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Abstract.

Significance: The Monte Carlo (MC) method is widely used as the gold-standard for modeling light propagation
inside turbid media like human tissues, but combating its inherent stochastic noise requires one to simulate large
number photons, resulting in high computational burdens.

Aim: We aim to develop an effective image denoising technique using deep learning (DL) to dramatically improve
low-photon MC simulation result quality, equivalently bringing further acceleration to the MC method.

Approach: We have developed a cascade-network combining DnCNN with UNet, in the meantime, extended a range
of established image denoising neural-network architectures, including DnCNN, UNet, DRUNet, and ResMCNet, in
handling three-dimensional (3-D) MC data and compared their performances against model-based denoising algo-
rithms. We have also developed a simple yet effective approach to create synthetic datasets that can be used to train
DL based MC denoisers.

Results: Overall, DL based image denoising algorithms exhibit significantly higher image quality improvements over
traditional model-based denoising algorithms. Among the tested DL denoisiers, our Cascade network yields a 14 -
19 dB improvement in signal-noise ratio (SNR), which is equivalent to simulating 25× to 78× more photons. Other
DL-based methods yielded similar results, with our method performing noticeably better with low-photon inputs, and
ResMCNet along with DRUNet performing better with high-photon inputs. Our Cascade network achieved the highest
quality when denoising complex domains, including brain and mouse atlases.

Conclusion: Incorporating state-of-the-art DL denoising techniques can equivalently reduce the computation time of
MC simulations by one to two orders of magnitude. Our open-source MC denoising codes and data can be freely
accessed at http://mcx.space/.

Keywords: Monte Carlo Method, Image Denoising, Photon Transport, Convolutional Neural Networks, Deep Learn-
ing.
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1 Introduction

Non-ionizing photons in the near-infrared (NIR) wavelength range have many benefits in biomed-
ical applications compared to ionizing ones such as x-ray. Because of the low energy, NIR light is
relatively safe to use and can be applied more frequently; the relatively low cost and high portabil-
ity of NIR devices makes them excellent candidates for addressing needs in functional assessment
on the bedside or natural environments.1 However, the main challenge of using low energy NIR
photons is the high degree of complex interactions with human tissues due to the presence of high
scattering, which is much greater than that of x-rays. As a result, the success of many emerg-
ing NIR-based imaging or intervention techniques, such as diffuse optical tomography (DOT),2
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functional near-infrared spectroscopy (fNIRS),3 photobiomodulation (PBM)4 etc, requires a quan-
titative understanding of such complex photon-tissue interactions via computation-based models.

The Monte Carlo method is widely regarded as the gold-standard for modeling photon propaga-
tion in turbid media,5 including human tissue, due to its accuracy and flexibility.6 It stochastically
solves the general light propagation model – the radiative transfer equation (RTE) – without need-
ing to build large simultaneously linear equations.7 While an approximation of RTE, the diffu-
sion equation (DE), can be computed more efficiently using finite element (FE)-based numerical
solvers,8 DE is known to yield problematic solutions in regions that contain low-scattering media.9

Besides accuracy and generality, simplicity in implementation of MC algorithms compared to other
methods has not only made MC a top choice for teaching tissue-optics, and also for developing
open-source modeling tools.

MC methods have attracted even greater attention in recent years as simulation speed has increased
dramatically due to the broad adoptions of massively-parallel computing and graphics processing
unit (GPU) architectures. The task parallel nature of MC algorithms allows it to be efficiently map
to the GPU hardware.10 Current massively parallel MC photon propagation algorithms are capa-
ble of handling arbitrary 3-D heterogeneous domains and have achieved hundreds fold speedups
compared to traditional serial simulations.11–15 This breakthrough in the MC algorithm allows
biophotonics researchers to increasingly use it in routine data analyses, image reconstructions and
hardware parameter optimizations, in addition to its traditional role of providing reference solu-
tions in many biophotonics domains.

A remaining challenge in MC algorithm development is the presence of stochastic noise, which is
inherent in the method itself. Because an MC solution is produced by computing the mean behav-
iors from a large number of photon packets, each consisting of a series of random samplings of the
photon scattering/absorption behaviors, creating high-quality MC solutions typically requires sim-
ulations of tens to hundreds of millions of photons. This number depends heavily on the domain
size, discretization resolution and tissue optical properties. This translates to longer simulation
times, because the MC runtime is typically linearly related to the number of simulated photons.
From our recent work,16 a 10-fold increase of photon number typically results in a 10 decibel (dB)
(SNR) improvement in MC solutions, suggesting that MC stochastic noise is largely shot-noise
bound. From this prior work, we have also observed that the MC stochastic noise is spatially
varying and, in highly scattering/absorbing tissues, exhibits high dynamic range throughout the
simulation domain.

To obtain high quality simulation results without increasing the number of simulated photons, sig-
nal processing techniques have been investigated to remove the stochastic noise introduced by the
MC process. This procedure is commonly referred to as denoising.16, 17 In the past, model-based
noise-adaptive filters have been proposed to address the spatially varying noise in the radiation
dosage estimation context and computer graphics rendering.18–20 However, improvements pro-
vided by applying these filtering-based techniques have been small to moderate, creating an equiv-
alent speedup of only 3- to 4-fold.16 Recent work on denoising ray-traced computer graphics,
and spatially-variant noisy images in the field of computer vision, focus mainly on machine learn-
ing (ML)-based denoising methods, more specifically convolutional neural networks (CNNs).17

Despite their promising performance compared to traditional filters, no attempt has been made, to
the best of our knowledge, to adapt denoisers designed for two-dimensional (2-D) low bit-depth
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image domain to high dynamic range MC fluence maps.16, 21 Our motivation is therefore to develop
effective CNN-based denoising techniques and compare it among state-of-the-art denoisers in the
context of MC photon simulations and identify their strengths compared to traditional model-based
filtering techniques.

