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Abstract 

Humans’ extraordinary ability to understand speech in noise relies on multiple processes that 

develop with age. Using magnetoencephalography (MEG), we characterize the underlying 

neuromaturational basis by quantifying how cortical oscillations in 144 participants (aged 5 to 

27 years) track phrasal and syllabic structures in connected speech mixed with different types 

of noise. While the extraction of prosodic cues from clear speech was stable during 

development, its maintenance in a multi-talker background matured rapidly up to age 9 and 

was associated with speech comprehension. Furthermore, while the extraction of subtler 

information provided by syllables matured at age 9, its maintenance in noisy backgrounds 

progressively matured until adulthood. Altogether, these results highlight distinct behaviorally 

relevant maturational trajectories for the neuronal signatures of speech perception. In 

accordance with grain-size proposals, neuromaturational milestones are reached increasingly 

late for linguistic units of decreasing size, with further delays incurred by noise. 

 

Teaser 

The neural signature of speech processing in silence and noise features multiple behaviorally 

relevant developmental milestones 
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Introduction 

Understanding speech in noise (SiN) is a challenging task, especially for children (1, 2). 

Paradoxically, noise is ubiquitous in children’s lives (e.g., in classrooms, school cafeterias 

and playgrounds) and has deleterious effects on learning and academic performances (3). 

Still, how the neural mechanisms involved in SiN comprehension mature across development 

is poorly understood. Characterizing these developmental phenomena appears critical to 

devise strategies to help children cope with ambient noise in their daily life and to better 

understand the etiology of learning disorders. 

A large body of literature has examined the neurophysiological correlates of SiN 

processing through investigations of the cortical tracking of speech (CTS) (4–16). CTS is the 

synchronization between human cortical activity and the fluctuations of speech temporal 

envelope at frequencies that match the hierarchical temporal structure of linguistic units such 

as phrases/sentences (0.2–1.5 Hz) and syllables/words (2–8 Hz) (17–25). Functionally, CTS 

would subserve the segmentation of these units in connected speech to promote subsequent 

speech recognition (18, 19, 24, 26–28). Importantly, school-age children show reliable CTS 

(21, 29, 30) that is however lower at the syllabic level compared to adults (5). In SiN 

conditions, children’s and adults’ cortical activity preferentially tracks the attended speech 

rather than the global sound (4, 6, 10, 31), suggesting that CTS is modulated by endogenous 

attentional components and plays a role in segregating the attended linguistic signal (5–8, 10, 

12, 13). However, the fidelity of the tracking decreases with increasing noise intensity in 

adults and more so in children (4–6), especially when the noise is concurrent speech babble 

(32) as opposed to non-speech noise such as white or spectrally-matched noise. Of note, the 

visual speech signal (comprising the articulatory movements of a talker) boosts CTS in adults 

(33–35), especially in noise conditions (31, 36, 37), and in children, at least in babble noise 

conditions (32). Importantly, the modulations of CTS we have just outlined mirror tangible 
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behavioral effects. That is, SiN perception and comprehension (i) decline with increasing 

noise level (4–6), (ii) are more affected by babble than non-speech noise in adults and 

especially in children (38–40), (iii) improve until late childhood, if not until adolescence in 

babble noise conditions (2,4,5), and (iv) benefit from visual speech (41, 42) since infancy (43, 

44), but increasingly more as age increases (45, 46). 

Overall, these data suggest (i) that different aspects of CTS, whose behavioral 

relevance is well demonstrated, undergo different developmental trajectories, and (ii) that 

these trajectories depend on noise properties and availability of visual speech information. 

