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Abstract 13 

Quantifying mRNA expression, which is heritable and physiologically inducible, reveals 14 

biologically important networks and pathways underlying complex traits. Here, we quantify 15 

mRNA expression in Fundulus heteroclitus, a small teleost fish, among three populations 16 

acclimated to 12°C and 28°C and relate it to variation in six, complex, physiological traits 17 

(whole animal metabolism (WAM), critical thermal maximum (CTmax), and four substrate 18 

specific cardiac metabolic rates (CaM)). Although 366 heart mRNAs and 528 brain mRNAs had 19 

significant differential expression between the two acclimation temperatures, none of the mRNA 20 

acclimation responses were shared across all three populations in any tissue. Yet, within an 21 

acclimation temperature across all three populations, weighted gene co-expression network 22 

analyses show that mRNA expression patterns explained WAM, CTmax, and CaM trait variation. 23 

These analyses revealed 9 significant heart MEs (first principal component of module 24 

expression) and 4 significant brain MEs. Heart MEs explained variation in WAM, CTmax, and 25 

two of the four substrate specific cardiac metabolic rates at 12°C, and CTmax at 28C. In contrast, 26 

brain MEs explained CTmax and WAM at 28°C but not at 12°C. Combining MEs as multiple 27 

correlations, 82% of variation in WAM at 12°C was explained by four heart MEs, 80% of 28 

variation in fatty-acid CaM at 12°C was explained by three heart MEs, and 72% of variation in 29 

CTmax at 28°C was explained by three brain MEs. These MEs were enriched for Kyoto 30 

Encyclopedia of Genes and Genomes (KEGG) terms related to specific metabolic pathways, 31 

suggesting that they represent biologically relevant pathways. Together these data suggest that 32 

mRNA co-expression explains complex traits; moreover, physiological traits are more reliant on 33 

heart expression at 12°C and brain expression at 28°C.  34 
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Author Summary 35 

Despite an abundance of genomic data, the molecular and genetic underpinnings of 36 

complex traits remain poorly understood. To better understand the molecular basis of complex 37 

traits, we used heart and brain mRNA expression to explain complex traits- physiological 38 

responses to temperature- in individuals collected from three saltmarsh fish (Fundulus 39 

heteroclitus) populations acclimated to 12°C and 28°C. We found that while physiological traits 40 

did not differ among populations, the mRNAs important for acclimation responses were >88% 41 

unique to a single population and differed between heart and brain tissues. We also found tissue 42 

specific co-expressed mRNAs that explain up to 82% of complex traits including whole animal 43 

metabolism, upper thermal tolerance, and substrate specific cardiac metabolism measured at 44 

12°C or 28°C acclimation conditions. Notably, sets of co-expressed mRNAs related to these 45 

traits are enriched for molecular pathways affecting metabolism, giving insight into the 46 

molecular underpinnings of these traits.  47 

Introduction 48 

Many genotype to phenotype mapping approaches such as expression quantitative trait loci 49 

(eQTL) mapping, co-expression network analysis, and functional genomics investigations (i.e., 50 

systems genetics) combine data across biological organization levels among inbred lines and 51 

leverage significant genomic resources (e.g., well annotated genomes and transcriptomes, inbred 52 

lines, gene editing) (1). In several model organisms, these approaches have improved our ability 53 

to dissect complex trait architecture. For example, in fruit flies (Drosophila) variation in 54 

starvation resistance and startle response is explained by mRNA expression and polymorphic 55 

loci (2). In Caenorhabditis elegans, 199 recombinant inbred lines recently were used to identify 56 
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36 loci related to metabolism (3). In Arabidopsis, both segregating and isogenic lines were used 57 

to uncover complex genetic architecture of growth and morphology related traits (4).  58 

In comparison to inbred lines, non-model organisms have more polymorphic alleles and 59 

greater heterozygosity, and thus non-model organism studies can provide a more nuanced 60 

understanding of how natural genetic variation impacts complex phenotypes (5, 6). Furthermore, 61 

non-model organism studies have become even more relevant with increased genomic resource 62 

availability and development of high-throughput approaches to measure behavioral and 63 

physiological traits under realistic ecological conditions (7-10).  64 

Despite these recent advances, the genomic basis of well-studied traits, like metabolism, 65 

remain poorly understood, especially among a diversity of species. This may be largely due to 66 

the highly polygenetic nature of complex traits like metabolism that results in smaller average 67 

effect sizes, thus making it more challenging to detect nucleotide variation associated with 68 

physiological trait variation. Additionally, identifying genotype-to-phenotype associations is 69 

even more challenging when the genetic architecture is both polygenic and redundant because 70 

redundancy allows many small effect genetic polymorphisms associated with phenotypic 71 

variation to differ among environments, individuals, and populations (11-13). Although 72 

elucidating genotype-to-phenotype relationships is challenging for complex redundant polygenic 73 

traits, this knowledge is critical to understand evolutionary processes contributing to phenotypic 74 

variation. 75 

One approach to the challenge of relating genotype to phenotype is to use mRNA 76 

expression, which provides three clear advantages. First, mRNA expression more readily 77 

explains trait variation than nucleotide variation (2, 6) because nucleotide variation is typically 78 

only binary while mRNA expression results from a combination of genetic polymorphisms. 79 
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These genetic polymorphisms collectively effect mRNA expression to provide a continuous trait 80 

distribution, and relating this polygenic continuous trait to more complex physiological traits is 81 

statistically stronger than relating binary nucleotide variation to complex traits. Second, 82 

quantifying mRNA expression is likely to provide more insight into the genetic architecture of 83 

physiological traits than genome wide association studies (GWAS) alone because mRNA 84 

expression provides information for both heritable and plastic responses (6, 14-19). That is, 85 

mRNAs capture multiple genetic effects including gene by environment interactions (GxE) in a 86 

single measure, which is essential when genetic architecture is context dependent (11, 13). 87 

Finally, a greater mechanistic understanding of complex traits is likely using mRNAs because 88 

mRNAs are more often defined genes associated with biochemical or physiological pathways 89 

(e.g., through KEGG or Gene Ontology terms or molecular investigation). For example, mRNA 90 

expression variation across the tree of life explains phenotypes, including toxin response in yeast 91 

(20), flower induction in plants (21), diabetes (22), schizophrenia (23), cardiac metabolism (6), 92 

and many others (14, 24, 25). Overall, an improved mechanistic understanding of traits enables 93 

us to parse redundancy across biological organization levels and elucidate the evolutionary 94 

processes and genetic architectures contributing to phenotypic variation.  95 

Here, we used mRNA expression patterns to identify molecular mechanisms underlying 96 

physiological phenotypes in the small saltmarsh teleost fish, Fundulus heteroclitus, captured 97 

from three wild populations and acclimated to 12°C and 28°C. To identify molecular 98 

mechanisms underlying physiological phenotypes, we quantified heart and brain mRNA 99 

expression among 86 F. heteroclitus individuals for which we had 6 measured physiological 100 

traits: whole animal metabolic rate (WAM), critical thermal maximum (CTmax), and four 101 

substrate specific cardiac metabolic rates (CaM substrates: glucose [Glu], fatty acids [FA], 102 
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lactate+ketones+ethanol [LKA], and endogenous [END]) (26). These traits are heritable and 103 

related to fitness, and CaM traits have been previously explained by mRNA expression variation 104 

(6, 27-31). In these fish, trait-specific acclimation responses to 12°C and 28°C differed.  105 