In recent years, the emergence of convolutional neural network (CNN)s has revolutionized many
image-processing-centered applications, including pattern recognition, image segmentation and
super-resolution. CNNs have also been explored in image denoising applications, many targeted
at removing additive white Gaussian noise from natural images,22 and more recently, real camera
noise.23, 24 Compared to classical approaches, CNNs have also demonstrated impressive adaptive-
ness to handle spatially varying noise.25, 26 In a supervised setting, given a dataset representative of
media encountered in real-life simulations, CNNs have shown to better preserve sharp edges of ob-
jects without introducing significant bias compared to model-based methods.22, 27, 28 Finally, due
to extensive efforts over the past decade to accelerate CNNs on GPUs, modern implementations of
CNN libraries can readily take advantages of GPU hardware to achieve high computational speed
compared to traditional methods. Nonetheless, there has not been a systematic study to quantify
CNN image denoiser performance over MC photon transport simulation images, either in 2-D or
3-D domains.

The contributions of this work are the following. First, we have developed a simple generative
model that uses the Monte Carlo eXtreme (MCX)12 software to create a synthetic dataset suited
for supervised training of an image denoiser, providing ample opportunities for learning its un-
derlying noise structure. Secondly, we have developed and characterized a novel spatial-domain
CNN model that cascades DnCNN26 (an effective global denoiser) and UNet29 (an effective local
denoiser). Thirdly, we have adapted and quantitatively compared a range of state-of-the-art image
denoising networks, including DnCNN,26 UNet,29 DRUNet,28 deep residual-learning for denois-
ing MC renderings30 (referred to as ResMCNet hereinafter), as well as our cascaded denoiser, in
the context of denoising 3-D MC simulations. We assess these methods using a number of evalua-
tion metrics, including mean-squared error (MSE) and structural similarity index measure (SSIM).
For simplicity, other DL-based denoising methods that do not operate in the spatial domain,31, 32

or require specialized knowledge from their target domain,33 are not investigated here and left for
future work. Lastly, a range of challenges encountered during the development of our approach
are also discussed, providing guidance to future work in this area.

2 Methods

2.1 Training Dataset Overview

To train and evaluate CNN denoisers in a supervised fashion, a series of datasets were generated
that provided one-to-one mappings between “noisy” and “clean” simulations. The training dataset
was created using our MCX software package,12 in which simulations of a range of configurations
with different photon levels were included. The 3-D fluence maps generated from the highest
number of photons were treated as “clean” data, and the rest were regarded as noisy. For this work,
all configurations were simulated with photon numbers between 105 and 109 with an increment
of 10-fold. Simulations with 109 photons were selected as the “ground-truth”, since they provide
the closest estimate to the noise-free solutions. Therefore, the CNN denoisers are tasked to learn
a mapping between simulations with photon numbers lower than 109 to results simulated with 109
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photons.

2.1.1 Generation of Training and Validation Datasets

To efficiently generate a large and comprehensive corpus of representative MC training data, first a
volume generation scheme was designed. In such scheme, arbitrary-shaped and sized polyhedrons
and random 3-D American standard code for information interchange (ASCII) characters with
arbitrary sizes are randomly placed inside a homogeneous background domain with random optical
properties. Using combinations of ASCII characters and polyhedrons produces a wide variety
of complex shapes, while keeping the data generation process efficient. A diagram showing the
detailed steps for creating a random simulation domain for generating training data is shown in
Fig. 1.
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Fig 1: Workflow diagram for creating random simulation domains for the training/validation data.

Specifically, a random number (M = 0 to 4) of randomly generated shapes, either in the form of 3-D
polyhedrons, or 3-D ASCII letters, are first created as binary masks, with the same size as the target
volume. Then, the binary mask is multiplied by a label – a unique identification number assigned
to each object – and subsequently accumulated in a final volume, where voxels marked with the
same label belong to the same shape. In the process of accumulation and generation of binary
masks for each shape, if two or more objects intersect, this process creates new inclusions for the
overlapping regions. We generated all training datasets on a 64× 64× 64 (in 1 mm3 isotropic
voxels) domains, while the datasets for validation were 128×128×128 voxels. This allows us to
observe the scalability of the networks to volume sizes different than the training dataset. A total of
1,500 random domains were generated for training and 500 random domains for the “validation”.
During training, the average global metrics (explained in Section 2.4.1) of the model computed
over the validation dataset were saved over single epoch intervals. At the end of the training, the
model with the best overall metrics was selected as the final result.

To create random 3-D polyhedrons, a number of points (N = 4 to 10) are determined on a sphere
of random location and radius using the algorithm provided by Deserno et al.34 The convex-
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hull of the point set is computed and randomly rotated and translated in 3-D. This convex-hull is
subsequently rasterized into a binary mask.

For ASCII character inclusions, first, a random character in either lower or upper cases of En-
glish alphabet is selected. A random font size is chosen from a specified range, and the letter is
rendered/rasterized in a 2-D image with a random rotation angle and position. This binary 2-D
mask is further stacked with a random thickness to form a 3-D inclusion. Finally, a 3-D random
rotation/translation is applied to the 3-D ASCII character inclusion.

After generating a random volume, a random simulation configuration is generated to enable sim-
ulations with MCX. This includes determining the optical properties, including absorption (µa),
scattering (µs) coefficients, anisotropy (g) and refractive index (n), for each of the label inside the
generated volume, as well as the light source position and launch direction for the simulation. For
the training and validation datasets, only isotropic sources were used for simplicity. The source is
randomly positioned inside the domain.