However, since previous studies focused on restricted age ranges and noise conditions, a 

detailed characterization of these trajectories is still lacking. The present 

magnetoencephalography (MEG) study aims at filling this gap by outlining the developmental 

trajectory of phrasal and syllabic CTS and speech comprehension, from early school age to 

early adulthood in various noise conditions, with or without visual speech information. Our 

research hypotheses were guided by grain-size proposals according to which children develop 

awareness of increasingly smaller phonological units with age (47, 48). Extrapolating these 

proposals to supra-phonological units (19, 49), we hypothesized that the cortical tracking of 

large units such as phrases and sentences would mature faster during development compared 

with the tracking of smaller units such as syllables. Also, since coping with noise and 

leveraging visual speech information require the development and integration of additional 

mechanisms subtended by high-order associative neocortical areas that mature during late 

childhood (50), we hypothesize that corresponding developmental trajectories would be 

further delayed. 
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Results 

Fig. 1. Illustration of the time-course of a video stimulus. Videos lasted approximately 6 min 

and were divided into 10 blocks to which experimental conditions were assigned. There were 

two blocks of the noiseless condition, and eight blocks of speech-in-noise conditions: one 

block for each possible combination of the four types of noise and the two types of visual 

display. 

 

We recorded brain activity with MEG in 144 participants (77 females) aged 5.3–27.0 

years while they were attending to 4 videos lasting ~6 min each, following the same 

experimental procedure as in a previous study by our group (32). Videos consisted of 

audiovisual recordings of native French-speaking narrators telling children’s fairy tales. Fig. 1 

illustrates the time-course of a video stimulus. Each video featured 9 conditions: 1 noiseless 

and 8 SiN with 3 dB signal-to-noise ratio (SNR; for the motivation behind this SNR selection, 

see Stimuli subsection in Materials and Methods) resulting from the combination of 4 types of 

noises (least-energetic non-speech, most-energetic non-speech, different-gender babble and 
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same-gender babble) with 2 visual conditions (with or without visual speech inputs). The 

different- and same-gender babble noises introduced informational interferences and a similar 

degree of energetic masking (32). Their distinction is however relevant since speech 

intelligibility is generally better when attended and interfering speech are uttered by different-

gender talkers compared to same-gender talkers (51, 52), because on average, voice 

fundamental frequency and vocal tract length differ between males and females (52, 53). The 

least- and most-energetic non-speech noises introduced a degree of energetic masking in 

accordance with their naming but no informational interference. Forty yes/no questions (10 

per video) assessed participants’ comprehension of the stories in each condition. 

For some of the upcoming analyses, participants were arranged in 5 age groups of 

roughly equal size (5–7 years, n = 31; 7–8.5 years, n = 34; 8.5–11.5 years, n = 28; 11.5–18 

years, n = 26; and 18–27 years, n = 25). Note that most of our participants were aged below 

12, since SiN capacities essentially develop before that age. As a consequence, the 3 age 

groups of school-age children (5–7 years, 7–8.5 years and 8.5–11.5 years) span a narrower 

age range than the groups of teenagers (11.5–18 years) and young adults (18–27 years). 

 

How does the cortical tracking of speech evolve with age in the absence of noise? 

For each condition, we regressed the temporal envelope of the attended speech on MEG 

signals with several time lags using ridge regression and cross validation (see Methods for 

details) (54). The ensuing regression model was used to reconstruct speech temporal envelope 

from the recorded MEG signal. Such analysis is known as reconstruction accuracy (54). CTS 

was computed as the correlation between the genuine and reconstructed speech temporal 

envelopes. We did this for MEG and speech temporal envelope signals filtered at 0.2–1.5 Hz 

(phrasal rate, which also englobes sentential rate) (4, 32, 55) and 2–8 Hz (syllabic rate, which 

also englobes word rate) (10, 14, 31, 56) and for MEG sensor signals in the left and right 
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hemispheres separately. We assessed the left- and right hemispheres separately because CTS 

is hemispherically asymmetric both in noiseless and SiN conditions (6). We first evaluated 

with an ANOVA if CTS in the noiseless condition depended on the hemisphere and on the 

age group. A summary of the results for phrasal and syllabic CTS are presented in 

Supplementary material (Table S1). Phrasal CTS was higher in the right (0.44 ± 0.09; mean ± 

SD across subjects) than in the left hemisphere (0.40 ± 0.08), and was not modulated by age. 