Specifically, acclimation responses eliminated temperature effects in CaM such that metabolic 106 

rates were the same when assayed at 12°C and 28°C, reduced the temperature effect in WAM to 107 

a small (1.2x) increase at higher temperatures (28°C), and enhanced CTmax by 6°C at higher 108 

temperatures (28°C) (26). Importantly, within an acclimation temperature individuals showed 109 

high trait variation with CVs (standard deviation/mean) for metabolic traits ranging from 22% to 110 

55% (26). Presented here, we show that among these individuals, acclimation induced 111 

differential expression of 366 heart mRNAs and 528 brain mRNAs across all three populations, 112 

yet few differentially expressed mRNAs (one or less) were shared across all three populations. 113 

Within each acclimation temperature, co-expressed mRNA modules were significantly 114 

associated with WAM, CTmax, and CaM. Using Kyoto Encyclopedia of Genes and Genomes 115 

(KEGG) and gene ontology (GO) enrichment, we identify biologically relevant networks among 116 

co-expressed mRNA modules that explain these traits. These data link a simpler molecular 117 

phenotype (mRNA expression) to complex trait variation to enhance our understanding of 118 

biological pathways that affect these traits and may be important for evolutionary adaptation. 119 

Results 120 

F. heteroclitus used in this study were collected from three populations along the central 121 

coast of New Jersey, USA near the Oyster Creek Nuclear Generating Station (OCNGS), which 122 

produces a thermal effluent that locally heats the water. Three populations were sampled: 1) 123 

north reference (N.Ref; 39°52’28.000 N, 74°08’19.000 W), 2) south reference (S.Ref; 124 

39°47’04.000 N, 74°11’07.000 W) and 3) a central site located between the southern and 125 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.19.477029doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.19.477029
http://creativecommons.org/licenses/by/4.0/


 7 

northern reference that is within the OCNGS thermal effluent (TE; 39°48’33.000 N, 126 

74°10’51.000 W). The TE population used here differs by 4°C in habitat temperature from the 127 

two references populations (average summer high tide temperature 28°C N.Ref and S.Ref, and 128 

32°C for TE) but is otherwise ecologically similar (26) with evidence that the TE population has 129 

locally adapted to life near the OCNGS (32). Prior to mRNA analyses for this study, individuals 130 

were acclimated to both 12°C and 28°C, and whole animal metabolic (WAM) and thermal 131 

tolerance traits (CTmax) were measured at both temperatures in all individuals. Next, substrate 132 

specific cardiac traits (CaM) were measured at either 12°C or 28°C (10). Finally, heart and brain 133 

samples were collected at the time of CaM measurements and prepared for mRNA sequencing. 134 

In total 219 individual hearts and brains were collected and used for mRNA sequencing. 135 

Sequencing analysis  136 

mRNA expression was quantified by counting 3’ end reads from two Illumina HiSeq3000 137 

lanes that yielded 10,535 mRNAs among hearts and 10,932 mRNAs among brains after filtering 138 

for 1.5 million reads per sample among hearts, 1 million reads per sample among brains, and at 139 

least 30 counts in 10% of individuals per mRNA with each tissue. In hearts this yielded an 140 

average of 8,224.7 reads per transcript and in brains an average of 6,578.5 reads per transcript. 141 

Sequencing statistics and sample sizes are summarized in Table 1. Using all heart and brain 142 

samples we examined mRNA expression variation using the top 500 most variable mRNAs for 143 

principal component analysis (PCA). While 86% of variance on PC1 clearly split 86 heart and 144 

brain samples into 2 distinct clusters, 25 samples (12 hearts, 13 brains) were clustered with the 145 

wrong tissue and were excluded (Fig. S1). The remaining 86 samples were used for all further 146 

tissue specific analyses. Using only these 86 individuals provides sufficient variation among 147 

individuals to examine the relationships between mRNA expression and physiology, although 148 
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our analyses may be conservative because we removed 25 samples with ambiguous tissue 149 

expression.  150 

Differential expression analysis 151 

Differential expression patterns among populations and acclimation temperatures were 152 

identified using DESeq2 (33). First, to examine population and temperature specific expression 153 

we used model design: (~Population + Acclimation-Temperature + Population*Acclimation-154 

Temperature). This analysis revealed significant Population*Acclimation-Temperature 155 

interactions, suggesting acclimation temperature specific mRNA expression patterns among 156 

populations. Because of the significant interactions, we analyzed individuals acclimated to 12°C 157 

or 28°C separately with model design: ~Population to identify differentially expressed mRNAs 158 

among populations within an acclimation temperature. Similar to other species, there were 159 

significant differentially expressed mRNAs between acclimation temperatures, reflecting 160 

changes in response to environmental temperature ((17, 34, 35), Table S1). Across all 3 161 

populations, hearts had 366 mRNAs (3.5% of total) that were significantly different between the 162 

two acclimation temperatures (FDR <0.05) with equal up and down regulated for 12°C versus 163 

28°C (183 up and 183 down). For brains, 528 mRNAs (4.8% of total) were significantly 164 

differently expressed between the two acclimation temperatures (FDR <0.05) with ~2.5-fold 165 

more down regulated at 28°C relative to 12°C (148 up and 380 down).  166 

While all three populations showed acclimation effects for heart and brain mRNAs, the 167 

affected mRNAs were not shared among all populations (Fig 1). For any single population, 168 

acclimation to 12°C and 28°C had significant mRNAs that were unique to each population 169 

(Table S1). For the 366 significant heart acclimation mRNAs, 94-98% were unique to a single 170 

population, and no acclimation heart mRNAs were shared across all three populations (Fig. 1A, 171 
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C, Table S1). Similarly, for the 528 significant brain acclimation mRNAs, 88-96% were unique 172 

to one population (Fig. 1B, D, Table S1), and only one acclimated brain mRNA was shared 173 

across all populations. These heart and brain population specific mRNA acclimation responses 174 

were significant (chi-squared heart p=1.64x10-10, brain p=2x10-16). Additionally, acclimation 175 

significant mRNAs were unique to either heart or brain with no shared (0 mRNAs) acclimation 176 

response between tissues. This reflected different expression patterns between tissues, previously 177 

identified with PCA analysis (Fig S1).  178 

At each acclimation temperature, populations also had significant expression differences 179 

(Fig. 2, Table S2). Hearts at 12°C and 28°C had 158 or 153 differentially expressed mRNAs 180 

among populations, respectively (Table S2). These represent 1.50% or 1.45% of all expressed 181 

heart mRNAs at 12°C and 28°C, respectively; brains had 242 or 330 differentially expressed 182 

mRNAs among populations at 12°C and 28°C, respectively. These represent 2.21% or 3.02% of 183 

all expressed brain mRNAs at 12°C and 28°C, respectively. None of the population effects were 184 

significant across all three populations (Fig. S3) for any acclimation temperature or tissue.  185 

Importantly, there is an adaptive hypothesis: that the mRNAs in the anthropogenically 186 

warmed population, TE, are uniquely different, where TE is significantly different from both 187 

northern and southern reference populations with no significant differences between the 188 

references (17, 36). For heart mRNAs at 12°C there are 10 mRNAs (6.33% of significant 189 

mRNAs), and at 28°C there are 3 mRNAs (1.96%) where the TE population is uniquely different 190 

from both references (Fig S3, Table S2). For brain mRNAs at 12°C there are 11 mRNAs (4.55% 191 

of all significant mRNAs), and at 28°C there are 27 mRNAs (8.18%) where the TE population is 192 

uniquely different from both reference populations. While the overall frequency of differentially 193 

expressed genes is small (1.45% to 3.02% vs. total 10K mRNAs), the pattern where the TE 194 
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population is different from both northern and southern reference populations but the two 195 

reference populations are not different is indicative of adaptation.   196 

Variation in mRNA expression 197 

In addition to differential expression analysis, we were interested in the degree of mRNA 198 

expression variance. Previously, we found that variation in WAM, CTmax, and substrate specific 199 