The random optical properties are determined in ranges relevant to those of biological tissues,
including: 1) µa = |N(0.01;0.05)| mm−1 where N(µ;σ) is a normal distribution with mean µ and
standard deviation σ ), 2) g is uniform random variable between 0.9 and 1.0, 3) µs = µ ′s/(1− g)
where the reduced scattering coefficient µ ′s = |N(1;1)| mm−1, and 4) n is a uniformly distributed
random variable between 1 and 10. For all data, we simulate the continuous-wave (CW) fluence
for a time-gate length randomly selected between 0.1 and 1 ns with a 0.1 ns step size. Each
simulation uses a random seed. In Fig. 2, we show a number of image slices (log-10 scale) from 3-
D simulation samples ranging from homogeneous domains to heterogeneous domains containing
multiple polyhedral or letter-shaped inclusions.

15.012.510.07.55.02.50.02.55.0

105 106 107 108 109 105 106 107 108 109

Fig 2: Sample MC fluence images (slices from 3-D volumes) generated for CNN training.

2.1.2 Data Augmentation

To increase the diversity of the generated dataset and avoid overfitting, data augmentation35 was
used. Our data augmentation consisted of 90-degree rotation and flipping. Each transformation
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was applied independently over a randomly selected axis. Transforms were identically applied to
both inputs and labels of the training data. Both transforms were randomly selected and applied,
with a probability of 0.7. This on-the-fly strategy multiplied the data encountered by the models
during training by 256, without performing any time-consuming MC simulation.

2.1.3 Test Datasets

Three previously used standard benchmarks16 – (B1) a 100×100×100 mm3 homogeneous cube
with a 1 mm voxel size, (B2) same cubic domain with a 40× 40× 40 mm3 cubic absorber and
(B3) same cubic domain with a refractive inclusion were employed to characterize and compare
the performance of various denoising methods. The optical properties for the background medium,
the absorbing and refractive inclusions can be found in Section 3 of our previous work.16 Each of
the benchmarks were simulated with 100 repetitions using different random seeds. Additionally,
the Colin2712, 36 atlas (B4), Digimouse37 atlas (B5) and USC 19.538 atlas (B6) from the Neurode-
velopmental MRI database39 were selected as examples of complex simulation domains to test our
trained MC denoisers.

2.2 Pre-processing of Monte Carlo Data

Many of the reported DL denoising techniques were developed to process natural images of limited
bit-depth that usually do not present the high dynamic range as in MC fluence maps. To allow the
CNNs to better recognize and process unique MC image features and avoid difficulties due to
limited precision, we applied the below transformation to the fluence images before training or
inference

y = t(x) = ln(c× x+1) (1)

where x is the MC fluence map, c is a user-defined constant, and the output y serves as the input
to the CNN. This transformation serves two purposes. First, it compresses the floating-point
fluence values to a limited range while equalizing image features across the domain. Secondly,
it compensates for the exponential decay of light in lossy media and reveals image contracts that
are relevant to the shapes/locations of the inclusions, assisting the CNN to learn the features and
mappings. The addition of 1 in Eq. 1 ensures that t(x) does not contain negative values. An inverse
transform t−1(y′) = (ey′ − 1)/c is applied to the output of the CNN (y′) to undo the effect of this
transform.

Moreover, when training a CNN on 8-bit natural image data, a common practice is to divide the
pixel values by the maximum value possible (i.e., 255) to normalize the data. From our tests,
applying such operation on floating-point fluence maps resulted in unstable training, therefore our
training data were neither quantized nor normalized.

Additionally, due to limited data precision, we noticed that all tested CNN denoisers exhibit re-
duced denoising image quality when processing voxel values (before log-transformation) that are
smaller than an empirical threshold of 0.03. To address this issue and permit a wider input dynamic
range, two separate copies of the fluence maps were denoised during inference – the first copy was
denoised with c set to 1, and the second one with c set to 107. The final image is obtained by
merging both denoised outputs: voxels that originally had fluence value larger than 0.03 retrieve
the denoised values from the first output and the rest are obtained from the second output. This
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variable-gain approach allowed us to process MC fluence images containing both high and low
floating point values.

2.3 A Cascaded MC Denoising Network that Combines DnCNN and UNet Networks

In this work, we designed a cascaded CNN denoiser specifically optimized for denoising our 3-D
MC fluence maps by combining two existing CNN denoisers: a DnCNN denoiser is known to
be effective for removing global or spatially-invariant noise, especially additive white gaussian
noise (AWGN), without any prior information,26 while a UNet denoiser is known to remove local
noise that is spatially-variant.28 Therefore, in our cascaded DnCNN/UNet architecture, referred
to as “Cascade” hereinafter, the CNN first learns the global noise of an MC fluence image and
attempts to remove it. The remaining spatially-variant noise can then be captured and removed
using a UNet. In both stages, the noise is learned in the residual space, meaning that instead of
mapping a noisy input to a clean output directly, the network maps the noisy input to a noise map
and then subtracts it from the input to extract the clean image.
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Fig 3: Overview of the cascaded DnCNN + UNet architecture. Each block in the dashed squares
represents a group of CNN layers that are applied sequentially. The number on the square block
indicates the number of channels for the respective output tensor. Conv3D, TransConv3D, and BN
stand for 3D convolution, 3D transposed convolution, and batch normalization layers, respectively.
PyTorch function log1p(cx) is a stable implementation of function ln(cx+1).

2.4 Denoising Performance Metrics

2.4.1 Global Performance Metrics

The global resemblance between the denoised volume and the ground-truth (in this case, simu-
lations with 109 photons) can be used to measure the performance of a denoiser. A number of
metrics measuring such similarity have been used by others to evaluate image restoration networks
or measure convergence.21, 26, 40, 41 Typically, these metrics are defined for 2-D images; in this
work, we have extended the definitions to apply to 3-D fluence maps.