Syllabic CTS was also higher in the right (0.092 ± 0.036) than in the left hemisphere (0.079 ± 

0.034), but a significant interaction with age indicated that left- and right-hemisphere CTS 

underwent different developmental trajectories. 

We next used Spearman correlations and a model-fitting approach to better understand 

how age impacted syllabic CTS. Fig. 2 and Table 1 illustrate the developmental trajectory of 

syllabic CTS. While both left- and right-hemisphere CTS were similar in children aged below 

7, a maturation process starting at 7.7±1.7 years increased right- but not left-hemisphere CTS 

by ~30 %, plateauing at 10.4±1.9 years. 

 

 

Figure 2. Dependence on age of syllabic CTS in the noiseless condition. Dashed red lines 

indicate the beginning and the end of the maturation process. 
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Table 1. Parametric models of the dependence on age of (n)CTS values and speech 

comprehension scores. The number of participants (n) on which models were fitted was 144 

for (n)CTS values and 142 for speech comprehension scores. Values of normalized CTS 

(nCTS) were pooled across conditions with and without visual speech, and across least- and 

most-energetic conditions. Values of phrasal nCTS were further pooled across hemispheres. 

 Constant vs. Linear Linear vs. Logistic Constant vs. Logistic Model 

 F(1,n-2) p F(2,n-4) p F(3,n-4) p  

Syllabic CTS in noiseless 

left hemisphere 0.17 0.69 1.87 0.16 1.30 0.28 0.080 

right hemisphere 3.98 0.048 4.18 0.017 4.17 0.0073 0.079+0.023/(1+exp(-1.6(age-9.0))) 

Phrasal nCTS 

non-speech 2.06 0.15 2.09 0.10 2.09 0.13 –0.01+0.02/(1+exp(–787(age–8.6))) 

babble 31.4 <0.0001 20.5 <0.0001 12.5 <0.0001 –0.37+0.27/(1+exp(–1.1(age–7.3))) 

Syllabic nCTS 

non-speech, left hem 4.94 0.028 0.77 0.47 2.15 0.096 –0.035 + 0.0039 × age 

babble, left hem 7.99 0.0054 1.51 0.22 3.69 0.014 –0.25 + 0.0067 × age 

non-speech, right hem 1.86 0.17 0.24 0.79 0.77 0.51 0.027 

babble, right hem 4.18 0.043 0.002 1.00 1.38 0.25 –0.20 + 0.0049 × age 

Speech (story) comprehension scores 

noiseless 20.7 <0.0001 18.6 <0.0001 21.0 <0.0001 0.79 + 0.16/(1+exp(–770(age–6.9))) 

noise 35.0 <0.0001 94.3 <0.0001 76.3 <0.0001 -28755.83 + 28756.78/(1+exp(–0.87(age+7.8))) 

difference Lip-Vid 3.07 0.082 2.84 0.062 2.94 0.035 –0.065 + 0.086/(1+exp(–1.2(age–7.3))) 

 

How does noise impact the cortical tracking of speech, and how does this impact evolve 

with age? 

We first evaluated with an ANOVA whether phrasal and syllabic normalized CTS 

(nCTS) in noise conditions depend on noise properties, hemisphere, visibility of the talker’s 

lips and whether they evolve with age. The nCTS is a contrast between CTS in SiN and 

noiseless conditions (see Methods) that takes values between –1 and 1, with negative values 

indicating that the noise reduces CTS (32). Such contrast presents the advantage of being 

specific to SiN processing abilities by factoring out the global level of CTS in the noiseless 

condition.  
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Fig. 3. Impact of the main effects on nCTS at phrasal (A) and syllabic rates (B). Mean and 

SEM values are displayed as a function of noise properties. The four traces correspond to 

conditions with (connected traces) and without (dashed traces) visual speech (VS), within the 

left (blue traces) and right (red traces) hemispheres. nCTS values are bounded between –1 

and 1, with values below 0 indicating lower CTS in speech-in-noise conditions than in 

noiseless conditions. 