CaM was greater at 12°C than at 28°C. To determine if this was also true for mRNA expression, 200 

we quantified each mRNA’s coefficient of variation (CV, standard deviation/mean*100%) at 201 

12°C and 28°C.  For both heart and brain tissue there was greater average CV across all mRNAs 202 

at 12°C than at 28°C (T-test, heart p= 9.587e-05, brain p= 0.02014), similar to our findings of 203 

greater variation in physiological traits measured at 12°C.  204 

Weighted gene co-expression network analysis 205 

We used weighted gene co-expression network analysis (WGCNA, (37)) to detect co-206 

expressed mRNA clusters. WGCNA approaches group mRNAs with similar expression patterns 207 

into independent modules. Expression patterns for all mRNAs within a module were then 208 

summarized into principal components called module eigengenes (MEs, Table 2 for heart 209 

mRNAs and Table 4 for brain mRNAs), and these MEs were correlated to each of the six 210 

physiological traits (Table 3 shows significant heart MEs, and Table 5 shows significant brain 211 

MEs). Each ME has a “hub-MM”, the mRNA with the highest correlation to the ME, with MM 212 

being the correlation coefficient (Tables 2 and 4).  213 

MEs were correlated to the body mass residuals for the six traits (WAM, CTmax, and the 214 

four substrate specific CaM). These analyses were done across all three populations because 215 

populations did not have any significant differences among traits. Each of the ME-trait 216 

correlations had a “hub-GS” – the mRNA in the module with the highest correlation to the trait, 217 
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with GS (gene specific) being the correlation coefficient for this single mRNA. Both heart and 218 

brain WGCNA analysis used a minimum module size of 30 mRNAs per module and combined 219 

modules with correlation >75% (see methods). To verify that trait versus ME correlations were 220 

not driven by spurious outliers, we used a jack-knife approach to subsample 90% of individuals 221 

and repeat ME-trait correlations 100 times. Correlations that were significant in at least 70 out of 222 

100 repeated correlations in the same direction (positive or negative correlation coefficient) were 223 

retained for further analysis (see methods).  224 

Heart WGCNA 225 

For heart mRNAs we found 39 co-expression modules with 90 to 554 mRNAs in each 226 

module (Table 2), and these heart MEs (first principal component of co-expressed mRNAs) were 227 

correlated to six physiological traits at each acclimation temperature. There were 12 significant 228 

ME-trait correlations: 9 heart MEs with 5 temperature specific traits (FDR <0.05, Table 3, Fig 3 229 

and 4). Traits correlated with at least one of these 9 heart MEs included: at 12°C WAM, CTmax, 230 

FA CaM, heart mass, LKA CaM, and at 28°C, CTmax (Table 3, Fig. 3, 4). Two of these modules 231 

(ME4_heart, ME5_heart) were correlated with both WAM at 12°C and FA CaM at 12°C, and 232 

one module (ME6_heart) was correlated with both LKA CaM at 12°C and heart mass at 12°C. 233 

WAM at 12°C had the most significant ME correlations (4 total), followed by FA CaM at 12°C 234 

(3 total) and LKA CaM at 12°C (2 total). The other three traits were each correlated with a single 235 

module (Table 3). On average, a single heart module explained 55% of variance for one trait 236 

with a minimum of 48.5% (ME1_heart with CTmax 12°C) and a maximum of 65% (ME6_heart 237 

with LKA 12°C).  238 

For traits that were significantly correlated with more than one ME, a multiple correlation 239 

coefficient was calculated. For WAM at 12°C, the four significant MEs together had a multiple 240 
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correlation coefficient of 82%, the three significant MEs for FA CaM at 12°C had a multiple 241 

correlation coefficient of 79.5%, and the two significant MEs for LKA CaM at 12°C had a 242 

multiple correlation coefficient of 75.5%. All modules correlated with FA CaM at 12°C and 243 

CTmax at 12°C had positive correlation coefficients while all other significant trait versus ME 244 

correlations in hearts had negative correlation coefficients.  245 

Brain WGCNA 246 

Brain mRNAs had 42 total co-expressed modules with 142 to 393 mRNAs per module 247 

(Table 4). There were 6 significant ME-trait correlations (FDR <0.05) that included 4 unique 248 

modules and 4 temperature specific traits (Table 5, Fig. 5): at 12°C, body mass and at 28°C, 249 

CTmax, WAM, and body mass. The trait with the most significant correlations was CTmax at 28°C 250 

(3 significant ME’s), and two of these were also significant with body mass at 28°C 251 

(ME3_brain) or WAM at 28°C (ME4_brain). On average, the correlation coefficient for a brain 252 

ME was 62% with a minimum of 56.8% (ME3_brain with CTmax 28°C) and a maximum of 253 

70.2% (ME4_brain with WAM 28°C). For CTmax at 28°C, which was correlated with three MEs, 254 

the multiple correlation coefficient was 71.7%. All correlations between traits and brain MEs 255 

were negative except for body mass at 28°C.  256 

KEGG and GO Enrichment  257 

Critical thermal maximum enriched terms 258 

MEs were tested for KEGG and GO term enrichment using the complete set of tissue 259 

specific mRNAs as the gene universal or reference set (10,535 for heart, 10,932 for brain; Tables 260 

S3 and S4). For CTmax, all 5 MEs were significantly enriched for KEGG pathways (ME1_heart, 261 

ME2_heart, ME2_brain, ME3_brain, and ME4_brain) and included MAPK signaling, mTOR 262 
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signaling, glyoxylate and dicarboxylate metabolism, insulin signaling pathway, glutathione 263 

metabolism, metabolic pathways, carbon metabolism, and tryptophan metabolism. Enriched GO 264 

terms included regulation of organ growth and cellular stress response in heart and AMP-265 

activated protein kinase (AMPK) activity in brain. Notably, MAPK has been linked to adaptive 266 

cold tolerance (38, 39) and lipid metabolism (40). Additionally, mTOR is involved with energy 267 

homeostasis, has been linked to growth and longevity, and may be sensitive to temperature 268 

variation (41-43). Finally, AMPK induces cellular ATP production in mammals and is important 269 

for thermal stress response in ectotherms (44-46). Furthermore, AMPK phosphorylation in Coho 270 

salmon and rainbow trout hearts has been correlated with exposure above optimum temperatures 271 

(47), suggesting a role of AMPK in fish thermal response. ME for CTmax at 28°C contained 272 

substantial overlap in enriched KEGG pathways related to metabolism with 5 out of 8 terms 273 

enriched in both heart and brain modules. So, although there were different mRNAs in heart and 274 

brain modules correlated with CTmax at 28°C, the KEGG terms related to metabolism were 275 

shared (5 out of 8), suggesting that different mRNAs in heart and brain belonged to similar 276 

pathways impacting CTmax at 28°C.  277 

Metabolic rate enriched terms 278 

Modules significantly correlated with WAM were enriched for KEGG pathways including 279 

oxidative phosphorylation (heart only), glutathione metabolism (brain only), and metabolic 280 

pathways (both heart and brain). In addition, ME3_heart was correlated with FA CaM at 12°C 281 

and enriched for KEGG terms including metabolic pathways, forkhead protein (FoxO) signaling, 282 

and metabolism of NADH derivatives (nicotinate and nicotinamide). Notably, FoxO proteins, 283 

especially FoxO1, are involved in energy homeostasis and may aid in the switch from 284 

carbohydrate (glycolytic) to fatty acid metabolites (48). One module, ME5_heart, was 285 
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significantly correlated with WAM at 12°C and FA CaM at 12°C and contained several KEGG 286 

pathways directly related to fatty acid metabolism as well as known transcription factors like 287 