The most commonly used objective functions for denoising networks are the mean least squared
error (L2) and mean absolute error (L1):

Ln(θ) =
1
K

K

∑
i=1
|F(yi;θ)− xi|n (2)

where K is the number of noisy-clean fluence map pairs sampled from the dataset, referred to
as the “mini-batch” size, θ contains all parameters of the network, F denotes the network itself,
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n is either 1 or 2, and (xi,yi) denotes the i-th noisy-clean pair of data in the mini-batch. These
error metrics are widely used in supervised denoising networks, including DnCNN, DRUNet and
ResMCNet models, as well as several other studies.25, 26, 28, 30, 42 L1 and L2 may have different
convergence properties.40 The L1 loss has gained more popularity in the DL community, due to
it’s good performance and low computational costs.30, 40 For this work, however, to penalize large
errors more, the L2 loss was used instead to train the networks.

In contrast to Ln distances, SSIM43 provides a perceptually-motivated measure that emulates hu-
man visual perception for images. The SSIM for a pixel in an image is be defined as:

SSIM(p) =
2µxµy +C1

µ2
x +µ2

y +C1
×

2σxy +C2

σ2
x +σ2

y +C2
(3)

where µx and σx are the mean and standard deviation of the image x, respectively, and σxy is the
co-variance of images x and y. The statistics are calculated locally by convolving both volumes
with a 2-D Gaussian filter with σG = 5. Small constants C1 and C2 are used to avoid division by
zero. The SSIM value of two images is the average SSIM computed across all pixels, with a value
of 1 suggesting the two images are identical, and a value of 0 suggesting the two images are not
correlated. This definition can also be applied to 3-D fluence maps by using a 3-D Gaussian kernel
to calculate neighborhood statistics.

Another metric, peak signal-to-noise ratio (PSNR), measures the ratio between the maximum
power of a signal and the power of the noise.44 The PSNR for two volumes x and y is expressed
as:

PSNR(x,y) = 20log10

(
Imax√
||x− y||2

)
(4)

Larger PSNR values indicate smaller L2 distances between volumes. The Imax value is the maxi-
mum value a voxel can have in a fluence map after the transformation in Eq. 1. Therefore, in this
work, we set Imax to 40.

2.4.2 Local Performance Metrics

A number of locally (voxel-bound) defined performance metrics have been used in our previous
MC denoising work.16 The SNR of the denoised volumes for each voxel measures the efficacy of
the denoiser of spatially adaptive noise. For a simulation running k photons, we first run multiple
(N = 100) independently-seeded MC simulations and compute SNR in dB with

SNRk(r) = 20log10
µk(r)
σk(r)

(5)

where µk and σk are the mean and standard deviation of voxel values at location r across all
repetitions. The average SNR difference before and after applying the denoising filter, ∆SNR, is
subsequently calculated along selected regions-of-interest.

Our previous work16 suggests that the noise in MC images largely follows the shot-noise model;
therefore, increasing the simulated photon number by a factor of 10 results in∼10 dB improvement
in SNR on average. We have previously proposed a photon number multiplier16 MF to measure
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equivalent acceleration using the average SNR improvement ∆SNR

MF = 10
∆SNR

10 (6)

A ∆SNR = 20 dB gives MF = 100, suggesting that the denoised result is equivalent to a simulation
with 100 times of the originally simulated photon number, thus is equivalent to accelerating the
simulation by a factor of 100 if the denoising run-time is ignored.

2.5 Implementation Details

2.5.1 BM4D and ANLM

Block-matching 4-D collaborative filtering (BM4D) and our GPU-accelerated adaptive non-local
means (ANLM)16 are used as representative state-of-the-art model-based denoisers and used to
compare against CNN based denoisers. For BM4D, a Python interface developed based on the
filter described by Makinen et al.45 was used, whereas for the ANLM filter, a MATLAB function
developed previously by our group16 was used.

2.5.2 CNN Training Details

All CNN denoising networks were re-implemented for handling 3-D data using an open-source
DL framework, PyTorch.46 For most of the studied CNN denoisers, our implementations largely
follow their originally published specifications, while replacing the 2-D layers with their 3-D vari-
ants. Small adjustments were made. For UNet, for example, 3-D batch normalization layers were
introduced in-between the 3-D convolution, the convolution transpose, and the pooling layers to
address the covariance shift problem.47 Additionally, we have simplified ResMCNet by removing
the auxiliary features needed for computer graphics renderings purposes, making the kernel size
of the first layer 3 instead of 7.

All networks in this study were trained for 1,500 epochs on a single NVIDIA DGX node equipped
with 8 NVIDIA A100 GPUs, each with 40 GB of memory and NVLink 2.0 connection. Lever-
aging the PyTorch scaling wrapper, PyTorch Lightning48 was used to simplify the implementation
process. We need high performance hardware since a forward propagation of the CNN for a
64× 64× 64 voxelated volume requires around 6 GB of GPU memory; to use a batch size of 4
per GPU (i.e. processing 4 data pairs in parallel), at least 24 GB of memory is necessary. Further-
more, using all 8 GPUs in parallel combined with the high-speed NVLink connection reduces the
average training time from 10 days (on a single A100 GPU) to 24 hours for each network tested –
the Cascade and DRUNet usually require longer training time compared to those of DnCNN and
UNet.

The networks were all trained using the “Adam with weight decay regularization (AdamW)” op-
timizer,49 with a weight decay of 0.0001 for the parameters in all layers, except for the batch
normalization parameters and bias parameters. The learning rate was scheduled with a “cosine
annealing” learning rate,50 using 1,000 linear warm-up mini-batch iterations to added learning sta-
bility.51 A batch-size of 4 per GPU was selected to maximize the effective use of GPU memory
resources. The base learning rate was set to 0.0001. The gradient clipping value was set to 2 for
batch normalization layers, and 1 for other layers to avoid exploding gradients and faster train-
ing.52 The optimization, data augmentation, and configuration sections the codebase for this work
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were inspired by the open-source PyTorch Connectomics package53 for easier prototyping of the
trained models.

