a metabolite is less likely to exhibit

correlated abundance with another random metabolite in the same pathway as it is with a known reaction

partner in the same pathway. While topological pathway analysis methods are more mature in

transcriptomic applications41, implementations exist in the metabolomic field as well. For example, in

MetaboAnalyst32, the pathway topological analysis module uses relative betweenness centrality and out

degree centrality network metrics to assign relative importance scores to metabolites in a pathway using a

network representation wherein metabolites are nodes and reactions are edges. Intuitively, this score is

used to assign greater weight to metabolites that are more central in a pathway, meaning they are

well-connected to other parts of the pathway and more likely to exert influence downstream. Ultimately

this results in more “important” metabolites contributing more to pathway perturbation scores than less

central metabolites. We also anticipate the inclusion of more data types for genes and proteins such as

gene ontology annotations or additional reactions from Rhea42. As with other annotations in RaMP-DB

2.0, functions for batch querying and enrichment analysis of new annotations will be implemented. Lastly,

the R package relies on a local instance of RaMP rather than calling upon API, which forces users to

install and store their own copy of the database. In the future we intend to remove this limitation.

CONCLUSIONS

RaMP-DB 2.0 is a multi-sourced relational database comprising pathway and chemical annotations for

metabolites, genes and proteins.  An improved resolution of metabolite and gene/protein mappings

across the databases has been implemented and is supplemented with manual curation.  Associated and

improved R package and web user-friendly interface have been constructed to query the database and

perform chemical and pathways enrichment analyses.  All steps of RaMP-DB 2.0 are reproducible with all

the code used to build or use the database publicly available in GitHub.

DATA AVAILABILITY

RaMP-DB 2.0 is an open source project available in the GitHub repository

(https://github.com/ncats/ramp-db), which includes code for the R package and code for constructing the

RaMP-DB 2.0 mySQL database, as well as the latest RaMP-DB 2.0 dump.

Python code for building the RaMP-DB 2.0 database can be found at

https://github.com/ncats/RaMP-Backend.
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Supplementary Figure 1: A) Overview of the process underlying the backend code used to create RaMP B) Data types stored
within RaMP-DB 2.0 and their relationships C) RaMP-DB 2.0 Schema (and data models)
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