PPAR that impact metabolic homeostasis by controlling expression of many metabolism related 288 

genes (49). Previously, partial correlation coefficients between FA CaM at 12°C and WAM at 289 

12°C were negatively correlated (26), and similarly ME_5 had opposite correlation coefficients 290 

for these two traits (Table 3, Fig. 3, 4). This correlation between traits and their correlations to 291 

MEs also occur for CTmax and WAM at 28°C (26) and ME4_brain (enriched for glutathione 292 

metabolism and metabolic pathways). This emphasizes the biological relevance of the MEs in 293 

that the same MEs are associated with traits that have significant partial correlations.  294 

Discussion 295 

The role of mRNA expression in acclimation and evolution 296 

For mRNA expression in both tissues, we found significant interactions between 297 

acclimation and population effects: the expression of several hundred mRNAs differed between 298 

acclimation temperatures, but these were not shared among all three populations (Fig. 1); also, 299 

the thermal effluent site (TE) had adaptive patterns different from the two reference sites that 300 

alter mRNA expression, but these differed between acclimation temperatures (Fig, S3).  301 

Previously (26), in these same individuals, acclimation response to 12°C and 28°C affected six 302 

physiological traits (WAM, CTmax, and the four substrate specific CaM). For CTmax, there was an 303 

expected enhancement: higher CTmax in individuals experiencing warmer environments. For 304 

metabolic rates (WAM and CaM), acclimation to 12°C and 28°C mitigated the effect of 305 

temperature (26). Specifically, without physiological acclimation there is an expected ~3-fold 306 

increase in metabolic rates with the 16°C increase in acclimation and assay temperature (i.e., 307 
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with a doubling for every 10°C) (50). Yet, WAM had only ~1.2-fold increase (34) from 12°C to 308 

28°C, and CaM had no significant increase between temperatures (26). Presented here, across all 309 

three populations, acclimation produced significant differential mRNA expression (FDR <0.05) 310 

in hearts (366 mRNAs) and brains (528 mRNAs, (Table S1)). These mRNA expression changes 311 

associated with acclimation responses are similar to prior studies among ectotherms where 312 

transcriptomic response to temperature acclimation enhances thermal performance (34, 35, 39, 313 

51). For example, in three-spine stickleback and other fishes, metabolic enzyme expression and 314 

mitochondrial volume density increase in response to cold acclimation can compensate for 315 

reduced enzyme catalytic rate with decreased temperature (34, 52, 53). Similarly, in eastern 316 

oysters (Crassostrea virginica), among a suite of environmental factors (temperature, pH, 317 

salinity, dissolved oxygen, etc.) temperature was the most important transcriptomic variation 318 

predictor with thermal stress increasing oxidative phosphorylation transcript expression (54). 319 

Even Antarctic fish, which are adapted to extreme cold, show plasticity in metabolic transcripts 320 

with temperature acclimation that impacts whole animal performance (53, 55). 321 

While quantitative gene expression changes are common with acclimation (affecting both 322 

mRNA and proteins (39, 56)), what was surprising was that mRNA acclimation responses were 323 

different among populations—for heart mRNAs, no significant acclimation responses were 324 

shared among all three populations, and for brains only 1 mRNA was shared among the three 325 

populations. Further, 88-98% of significant acclimation responsive mRNAs are unique to each 326 

population. In contrast, the six physiological traits’ acclimation responses were not different 327 

among populations. All populations were subjected to a common environment for a long time (~ 328 

1 year or nearly 30-50% of a fish’s expected life span) with acclimation to the 12°C and 28C.  329 

Thus, the difference in acclimation mRNA response among populations was not due to short-330 
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term physiological effects and may be due to genetic polymorphisms driving acclimation 331 

responses but could also arise by irreversible developmental effects or trans-generational effects. 332 

Regardless of the genetic mechanisms responsible for the divergent mRNA acclimation 333 

responses among populations, these data suggest that multiple different mRNA expression 334 

patterns drive acclimation responses. This conclusion is similar to CaM measurements in Maine 335 

and Georgia populations, where the mRNAs that explain substrate specific metabolism varied 336 

among groups of individuals (6). The observations that plasticity in the six physiological traits 337 

between temperatures are similar among populations, yet mRNA acclimation responses differ 338 

among population, suggest that multiple redundant molecular mechanisms drive temperature 339 

compensation.   340 

There is a single difference among populations for the six physiological traits: endogenous 341 

CaM at 28°C. Yet, populations had significant differences in mRNA expression specific for each 342 

temperature, and none of the population significant mRNAs were shared at 12°C or 28°C (Fig. 343 

S3, Table S2). One pattern, where the anthropogenically warmed TE population was 344 

significantly different from both northern and southern reference populations (not heated by 345 

thermal effluent from nuclear power plant), is indicative of adaptation (17, 32, 36). What differs 346 

here is that we examined mRNA expression that can be affected by DNA polymorphisms and 347 

also influenced by environment (i.e., GxE). Thus, the difference among populations in mRNA 348 

expression are dependent on the thermal environment, and if adaptive, suggest that the different 349 

genetic polymorphisms are responsible for adaptive divergence at different temperatures. This 350 

conclusion is similar to comparison within and among species: adaptive divergence in mRNA 351 

expression is dependent on the thermal environment experienced by individuals (17). For the TE 352 

population, Dayan et al., conclude that there was adaptive divergence based on evolutionarily 353 
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significant DNA polymorphisms (32). We would extend this to suggest that populations have 354 

evolved different mRNA expression patterns that are dependent on the thermal environment but 355 

that, nevertheless, produce similar physiological phenotypes.   356 

Biological relevance of co-expressed mRNAs 357 

WGCNA identified co-expressed mRNA modules, MEs, highly correlated with WAM, 358 

CTmax, FA CaM, LKA CaM, and body and heart mass, depending on the acclimation temperature 359 

(Fig, 3, 4, and 5). The average ME-trait correlation was 0.55 for heart and 0.62 for brains (Table 360 

3 and 5). These MEs, containing 90-554 mRNAs each, contained few (0-10) mRNAs with 361 

significant expression differences among populations. WGCNA has been previously used to 362 

identify mRNA expression networks important for various pathologies including cardiovascular 363 

disease (57, 58), cancers (59-63), and diabetes (58, 64), among others. In non-human organisms, 364 

WGCNA has been used to characterize response to the environment, including heat stress in 365 

turbot (65), carotenoid metabolism in apricot fruit (66), and disease response in corals (67). 366 

Although few studies, to our knowledge, have validated correlations using jack-knife 367 

subsampling to ensure that the correlations were consistent among most individuals and not 368 

driven by a few outliers, these studies similarly identified potentially meaningful correlations 369 

between traits and co-expressed mRNAs. Importantly, in this study, the correlation patterns 370 

between MEs and physiological traits are similar to the correlations among physiological traits. 371 

For example at 12°C, FA CaM  and WAM were negatively correlated (26) and similarly 372 

ME5_heart was significantly correlated with opposite signs with these two traits (i.e., positively 373 

correlated with FA CaM but negatively correlated with WAM, Table 3, Fig. 3, 4). Additionally, 374 

MEs correlated to WAM and CaM were enriched in KEGG metabolic pathways and GO terms 375 
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related to metabolism. These data indicate that modules represent independent, biologically 376 

important mRNA networks. 377 

The biological importance of co-expressed mRNA networks is also supported by their 378 

relation to metabolic processes. Eleven of the 13 significant heart or brain MEs were 379 

significantly enriched for at least one KEGG term, and 6 were significantly enriched for at least 380 

one GO term. KEGG terms mapped to biologically relevant KEGG pathways including 381 

metabolic pathways, mechanistic target of rapamycin (mTOR) signaling, mitogen activated 382 

protein kinase (MAPK) signaling, insulin signaling, and metabolism and biosynthesis of various 383 

macromolecules including glycogen, NADH precursors, amino sugars, and fatty acids (Table S3, 384 