3 Results

3.1 Denoising Performance

In Fig. 4, we visually compare the fluence maps before and after denoising for each tested denosier
and photon number (105 to 108) for 3 standard benchmarks16 (B1, B2 and B3). Table 1 sum-
marizes the global metrics derived from the outputs of each denoiser; computed local metrics
including mean ∆SNR and MF are reported in Table 3. Each entry in both tables is averaged from
100 independently-seeded repeated simulations. In both tables, the best-performing metrics are
highlighted in bold. Similarly, a visual comparison between those from more complex domains,
including Colin27, Digimouse, and USC-19.5 atlases, are shown in Fig. 6 and the corresponding
global metrics are summarized in Table 2. Due to limited space, in Fig. 6, we only show represen-
tative images with 105 and 107 photons, and removed DnCNN and BM4D due to their relatively
poor performances.

From the denoised images shown in Fig. 4, we can first confirm that all CNN based denoisers show
noise-adaptive capability similar to ANLM and BM4D – they apply higher level of smoothing in
noisy areas within low-photon regions, and apply little smoothing in areas with sufficient photon
fluence. From Fig. 4c, we can also observe that all CNN denoisers show edge-preservation ca-
pability, again similar to ANLM and BM4D. Both noise-adaptiveness and edge-preservation are
considered desirable for an MC denoiser.16 Because all CNN networks were trained on images of
64× 64× 64 voxels while all 3 benchmarks shown in Fig. 4 are 100× 100× 100 voxel domains,
these results clearly suggest that our trained networks can be directly applied to image domain
sizes different from the training domain size.

By visually inspecting and comparing the denoised images in Figs. 4 and 6, we observed that
all CNN based methods appear to achieve significantly better results compared to model-based
denoising methods (BM4D and GPU ANLM); such difference is even more pronounced in low-
photon simulations (105 and 106 photons). Although the CNN denoisers were trained on shapes
with less complexity, the images in Fig. 6 indicate that they are clearly capable of denoising novel
structures that are significantly complex, yielding results that are close to the respective ground-
truth images. However, we also observe that the denoiser’s ability to recover fluence maps varies
depending on the photon level in the input data – in areas where photons are sparse, the denoisers
understandably create distortions that deviate from the ground-truth. Nevertheless, these distorted
recovered areas are still significantly better than the input in the same area without denoising.

To confirm that CNN denoisers can produce unbiased images, the means and SNRs from bench-
marks B1, B2 and B3 along the line x = 50 and y = 50 were calculated and plotted in Fig. 5. For
brevity, we only report the results from the Cascade network as representative of all CNN methods
in this plot. These plots confirm that the Cascade method does not alter the mean fluence of the
simulations over the plotted cross section, while providing a consistent SNR improvement across
a wide range of photon numbers. It also demonstrates that the adaptiveness of CNN denoisers,
that SNR improvement starts to decline in areas with high fluence value (thus lower noise due to
shot-noise). The ∼12 dB SNR improvement shown by denoising simulations with 109 photons
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Fig 4: Comparisons between various denoisers in 3 benchmarks: (a) a homogeneous cube, and the
same cube containing inclusions with (b) absorption and (c) refractive-index contrasts.
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Fig 5: Plots of the means (left) and SNRs (right) before (solid) and after denoising using Cascade
network (dotted) and GPU-ANLM (dashed) in 3 benchmarks (a) B1, (b) B2 and (c) B3 along a
cross-section.
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(purple dotted lines over purple solid lines in the SNR plots) indicate that the Cascade denoiser
is capable of further enhancing image quality even it was not trained using simulations with more
than 109 photons. Such SNR improvement is not as high as that reported from low-photon sim-
ulations, yet, it is still significantly higher than the best SNR improvement produced using GPU
ANLM denoiser (dashed lines) of all tested photon numbers.

Our earlier observation that most CNN based denoisers outperform model-based denoisers (GPU
ANLM and BM4D) is also strongly evident by both the global metrics reported in Table 1 and local
metrics reported in Table 3. Among all tested CNN filters, the Cascade network offers the highest
performance in all tests with 105 photons, and comes close to the best performer – ResMCNet –
among the 106 test sets. Among the 107 photon levels, DRUNet is a strong performer, with ResM-
CNet and Cascade coming close or surpassing it in some cases. Among the real-world complex
domain benchmarks shown in Table 2, Cascade reports the best performance in almost all cases
with UNet performing slightly better on USC-195 with 105 photons and ResMCNet giving better
SSIM results.

From Table 3, we can observe that all CNN based denoisers appear to offer a 5-8 fold improve-
ment in SNR enhancement compared to our previously reported model-based GPU ANLM filter;16

our Cascade network reports an overall SNR improvement between 14 to 19 dB across different
benchmarks and photon numbers. This is equivalent to running 25× to 35× more photons in
heterogeneous domains, and nearly 80× more photons for the homogeneous benchmark (B1). In
other words, applying our Cascade network for an MC solution with 105 photons can obtain a
result that is equivalent to running ∼ 2.5×106 photons. In fact, except for DnCNN, the majority
of our tested CNN based denoisers can achieve a similar level of performance.

3.2 Assessing Equivalent Speed-up Enabled by Image Denoising

In Table 4, we report the average runtimes (in seconds) of MC simulation and denoising (i.e.
inference for CNN denoisiers). Each test case runs on a single NVIDIA A100 with 40 GBs of
memory with over 100 trials, and the time needed to transfer data between the host and the GPU
is included. As we mentioned in Section 2.2, to obtain every denoised image, we apply CNN
inference twice to handle high dynamic range in the input data.