 

Fig. 3 summarizes the results for phrasal and syllabic nCTS (see also Table S2). 

Overall, the impact of the different types of background noises was similar for phrasal and 

syllabic nCTS: while non-speech noises did not affect much CTS (nCTS was close to zero), 

babble noises substantially reduced CTS compared to non-speech and noiseless conditions. 

Contrastingly, the level of energetic masking introduced by either type of noise only mildly 

affected the nCTS. Such pattern was observed for both hemispheres, and irrespective of the 

availability of visual speech information. Nevertheless, phrasal nCTS in babble noise 

conditions was higher in the left than right hemisphere (-0.16 ± 0.20 vs. -0.20 ± 0.19) while 

the reverse was true for syllabic nCTS in all noise conditions (-0.10 ± 0.24 vs. -0.07 ± 0.22). 

A beneficial effect of visual speech information was observed in all noise conditions 

except in the least challenging one (i.e., least-energetic non-speech) for phrasal nCTS, and in 

all noise conditions for syllabic nCTS. The way visual speech information modulated nCTS 
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was stable across the age range (ps > 0.2 for interactions involving age and type of visual 

input). 

Critically, the way different noises impacted both phrasal and syllabic nCTS differed 

between age groups (i.e., significant interactions involving age and noise). To better 

understand how nCTS evolved with age, we relied on the same approach applied to CTS in 

the noiseless condition, which involves Spearman correlations and model fitting. 

Fig. 4 and Table 1 present the results for nCTS pooled across least- and most-

energetic noises. The detailed results for all noise conditions separately are presented in 

Supplementary material (Fig. S1, and Table S3). 

Phrasal nCTS increased with age for both non-speech and babble noises. The 

modulation in CTS was however only marginal in non-speech noise conditions (4.2% with a 

transition at 8.6 ± 0.0 years following a logistic model), to the point that our model-fitting 

approach did not deem the age-dependent models better than a constant model. This suggests 

a minimal evolution of phrasal nCTS in non-speech noises, at least at a SNR of 3 dB. As a 

slight nuance, the evolution was clearer when considering the most-energetic non-speech 

noise, and fully absent for the least-energetic non-speech noise (Fig. S1 and Table S3). In 

contrast, a clear maturation process starting at 5.4 ± 1.6 years increased phrasal nCTS in 

babble noises by ~79 %, with a plateau at age 9.3 ± 0.9 years. 

Syllabic nCTS also increased with age, following linear trajectories, with different 

patterns observed for non-speech and babble noises in the left and right hemispheres. That is, 

syllabic nCTS increased with age in both hemispheres for babble noise, and only in the left 

hemisphere for non-speech noise. 
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Fig. 4. Dependence on age of phrasal (A) and syllabic (B) nCTS. nCTS was pooled across 

conditions with and without visual speech, and across least- and most-energetic conditions. 

Phrasal nCTS was further pooled across hemispheres. Dashed red lines indicate the 

beginning and end of the maturation process.  

 

How does speech comprehension evolve with age, in noiseless and noise conditions? 

Fig. 5 illustrates speech comprehension abilities in the different conditions, which 

were assessed using yes/no forced-choice questions after each video. Comprehension scores 

were computed as the percentage of correct answers to 4 questions in each noise condition (or 

8 in the noiseless condition). 

Comprehension of the stories differed between age groups in noiseless (F(4,137) = 

14.0, p < 0.0001) and noise conditions (F(4,137) = 26.1, p < 0.0001), improving with age in 

both cases. The model fitting approach identified a sharp transition at 6.9 years for 

comprehension in silence, and absurd values (negative transition age) for comprehension in 

noise. Comprehension in noise conditions was also affected by noise properties (F(3,411) = 
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7.31, p < 0.0001). It was better when non-speech (92.3 ± 15.3 %) compared to babble noises 

(88.5 ± 17.8 %) were presented in the background. In fact, comprehension in non-speech 

noise conditions was similar (t(141) = -0.37,  p = 0.72) to that in the noiseless condition (92.0 

± 11.2 %), indicating that non-speech noise had no detrimental effect on the comprehension 

of the story (for our 3-dB SNR level). Finally, a marginally significant interaction between 

visual input and age group (F(4,137) = 2.34, p = 0.059) suggested that the benefit of visual 

speech for speech comprehension differed between age groups. The exploration of the boost 

in comprehension induced by visual speech is presented in Supplementary Fig. S2. No other 

significant effects were disclosed (p > 0.1). 