S4). Importantly, 8 out of 11 modules with significantly enriched KEGG terms mapped to at 385 

least one metabolism related KEGG pathway. Yet, we also found several enriched KEGG 386 

pathways and GO terms that were uniquely enriched in only one or few modules and seemingly 387 

unrelated to the correlated trait(s) (e.g., cellular senescence). This could indicate a limited 388 

understanding of the complexity and interconnectedness among biological pathways and how 389 

different pathways affect a diversity of traits, mRNAs that are minimally annotated and missing 390 

relevant pathway involvement, or that mRNA expression impacts biological processes, that 391 

indirectly impact the traits we have measured. The concept that there is a limited understanding 392 

of the interactions among pathways is supported by mitochondrial respiration studies, 393 

specifically concerning the oxidative phosphorylation pathway (OxPhos) (68). When examining 394 

the selectively important nuclear genes effecting OxPhos, none of the genes were among the 97 395 

proteins in the OxPhos pathway; instead, they were in diverse pathways, some of which made 396 

sense (e.g, ADP transport- where ADP is a substrate for OxPhos) (68). Thus, the few MEs 397 
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associated with unexpected pathways may indicate a complexity in physiological traits where 398 

many pathways and the genes in these pathways affect trait variation.  399 

Previously, data from our laboratory demonstrated that natural variation in substrate 400 

specific cardiac metabolism in F. heteroclitus could be explained by cardiac mRNA expression 401 

using microarray data (6). Similar to the WGCNA approach presented here, the first principal 402 

component of mRNA expression from different metabolic pathways (oxidative phosphorylation, 403 

TCA cycle, glycolysis) explained substrate specific CaM among individuals with different 404 

pathways of mRNAs explaining substrate specific metabolisms in different individuals. Here, we 405 

found that mRNA expression explained a similar proportion of substrate specific CaM as 406 

previously reported (~80%) using three MEs to explain a single trait (FA CaM at 12°C).  407 

Few, if any, studies have examined the correlation of co-expressed mRNA with CTmax 408 

(although see (69)). Our analyses found that 341 heart mRNAs in two co-expressed modules and 409 

682 brain mRNAs in three co-expressed modules were associated with CTmax at 12°C or 28°C, 410 

with different MEs at each temperature. Futhermore, heart and brain significant ME for CTmax at 411 

28°C share enriched KEGG pathways, yet do not share any mRNAs, suggesting that different 412 

mRNAs affect a common set of pathways that impact CTmax. These data suggest that CTmax is 413 

polygenic and relies on different mRNAs in different tissues at different temperatures. There is 414 

prior evidence suggesting that CTmax is polygenic: a GBS study covering ~ 0.1% of the genome 415 

found up to 47 single nucleotide polymorphisms (SNPs) that explained 43.4% of variation in 416 

CTmax among F. heteroclitus individuals collected from Georgia, New Jersey, and New 417 

Hampshire, USA (70). Here, a greater proportion of CTmax was explained with mRNA 418 

expression, up to 71.7% with 3 brain MEs. This increase in explained CTmax variance by mRNA 419 

expression is likely due to the combined heritable and physiologically inducible nature of mRNA 420 
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expression. Few (0-10) of the mRNAs in MEs were differentially expressed between 12°C and 421 

28°C, and thus MEs that explained CTmax variation within each of acclimation temperatures are 422 

not due to acclimation effects on mRNA expression. Instead, the CTmax variation within each 423 

acclimation temperature appears to be due to individual variation in mRNA expression, which 424 

may be explained by nucleotide variation driving differential expression. 425 

Whole animal metabolism, WAM, is a fundamental physiological process that defines how 426 

animals live, niche space, evolutionary transition, and the human condition (71-75).  There is 427 

significant literature investigating metabolic rate variation (e.g. (31, 76, 77)); however, the 428 

relationship between metabolic rate and mRNA expression remains poorly understood. This may 429 

be due to the complex nature of whole animal metabolism, which is a sum of tissue specific 430 

metabolic demands and a balance between growth, maintenance, and energy storage. Yet, we 431 

find 82% of 12°C WAM variation related to four heart MEs with 736 mRNAs and 50% of 28°C 432 

WAM variation related to one brain ME with 142 mRNAs. These data indicate that a large 433 

proportion of WAM can be explained by mRNAs within a common pathway impacting cardiac 434 

metabolic processes and thus provides insight into the physiological relationship between 435 

cardiorespiratory performance and overall metabolism (78-81). 436 

These WGCNA analyses suggest that many mRNAs in several biochemical pathways 437 

define the physiological state among individuals. Yet, the careful reader will note two substantial 438 

complexities: 1) heart MEs explain the variation in many physiological traits at 12°C but few at 439 

28°C, and brain MEs explain the variation in many physiological traits at 28°C but few at 12°C 440 

and 2) mRNAs within MEs are enriched for many diverse and unexpected pathways as discussed 441 

above.  442 
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The difference between tissue specific MEs and their association with physiological traits 443 

is related to CaM, WAM, and CTmax having higher inter-individual variation at 12°C than 28°C, 444 

and similarly there is greater mRNA expression variation at 12°C than at 28°C. Thus, the more 445 

frequent explanation of physiological traits by 12°C mRNA expression may simply result from 446 

greater statistical power due to the greater variance in both physiological traits and mRNA. Yet, 447 

in brains, mRNAs explain WAM and CTmax at 28°C. While we can only speculate, these data 448 

suggest that at the higher temperature brain mRNA expression is more important than cardiac 449 

mRNA expression. There is evidence that acclimatory response to temperature in brain is greater 450 

than in hearts (more acclimatory mRNAs and greater decreased mitochondrial function in brain 451 

when compared to heart tissue (82)). This is similar to our data: brains at 28°C have more 452 

acclimation responsive mRNAs than hearts, and more population divergence than brains at 12°C 453 

or hearts at either temperature. Together these data suggest that the variation in WAM and 454 

CTmax are more dependent on brain specific expression at 28°C.  455 

Many of MEs are associated with KEGG pathways that impinge on metabolic processes.  456 

Physiological processes are within 9 heart MEs and 4 brain MEs (Tables 2 and 4), and these ME 457 

each contain 90-554 mRNAs. Each of these MEs is significantly enriched for multiple KEGG 458 

and GO pathways (Tables S3 and S4), including pathways not typically thought to be directly 459 

involved in metabolism or thermal tolerance. Similar to nuclear genes that impact Fundulus 460 

mitochondrial respiration (68), these data suggest that many metabolically distant genes affect 461 

physiological variation. This is important because too often publications have “just so stories” (a 462 

la (83, 84)) that only focus on a few preconceived genes to explain functional physiological 463 

variation (85). While it is understandable to highlight a prior expectation, doing so limits our 464 

understanding of how genotypes effect phenotypes.  465 
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In summary, the data provided here build on previous findings that inter-individual mRNA 466 

expression variation is biologically important by identifying that 1) mRNAs important for 467 

acclimation are population specific, 2) divergence among geographically close populations does 468 

not include acclimation responsive mRNAs, and 3) mRNA expression associated with 469 

physiological traits is tissue specific and dependent on the thermal environment. We highlight 470 

that biologically important mRNA networks are related to 48-82% of variation in whole animal 471 

metabolism thermal tolerance, or substrate specific cardiac metabolism and are different at 472 

different thermal environments. This suggests that mRNA variation among individuals within 473 

and among populations is important for explaining complex trait variation and, surprisingly, that 474 

while similar pathways can be important at different temperatures, the tissues where they are 475 

expressed differ: heart mRNA expression explains variation in more traits at 12°C, and brain 476 

mRNA explains variation in more traits at 28°C.  477 

Methods 478 

Animal care and use 479 

Fish were collected in live traps in September 2018 at three sites in central New Jersey, 480 