Table 3 suggests that on average, about a 20 to 30 photon multiplier (MF ) is to be expected for
most CNN denoisers, meaning the denoised simulations will have 20 to 30 times more photons
than its input. Therefore, our goal is to identify cases where the sum of the runtime of the baseline
MC simulation running on N photons, TMC(N), and that of the denoiser (Tf ) is shorter than an MC
simulation running MF ×N photons, i.e TMC(N)+Tf < TMC(MF ×N). Due to space limitations,
we are unable to list all combinations of simulations that satisfy the above condition. However,
our general observations include 1) the CNN inference runtime is independent of number of sim-
ulated photons, 2) DnCNN is typically faster than other CNN denoisers, but also has the poorest
performance among them from Table 3, 3) the larger the domain size, the longer it takes for CNN
denoisers to run, 4) generally speaking, applying CNN denoisers to simulations with 107 photons
or above can result in significant reduction of total runtime.

In our previous work,16 we had also concluded that 107 photon is a general threshold for GPU-
ANLM to be effective; however, from the runtime data reported here using NVIDIA A100 GPUs,
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Metric Cascade UNet ResMCNet DnCNN
B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3

M
SE

105 0.0031 0.0071 0.0192 0.0050 0.0087 0.0210 0.0066 0.0114 0.0224 0.0121 0.0245 0.0507
106 0.0005 0.0009 0.0036 0.0012 0.0017 0.0047 0.0004 0.0010 0.0028 0.0008 0.0017 0.0044
107 0.0001 0.0002 0.0007 0.0001 0.0003 0.0012 0.0001 0.0002 0.0009 0.0002 0.0003 0.0008

SS
IM

105 0.9472 0.9063 0.8663 0.9194 0.8776 0.8343 0.8741 0.8731 0.8345 0.8154 0.8131 0.7679
106 0.9690 0.9769 0.9670 0.9117 0.9520 0.9541 0.9680 0.9600 0.9472 0.9610 0.9392 0.9174
107 0.9891 0.9839 0.9817 0.9757 0.9580 0.9594 0.9930 0.9893 0.9851 0.9924 0.9876 0.9812

PS
N

R 105 57.1445 53.5681 49.2250 55.0538 52.7036 48.8291 53.8926 51.5285 48.5567 51.2112 48.1769 44.9994
106 65.4709 62.2454 56.5081 61.3193 59.6665 55.2916 65.6337 61.9344 57.5427 62.9706 59.7418 55.6253
107 70.9347 68.5446 63.4404 70.5365 67.4766 61.1240 71.3430 69.4779 62.3238 69.5030 67.9231 62.9773

DRUNet GPU-ANLM BM4D
B1 B2 B3 B1 B2 B3 B1 B2 B3

M
SE

105 0.0105 0.0244 0.0400 0.0830 0.0752 0.1009 0.2223 0.1826 0.4005
106 0.0005 0.0013 0.0037 0.0130 0.0132 0.0163 0.0395 0.0383 0.3475
107 0.0001 0.0002 0.0011 0.0017 0.0018 0.0022 0.0051 0.0056 0.3366

SS
IM

105 0.8223 0.8115 0.7728 0.6745 0.7579 0.7092 0.5676 0.7102 0.5802
106 0.9578 0.9355 0.9227 0.8463 0.8555 0.8304 0.7174 0.7790 0.6130
107 0.9933 0.9877 0.9829 0.9627 0.9521 0.9459 0.8945 0.8862 0.6605

PS
N

R 105 51.8499 48.1884 46.0353 42.8553 43.2828 42.0060 38.5718 39.4263 36.0164
106 65.1219 61.0106 56.3168 50.8978 50.8340 49.9111 46.0782 46.2030 36.6318
107 71.6660 69.6645 61.6879 59.8368 59.4459 58.6816 54.9554 54.5706 36.7706

Table 1: Average global metrics derived from 3 basic benchmarks: (B1) a homogeneous cube, and
the same cube with (B2) an absorption and (B3) refractive index inclusion; each data point was
averaged over 100 repetitions. The best performing models are highlighted in bold.

Metric Cascade UNet ResMCNet DnCNN
B4 B5 B6 B4 B5 B6 B4 B5 B6 B4 B5 B6

M
SE

105 0.0121 0.0701 0.0192 0.0121 0.0741 0.0179 0.0134 0.0878 0.0197 0.0162 0.1314 0.0243
106 0.0019 0.0072 0.0025 0.0020 0.0073 0.0027 0.0022 0.0097 0.0028 0.0022 0.0115 0.0028
107 0.0005 0.0011 0.0007 0.0006 0.0013 0.0007 0.0009 0.0027 0.0011 0.0006 0.0014 0.0007

SS
IM

105 0.9325 0.8893 0.9193 0.9311 0.8884 0.9187 0.9333 0.8795 0.9213 0.9221 0.8676 0.9111
106 0.9699 0.9548 0.9588 0.9668 0.9464 0.9574 0.9670 0.9373 0.9580 0.9608 0.9291 0.9508
107 0.9875 0.9800 0.9825 0.9833 0.9702 0.9807 0.9870 0.9765 0.9825 0.9846 0.9737 0.9791

PS
N

R 105 51.2382 43.5914 49.2199 51.2260 43.3460 49.5335 50.7901 42.6124 49.1071 49.9522 40.8572 48.1905
106 59.3005 53.4987 58.0114 58.9310 53.4007 57.7991 58.5947 52.1780 57.6404 58.5953 51.4205 57.5059
107 64.8770 61.6786 63.8532 64.4113 60.8132 63.6941 62.6247 57.7291 61.8291 64.2162 60.6277 63.5614