USA near the Oyster Creek Nuclear generating station (OCNGS). Sites included one north 481 

reference (N.Ref; 39°52’28.000 N, 74°08’19.000 W), one south reference (S.Ref; 39°47’04.000 482 

N, 74°11’07.000 W), and a central site located within the thermal effluent of the OCNGS (TE; 483 

39°48’33.000 N, 74°10’51.000 W). All fish were transferred live to the University of Miami, FL 484 

where they were kept in accordance with the University of Miami Institutional Animal Care and 485 

Use Committee (IACUC) guidelines.  486 
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Individuals from all three populations were common gardened to 20°C for three months 487 

(12:12 light dark cycle) and kept at 20°C in a common recirculating seawater system (15ppt) at 488 

12 hours light:12 hours dark, then subjected to pseudo-winter for 6 weeks at 8°C (8:16 light dark 489 

cycle).  Following the pseudo-winter, half of the fish from each population were acclimated to 490 

12°C and the other half to 28°C (16:8 light dark cycle) for four weeks prior to determination of 491 

WAM and CTmax. Following this acclimation, fish originally acclimated to 12°C were acclimated 492 

to 28°C and vice versa for at least four weeks, and WAM and CTmax were measured at the new 493 

acclimation temperature. After a minimum one-week recovery period post- CTmax, fish were 494 

sacrificed, substrate specific CaM was measured at the second acclimation temperature, and 495 

mRNA was isolated. Thus, WAM and CTmax were measured in all individuals at 12°C and 28°C, 496 

but CaM and mRNA were sampled from half the individuals acclimated at 12°C and the other 497 

half at 28°C. 498 

 499 

Quantifying metabolic and thermal tolerance traits 500 

Individuals acclimated to 12°C and 28°C for at least 4 weeks were measured for whole 501 

animal metabolic rate (overnight intermittent flow respirometry) with a minimum of 20 replicate 502 

metabolic rate measures per individual used to determine the standard metabolic rate (SMR) in 503 

mgO2 hr-1 (7). Critical thermal maximum (CTmax) was measured in a 10-gallon tank that was 504 

slowly heated at a rate of 0.3°C min-1 as in (86) and was defined as the point when fish lost 505 

equilibrium in the water column for 5 consecutive seconds. Finally, substrate specific cardiac 506 

metabolic rate (CaM, substrates: 5mM glucose, fatty acids – 1 mM Palmitic acid conjugated to 507 

fatty-acid-free bovine serum albumin, lactate+ketones+ethanol – 5 mM lactate, 5 mM 508 

hydroxybutyrate, 5 mM ethyl acetoacetate, 0.1% ethanol, endogenous – substrate free Ringers 509 
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media) was measured using micro-respirometry. Heart ventricles were dissected out and splaying 510 

in Ringers media before being transferred to a custom 1mL chamber system (10). Each heart was 511 

measured for glucose (GLU), then fatty acids (FA), followed by lactate+ketones+ethanol (LKA), 512 

and endogenous (END) cardiac metabolic rate. All substrates except GLU used non-reversible 513 

glycolytic enzyme inhibitors, so the order of substrates did not differ among hearts. Each heart 514 

was measured for 6 minutes per substrate with the last 3 minutes used to calculated oxygen 515 

consumption in pmolO2 sec-1. All respirometry measurements used Presens fiber optic oxygen 516 

sensors with flow through cells (WAM) or sensor spots (CaM). Both WAM and CaM were 517 

measured at both acclimation temperatures (12°C and 28°C) for the same individuals, and CaM 518 

was measured at a single acclimation temperature. For additional methods and analysis of 519 

physiological data see (26). 520 

mRNA library preparation and sequencing 521 

Tissues for mRNA expression were stored in chaotropic buffer at the time of CaM 522 

measurement and captured gene expression variation due to long term temperature acclimation 523 

rather than heat shock or acute temperature response (e.g., resulting from higher temperatures 524 

during CTmax measurements) because CTmax measurements were performed at least a week prior 525 

to tissue isolation. We extracted total RNA from homogenized heart and brain tissues using 526 

phenol-chloroform isoamyl alcohol isolation and treated RNA samples with DNAse to remove 527 

genomic DNA. For each sample we started with 50ng of RNA and captured the 3’ mRNA ends 528 

using an NVdT primer with a poly-A tail for first strand cDNA synthesis (Table S5). This primer 529 

contained a unique barcode for each sample (1-96), which allowed all samples in a single plate to 530 

be pooled for the remaining library preparation steps. Nick translation was used to make double 531 

stranded cDNA that was digested with an in-house purified Tn5 transposase (as in (87)) loaded 532 
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with partial adapter sequences to generate fragments of double stranded cDNA ranging from 533 

~300-800bp (Table S6). Libraries were amplified for 17 PCR cycles using primers 534 

complimentary to the inserted partial adapter sequence and a plate level barcode to fully 535 

multiplex samples. 536 

mRNA data processing and analysis 537 

A total of 219 libraries (110 individuals, 2 tissues per individual, 1 individual only heart 538 

was collected) were pooled and sequenced on 2 lanes of Illumina HiSeq4000 (dual end 150bp 539 

reads) at the Genewiz LCC facility, South Plainfield NJ, USA. Raw reads were trimmed with 540 

BBDuk (from BBMap v. 38.87) to remove adapter sequences, aligned with STAR (v. 2.7.5) to 541 

the Fundulus heteroclitus genome, and counted with Featurecounts (v. 1.4.6-p5, parameters: -T 4 542 

-s 2  -t gene -g gene_id).   543 

The raw counts table was imported into R Studio (v. 1.4.1106) and all counts were 544 

normalized for library size using the median ratio method (88) with the “estimateSizeFactors” 545 

function in DESeq2 (33). Samples with a minimum of 1.5 million reads for hearts or 1 million 546 

reads for brains were retained and filtered to keep only mRNAs with at least 30 counts in 10% of 547 

individuals. Principal component analysis (PCA) using “plotPCA” function from the DESeq2 548 

package was used to examine variation among all samples. Among all samples, the 500 most 549 

variable mRNAs were used for PCA. In this analysis, 12 hearts and 13 brains were removed as 550 

outliers because they differed in expression from other same-tissue samples (i.e., some hearts had 551 

“brain-like” expression patterns and vice versa, Fig. S1). This reduced variation within a tissue 552 

and reduced sample size; however, the individuals removed were not from a single acclimation 553 

temperature or population so likely had little overall impact on further analyses. In a separate 554 

tissue specific principal component analysis, clustering of samples by biological effects 555 
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including sex, habitat temperature, population, acclimation temperature, and date of tissue 556 

collection (possible batch effect) was examined. Batch effects did not split individuals along any 557 

of the principal components examined (PC1-PC4) for heart or brain. In this separate analysis, 558 

heart PC1 accounted for 18%, heart PC2 for 7%, brain PC1 for 11%, and brain PC2 for 7% of 559 

the variation among individuals. No biologically relevant clustering was detected among the first 560 

4 principal components for either tissue (chi-squared test p>0.05, Fig. S2A, B). To determine the 561 

degree of variation in mRNA expression among groups within a tissue, the coefficient of 562 

variation (CV, standard deviation/mean) for each expressed mRNA was calculated and the 563 

average CV compared among groups.  564 

Differential expression analysis 565 

DESeq2 (33) package in R was used for differential expression analysis separately for 566 

heart and brain. To identify differentially expressed mRNAs between acclimation temperatures 567 

within populations, the DESeq model used was: ~Population + Acclimation_Temperature + 568 

Population*Acclimation_Temperature. Additionally, due to significant interaction between 569 

population and acclimation temperature, a separate analysis was used to find differentially 570 

expressed mRNAs among populations within an acclimation temperature; individuals measured 571 

for CaM only at 12°C or 28°C were used with DESeq model: ~Population. Multiple test 572 

correction across all comparisons made within a model used the Benjamin Hochberg false 573 

discovery rate with a significance threshold of 0.05.  574 

Weighted gene co-expression network analysis 575 

To identify sets of co-expressed mRNAs, weighted gene co-expression network analysis 576 

(WGCNA, (37)) was completed for heart and brain separately. Network calculation, used to 577 

group mRNAs into co-expressed modules, for heart and brain, used soft thresholding to generate 578 
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a scale free network with high similarity (soft thresholding power set to 5 in heart, 4 in brain) 579 

before calculating the topological overlap measure (TOM) and using dynamicTree with 580 

minimum module size of 30 and threshold for module merging of 0.75. The first principal 581 

component of each independent module (below the threshold for module merging), known as the 582 

module eigengene (ME), was then correlated with temperature specific quantitative traits using 583 

signed Pearson’s correlation. Multiple test correction across all correlations made for a single 584 

trait used the Benjamin Hochberg false discovery rate with a significance threshold of 0.05. To 585 

remove significant correlations potentially driven by outliers, a jack-knife approach was used to 586 

subsample 90% of individuals and repeat the signed Pearson correlation analysis 100 times. 587 

Correlations that were significant in >70 out of 100 subsamples in the same direction were robust 588 

to outliers and reported as significant. A multivariate correlation coefficient was calculated for 589 

traits significantly correlated with more than one module by correlating the fitted values from a 590 

linear model with formula: trait~ME1+ME2..ME# with trait data. This multivariate correlation 591 

coefficient represents the ability of the MEs together to accurately predict the trait. For 592 

significant modules, the mRNAs with the highest module membership (MM, correlation between 593 

mRNA expression and module eigengene) and the highest gene significance for a given trait 594 

within a module (GS, correlation between mRNA expression and a given quantitative trait) were 595 

also identified.  596 

Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Enrichment 597 

To identify biologically important networks within WGCNA modules that were 598 

significantly correlated with at least 1 trait, we used Kyoto Encyclopedia of Genes and Genomes 599 

(KEGG) pathway and gene ontology (GO) enrichment analyses. First, the genome was mapped 600 

to KEGG and GO terms using eggNOG mapper (89) with default parameters. The KEGG and 601 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.19.477029doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.19.477029
http://creativecommons.org/licenses/by/4.0/


 28 

GO terms were then matched to the set of expressed mRNAs for heart and brain. The list of 602 

mRNAs in each module was compared to the set of expressed mRNAs (set as the reference or 603 

gene universe) in each tissue for enrichment analysis in R using the clusterProfiler package 604 

“enricher” function for KEGG terms (90). To map enriched KEGG terms to KEGG pathways, 605 

the KEGG Mapper online tool was used with annotations from the closest relative, zebrafish 606 

(Danio rerio) (91, 92). Cytoscape BiNGO was used for GO enrichment using the set of 607 

expressed mRNAs as the reference to examined enrichment of biological process, molecular 608 

function, and cellular component GO terms (93). Significant KEGG and GO terms are reported 609 

with FDR p-value threshold of 0.05. 610 

Data Availability 611 

All sequence data is available in NCBI SRA: 612 

https://dataview.ncbi.nlm.nih.gov/object/PRJNA796010?reviewer=f1u5dbo46558lklv8m2cknap613 

87 (public DOI available upon publication). All physiological data is available in Dryad: 614 

https://doi.org/10.5061/dryad.0gb5mkm0w . Code for processing of raw sequence files and all 615 

data analysis and visualization conducted in R is available in Github: 616 

https://github.com/mxd1288/OCNJ_F18_RNA.git .  617 
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Tables and Figures  627 

Table 1: Sequencing statistics. Sequencing statistics and sample size distribution among tissues, 

acclimation temperatures, and populations. 

Heart Tissue 
Sequencing 

Statistics 
  

Acclimation 

Temperature 
Population 

Sample 

Size 

Total N 41   12°C N.Ref 4 

Total mRNAs 10,535     TE 6 

Average reads per mRNA 8,224.70     S.Ref 9 

Minimum reads per individual 1.5 million   28°C N.Ref 4 

Average reads per individual 2.17 million     TE 8 

        S.Ref 10 

            

Brain Tissue 
Sequencing 

Statistics 
  

Acclimation 

Temperature 
Population 

Sample 

Size 

Total N 45   12°C N.Ref 9 

Total mRNAs 10,932     TE 11 

Average reads per mRNA 6578.5     S.Ref 8 

Minimum reads per individual 1 million   28°C N.Ref 5 

Average reads per individual 1.74 million     TE 6 

        S.Ref 6 

 628 
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Table 2: Heart Significant Modules. Columns include: Module = identifier for module eigengene 

(ME, first principal component of module), KEGG Pathway = top KEGG pathway determined by 

number of KEGG terms, Module Size = number of mRNAs in the module, Hub MM = mRNA with 

highest correlation with module eigengene, MM = correlation of hub mRNA with module eigengene, 

Positive MM = proportion of mRNAs with positive MM in the module, KEGG Terms in Pathway =  

enriched KEGG terms in the listed KEGG pathway. *Indicates modules where more than one KEGG 

Pathway had the same number of enriched KEGG terms, in which case the most informative KEGG 

pathway was selected. 

Module KEGG Pathway 
Module 

Size 
Hub MM MM 

Positive 

MM 

KEGG 

Terms in 

Pathway 

 

ME1_heart 
MAPK signaling 

pathway* 
194 SAC3D1 0.51 74.70% 

K04459  

K20216    
ME2_heart Endocytosis* 147 NCKAP5L 0.52 31.30% K12471    
ME3_heart 

FoxO signaling 

pathway* 
281 CLMPB 0.53 23.80% K11411    

ME4_heart RNA degradation 168 TRAFD1 0.49 32.10% K03681   

ME5_heart 
Metabolic 

pathways 
336 LOC105935504 0.39 30.90% 

K00166  

K00232  

K03844  

K05546  

  

ME6_heart NA 554 WNT5B 0.65 34.10% NA   
ME7_heart NA 454 MOSPD2 0.57 30.60% NA   

ME8_heart 
Oxidative 

phosphorylation* 
142 TXLNA 0.45 32.40% K0393   

ME9_heart Ribosome* 90 YIF1B 0.54 66.70% K02899    
 630 
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Table 3: Heart Significant Module Trait Correlations. Significant heart ME correlations with FDR 

p<0.05. Columns include: Trait = traits significantly correlated with a given ME (critical thermal maximum: 

CTmax, whole animal metabolic rate: WAM, cardiac metabolic rate: CaM with substrates fatty acids = FA, 

lactate+ketones+ethanol = LKA), Module = identifier for module eigengene (ME, first principal component 

of module), Correl coef = Pearson’s signed correlation coefficient for trait and ME, FDR P-value = multiple 

test corrected p-value for trait versus module correlation, Hub GS = mRNA with highest gene significance 

for the trait in the module, GS = gene significance, correlation between top module mRNA and trait, 

Positive GS = proportion of mRNAs in the module that are positively correlated with trait.  