DRUNet GPU-ANLM BM4D
B4 B5 B6 B4 B5 B6 B4 B5 B6

M
SE

105 0.0159 0.1246 0.0233 0.0667 0.3393 0.0724 0.0807 0.4070 0.1006
106 0.0023 0.0119 0.0028 0.0407 0.1860 0.0383 0.0187 0.0910 0.0242
107 0.0007 0.0020 0.0007 0.0325 0.1244 0.0283 0.0032 0.0160 0.0044

SS
IM

105 0.9213 0.8747 0.9118 0.8995 0.8379 0.8941 0.8891 0.8298 0.8853
106 0.9583 0.9307 0.9492 0.9290 0.8756 0.9210 0.9134 0.8693 0.9068
107 0.9843 0.9734 0.9792 0.9615 0.9214 0.9542 0.9467 0.9164 0.9377

PS
N

R 105 50.0399 41.0909 48.3797 43.8036 36.7362 43.4453 42.9745 35.9452 42.0139
106 58.5107 51.2805 57.5798 45.9432 39.3454 46.2047 49.3282 42.4529 48.1976
107 63.9421 59.1151 63.7079 46.9164 41.0927 47.5314 56.9748 50.0000 55.6500

Table 2: Average global metrics derived from 3 complex benchmarks: (B4) Colin27, (B5) Digi-
mouse and (B6) USC-195 atlases; each data point was averaged over 100 repetitions. The best
performing models are highlighted in bold.
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Fig 6: Comparisons between various denoisers in 3 complex benchmarks: (a) a Colin27, (b) Digi-
mouse and (c) USC-195 atlases.

GPU-ANLM appears to also benefit simulations with 106 photons, likely due to the high comput-
ing speed of the GPU. Nonetheless, comparing to most tested CNN denoisers, the GPU-ANLM
denoiser offers dramatically less equivalent acceleration despite its fast speed.

Benchmark B1 B2 B3 Colin27(B4) Digimouse(B5) USC 195(B6)
Domain size 100∗100∗100 181∗217∗181 190∗496∗104 166∗209∗223

M
C

(T
M

C
[s

]) 105 0.34 0.34 0.31 0.57 0.54 0.57
106 0.66 0.67 0.44 1.16 0.72 1.07
107 1.93 1.91 1.14 2.76 1.49 2.56
108 10.70 10.72 6.59 13.66 7.26 12.00
109 87.01 87.58 55.65 105.60 58.87 90.36

D
en

oi
si

ng
(T

f[
s]

) Cascade 0.27 2.93 12.08 3.06
UNet 0.11 2.91 12.08 3.07

ResMCNet 0.37 2.77 15.55 3.01
DnCNN 0.19 1.41 8.76 1.50
DRUNet 0.34 2.23 10.27 2.39

GPU-ANLM 0.22 0.55 0.69 0.60
Table 4: Average runtimes (in seconds) for MC forward simulations (TMC) and denoising (Tf )
across all benchmarks, measured on an NVIDIA A100 GPU. The runtimes include memory trans-
fer operations.
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Metric Cascade UNet ResMCNet DnCNN
B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3

∆
SN

R
al

l 105 18.9565 14.4447 14.0396 17.9565 13.8928 12.4257 16.5492 14.0211 13.9645 14.0433 10.1034 10.8670
106 16.1272 15.6349 14.5478 15.3836 15.1638 14.3808 14.8762 14.5573 14.0718 12.6780 11.5296 11.6779
107 14.2469 14.5437 11.9179 13.8348 14.5078 12.2426 12.2592 13.1425 11.2820 11.6208 12.4844 9.8576

∆
SN

R
ef

f 105 19.9450 15.8887 15.0143 18.1420 14.4981 13.3353 16.9265 14.6245 14.4381 15.2666 12.2980 12.1903
106 17.5282 16.9855 15.9910 17.6826 16.8447 16.5500 15.6969 15.3844 14.8730 14.8391 12.8447 13.0727
107 16.1786 16.3347 14.1783 16.3152 16.7415 14.7926 13.3403 14.3993 12.5291 13.0195 14.1350 11.2339

M
F

105 78.6412 27.8272 25.3490 62.4669 24.5064 17.4812 45.1773 25.2412 24.9144 25.3706 10.2409 12.2096
106 40.9940 36.6008 28.4957 34.5430 32.8382 27.4208 30.7341 28.5581 25.5376 18.5268 14.2220 14.7160
107 26.5883 28.4689 15.5521 24.1813 28.2345 16.7595 16.8236 20.6182 13.4338 14.5238 17.7190 9.6774

DRUNet GPU-ANLM BM4D
B1 B2 B3 B1 B2 B3 B1 B2 B3

∆
SN

R
al

l 105 16.7708 11.3500 10.8442 3.4626 1.8360 3.4951 0.3025 0.0764 1.6269
106 17.1190 12.3108 13.3963 3.2328 2.1149 3.3851 -0.1642 -0.7534 1.5810
107 15.4513 14.4728 11.9020 3.7428 2.4283 2.8556 0.5299 -0.3598 2.9538

∆
S N

R
ef

f 105 17.3218 11.7335 11.2324 4.4198 4.0586 4.5701 3.5290 2.1401 5.4370
106 17.6998 12.7275 13.8388 4.5288 3.4911 4.0976 2.7033 3.2510 6.0742
107 16.2252 15.0653 12.4164 4.6025 3.7708 4.1295 4.9978 3.2997 8.5494

M
F

105 47.5423 13.6458 12.1456 2.2195 1.5262 2.2362 1.0721 1.0177 1.4544
106 51.5110 17.0247 21.8590 2.1051 1.6274 2.1803 0.9629 0.8407 1.4391
107 35.0857 28.0079 15.4953 2.3674 1.7492 1.9300 1.1298 0.9205 1.9741

Table 3: Overall average SNR improvements (∆SNRall in dB) and those (∆SNRe f f ) in the effective
region (where ∆SNR > 0.5 dB) as well as the photon number multipliers (MF ) in the 3 basic
benchmarks (B1-B3).