Trait Module Correl coef 
FDR  

P-value 
Hub GS GS Positive GS 

CTMax 

12°C 
ME1_heart 0.49 2.10E-02 GPM6AA -0.51 54.60% 

CTMax 

28°C 
ME2_heart -0.53 9.50E-03 NCKAP5L -0.50 35.30% 

FA 12°C ME3_heart 0.50 1.02E-02 PDCD4A 0.55 65.80% 

FA 12°C ME4_heart 0.53 4.82E-03 RSRC1 -0.58 13.10% 

FA 12°C ME5_heart 0.55 4.82E-03 RPL5A 0.62 81.80% 

heart mass 

12°C 
ME6_heart -0.57 1.80E-03 WRAP53 0.72 48.20% 

LKA 12°C ME6_heart -0.65 3.39E-05 LOC118563371 0.80 46.90% 

LKA 12°C ME7_heart -0.56 1.29E-03 LOC105934375 0.80 44.70% 

WAM 12°C ME8_heart -0.56 1.20E-03 LOC118563115 0.70 36.60% 

WAM 12°C ME9_heart -0.55 1.20E-03 LRRC58B -0.56 10.00% 

WAM 12°C ME4_heart -0.54 1.74E-03 LOC118563570 0.61 65.50% 

WAM 12°C ME5_heart -0.56 1.20E-03 HPRT1L 0.66 40.50% 

  AVERAGE 0.55         

 632 
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Table 4: Brain Significant Modules. Columns include: Module = identifier for module eigengene 

(ME, first principal component of module), KEGG Pathway = top KEGG pathway determined by 

number of KEGG terms, Module Size = number of mRNAs in the module, Hub MM = mRNA with 

highest correlation with module eigengene, MM = correlation of hub mRNA with module eigengene, 

Positive MM = proportion of mRNAs with positive MM in the module, KEGG Terms in Pathway = 

enriched KEGG terms in the listed KEGG pathway.  

Module KEGG Pathway 
Module 

Size 
Hub MM MM 

Positive 

MM 

KEGG 

Terms in 

Pathway 

ME1_brain Metabolic pathways 393 IDH3B 0.47 26.40% 

K00323  

K01443  

K10106  

K19006  

ME2_brain Tight junction 198 LOC105921153 0.52 28.20% 

K07198  

K08018  

K08020  

ME3_brain Lysosome 342 LRCH3 0.58 25.10% 
K01134  

K08568  

ME4_brain RNA degradation* 142 
SI:CH211-

244C8.4 
0.36 21.10% K03681  

 634 

Table 5: Brain Significant Module Trait Correlations. Significant brain versus ME correlations with 

FDR p<0.05. Columns include: Trait = traits significantly correlated with a given ME (critical thermal 

maximum: CTmax, whole animal metabolic rate: WAM), Module = identifier for module eigengene 

(ME, first principal component of module), Correl coef = Pearson’s signed correlation coefficient for 

trait and ME, FDR P-value = multiple test corrected p-value for trait versus module correlation, Hub 

GS = mRNA with highest gene significance for the trait in the module, GS = gene significance, 

correlation between top module mRNA and trait, Positive GS = proportion of mRNAs in the module 

that are positively correlated with trait. 

Trait Module Correl coef 
FDR 

P-value 
Hub GS GS 

Positive 

GS 

body mass 12°C ME1_brain -0.60 5.75E-04 MAP3K5 0.61 44.80% 

body mass 28°C ME3_brain 0.58 1.46E-03 LOC105919139 0.63 68.70% 

CTmax 28°C ME2_brain -0.60 2.01E-04 CIAO2B 0.36 44.90% 

CTmax 28°C ME3_brain -0.57 4.83E-04 RAD17 0.64 83.90% 

CTmax 28°C ME4_brain -0.67 2.38E-05 APOC1 -0.65 48.60% 

WAM 28°C ME4_brain -0.70 3.15E-06 APOC1 -0.68 50.00% 

  AVERAGE 0.62         

 635 
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  636 

 
Figure 1: Population and tissue specific transcriptomic response to acclimation temperature. 

Number of differentially expressed mRNAs (DEGs) within each population between 12°C and 28°C 

acclimated hearts (A and C) and 12°C and 28°C acclimated brains (B and D). For both heart and 

brain, populations had many unique DEGs (C and D, upregulated=black, downregulated=grey) that 

were differentially expressed between acclimation temperatures and few shared DEGs (C and D, 

shared=white), with only 1 DEG shared among all three populations for brain (LOC118561484 in 

brains). Population and number of DEGs are not independent, Chi-Squared test, heart p=1.64x10-10, 

brain p=2x10-16. 
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 637 

 

 
Figure 2: Temperature specific differential mRNA expression among populations. A) Differential 

expression for 158 heart mRNAs and B) 242 brain mRNAs between any two populations at 12°C. In 

hearts, 43.0% of mRNAs (68/158) are shared among any two population comparisons. In brains, 

32.2% of mRNAs (78/242) are shared among any two population comparisons. 
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 638 

 
Figure 3: Significant cardiac metabolism-heart module correlations from weighted gene co-

expression network analysis. Significant correlation of fatty acid cardiac metabolic rate at 12°C 

(N=16) with ME3_heart (A), ME4_heart (B), and ME5_heart (C). Significant correlation of lactate, 

ketone, and alcohol (LKA) cardiac metabolic rate at 12°C (N=19) with ME6_heart (D) and 

ME7_heart (E). Pearson correlation coefficients (Cor) and FDR p-values are displayed for each 

significant correlation.  
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 639 

640 

 
Figure 4: Significant whole animal trait-heart module correlations from weighted gene co-

expression network analysis. Significant correlation of critical thermal maximum at 12°C (N=17) 

with ME1_heart (A), critical thermal maximum at 28°C (N=19) with ME2_heart (B), whole animal 

metabolic rate at 12°C (N=16) with ME8_heart (C), ME9_heart (D) ME4_heart (E), and ME5_heart 

(F). Pearson correlation coefficients (Cor) and FDR p-values are displayed for each significant 

correlation. 
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 641 

 

Figure 5: Significant whole animal trait-brain module correlations from weighted gene co-

expression network analysis. Significant correlation of critical thermal maximum at 28°C (N=17) 

with ME3_brain (A), ME4_brain (B), and ME2_brain (C). Significant correlation of whole animal 

metabolic rate at 28°C (N=16) with ME4_brain (D). Pearson correlation coefficients (Cor) and FDR 

p-values are displayed for each significant correlation. 
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Supplemental Figures 642 

 643 

 644 

 

 

Figure S1: Principal component analysis of all samples. Principal component 1 split heart and brain 

tissue and explained 86% of variance. Individuals who did not clearly group with the appropriate 

tissue were removed as outliers. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.19.477029doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.19.477029
http://creativecommons.org/licenses/by/4.0/


 39 

 645 

 646 

 

 
Figure S2: Tissue specific principal component analysis. Heart (N=41, A) first two principal 

components explain 19% and 7% of variance. Brain (N=45, B) first two principal components explain 

11% and 7% of variance. Triangles are 28°C acclimated individuals, circles are 12°C. Individuals 

from the north reference (N.Ref) are blue, south reference (S.Ref) are purple, and thermal effluent 

population (TE) are red.  
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  648 

 

 
Figure S3: Differentially expressed mRNAs among populations within tissue and acclimation 

temperature. A) Heart at 12°C, B) brain at 12°C, C) heart at 28°C, D) brain at 28°C. Populations are north 

reference (N.Ref), south reference (S.Ref), and thermal effluent (TE).  
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