4 Conclusion

In summary, we have developed a framework for applying state-of-the-art DL methods for denois-
ing 3-D images of MC photon simulations in turbid media. A list of supervised CNN denoisers,
including DnCNN, UNet, ResMCNet, and DRUNet, were implemented, extended for processing
3-D data, and tested for denoising MC outputs. In addition, we have developed a customized
cascaded DnCNN/UNet denoiser combing the global-noise removal capability of DnCNN and
local-noise removal capability of UNet. All developed MC denoising networks were trained by
using GPU accelerated MCX simulations of random domains to learn the underlying noise from
MC outputs at a range of photon numbers. A simple yet effective synthetic training data generation
approach was developed to produce complex simulation domains with random inclusions made of
of 3-D polyhedral and ASCII characters with random optical properties and simulation parame-
ters. In addition to following current best practices of contemporary CNN and DL development,
we have also specifically fine-tuned and customized our MC denoisers to better handle the unique
challenges arose in denoising 3-D MC data. For example, to handle the high dynamic range in
MC fluene maps using CNNs, a reversible log-mapping scheme was applied to each volume be-
fore being fed to the models. In addition, we have also applied inference twice and combined the
results to further enhance the dynamic range of the input data. All reported CNN MC denoisers
have been implemented in the Python programming language using the PyTorch framework, with
both source codes and training data freely available to the community as open-source software.

To evaluate the efficacy of these proposed CNN denoisers, we have constructed 6 standard bench-
marks – 3 simple domains and 3 complex ones – from which we have derived and reported both
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global performance metrics (such as SSIM and PSNR) and local performance metrics (such as
∆SNR and MF ). From our results, all tested CNN based denoisers offered significantly improved
image quality compared to model-based image denoisers such as GPU-ANLM and BM4D in this
particular application. Overall, most CNN denoisers provide a 10 to 20 dB SNR improvement
on average, equivalent to running 10 to 100 fold more photons. Among these CNN denoisers,
our proposed Cascade network outperformed most of the state-of-the-art spatial domain denois-
ing architectures and yielded the best image quality for low-photon simulations with 105 and 106

photons. Its performance is on-par or only slightly inferior compared to DRUNet in high-photon
simulations (107 photon) in simple domain tests. For all benchmarks involving real-world complex
domains, the Cascade network yielded the highest global metrics in nearly all tests. In comparison,
some of the most effective model-based image denoisers such as the GPU-ANLM filter we pro-
posed previously16 only yielded 3-4 dB improvement, despite being relatively fast to compute. It
is worth noting that the Cascade network yielded an impressive 80-fold equivalent speedup when
processing low-image-feature simulations such as a homogeneous domain.

From our tests, CNN denoisers demonstrate superior scalalability to input data sizes and input
image qualities. Although our training data were produced on a 64× 64× 64 voxelated space
with relatively simple shapes, all tested CNN denoisers show no difficulty in handling images of
larger sizes or significantly more complex inclusions. Our Cascade network also reported a 12 dB
average SNR improvement when being applied to denoise baseline simulations with 109 photons
– the level of photon number that was used as the “ground-truth” for training. This suggest that
these CNN denoising architectures may not be strictly limited by the quality of the data that they
are trained on.

From our results on runtimes, most CNN denoiser inference (including two passes) time ranges
between less than a second to a dozen seconds, regardless of the input data quality. We concluded
that in order to yield an overall shorter total runtime, applying CNN denoisers to processing MC
images generated from 107 photons or more can generally lead to significantly improved compu-
tational efficiency.

One of the limitations of the current work is the relatively long training time. To train each de-
noising network using our synthetic dataset of 1,500 random domains (each with 5 photon num-
ber levels with multiple rotated views) requires on-average a full day (24 hours) if running on a
high-end 8-GPU server with large-memory NVIDIA A100 GPUs (40 GB memory allows to use a
batch-size of 4 for acceleration). If running on a single GPU node, we anticipate the required train-
ing time is around 10 to 12 days on a single A100 GPU, and even longer for low-memory GPUs.
Experimenting with the number of layers in each model to reduce the number of intermediate ten-
sors while retaining the performance benefits reported in this work, as well as the development of
new and significantly more compact deep-learning based denoisers will be the focus of our future
work. Moreover, some of the training parameters were determined empirically and deserve further
optimization. For example, we trained the networks over 64×64×64 domains. It could be signif-
icantly faster if we can reduce the training data size while still retain the scalability to arbitrarily
sized domains. Additionally, the landscapes of CNN architecture and denoising networks are con-
stantly being updated and improved over the past few years. We can not exhaust all emerging CNN
denoisers and would be happy to extend this work with newer and more effective CNN denoising
architectures in the future.
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To conclude, we strongly believe that investigating high-performance image denoising techniques
offers a new direction for researchers seeking for the next major breakthrough in speed acceleration
for MC simulations. DL and CNN based image denoising techniques have demonstrated impres-
sive capabilities compared to the more traditional model-based denoising methods, and yielded
notable image quality enhancement that is equivalent to running 10 to 50 times more photons,
which can be directly translated to 10 to 50 fold speedup, in most of our tested benchmarks. Our
Cascade denoising network even reported a nearly 80-fold equivalent speedup when denoising ho-
mogeneous domain results – a level of acceleration we were only able to witness when migrating
MC from single-threaded computing to massively parallel hardware over a decade ago.11–13 With
the combination of advanced image processing methods and new simulation techniques, we an-
ticipate MC to play an increasingly important role in today’s biomedical optics data analysis and
instrument development. All software and data generated from this work, including our Python
implementations of various CNN denoisers and scripts to recreate the training/testing datasets, are
freely available to the research community as open-source software and can be downloaded at
http://mcx.space.
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