 

 

Fig. 5. Impact of the noise condition and of the presence or absence of concomitant visual 

speech on the speech comprehension scores, pooled across age groups. Vertical bars indicate 

SEM values.  

 

Behavioral relevance of the cortical tracking of speech 

We next appraise the behavioral relevance of the tracking measures showing significant 

maturation effects (i.e., syllabic CTS in the right hemisphere, phrasal nCTS in babble noise, 

and syllabic nCTS in each hemisphere and in non-speech and babble noise conditions 
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separately). For this, we correlated (n)CTS measures and comprehension scores, after 

removing the—potentially non-linear—effect of age.  

In the noiseless condition, this analysis revealed no significant association between 

syllabic CTS and speech comprehension (ps > 0.3 for left- and right-hemisphere CTS). 

In SiN conditions, this analysis revealed a positive correlation between phrasal nCTS 

(averaged across hemispheres) and speech comprehension in babble noise conditions (rS = 

0.22; p = 0.0074; see Fig. 6), and no significant association between syllabic nCTS and 

speech comprehension, neither in non-speech (ps > 0.5 for left- and right- hemisphere CTS) 

nor in babble noise conditions (ps > 0.9). 

 

 

Fig. 6. Behavioral relevance of phrasal nCTS in babble noise.  

 

Sources of the cortical tracking of speech 

We next identified the cortical sources underlying the CTS. Source activity was 

reconstructed with minimum norm estimate, and CTS was assessed for each source separately 

with a measure of reconstruction accuracy akin to that used in the previous sections (54). For 

each combination of age group (below 7, 7–8.5, 8.5–11.5, 11.5–18, and 18-27), condition, and 

frequency range (phrasal and syllabic), we retained the coordinates of significant local 
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maxima of CTS. Since local maxima indicate the presence of underlying sources (and 

colocalize with them), we will term them the sources of CTS. 

 

 

Fig. 7. Sources of phrasal (A) and syllabic (B) CTS in the left and right hemispheres. The 

overlays present the mean CTS values across all conditions and participants (regardless of 

age). Values at MNI coordinates |X| > 25 mm were projected orthogonally onto the 

parasagittal slice of coordinates |X| = 50 mm. The location of each significant source of CTS 

in each condition and age group is indicated with a white star (with the same projection 

scheme). 

 

Fig. 7 presents the grand average CTS map (mean across all factors), together with the 

location of the significant sources of CTS in all conditions. Globally, sources of phrasal CTS 

localized bilaterally in the mid-superior temporal gyrus (STG), in the ventral part of the 
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inferior frontal gyrus (IFG; in partes opercularis, triangularis and orbitalis) and precentral 

gyrus and, to a lower extent, in posterior temporal regions. Sources of syllabic CTS 

essentially localized bilaterally in tight clusters centered around Heschl gyrus and in the 

anterior part of the IFG (partes orbitalis and triangularis) and, for few of them, in the 

temporoparietal junction (TPJ) and inferior part of the precentral gyrus. 

Next, we evaluated for each frequency range if sources of CTS tended to cluster 

according to age group, or different noise properties. 

First, sources of phrasal CTS had among their 10 closest neighbors 62.9 % more 

sources for the same age group than expected by chance (p < 0.0001). To better understand 

this effect, Fig. 8A presents the sources of phrasal CTS color-coded by age group. Sources in 

the right hemisphere tended to localize more posteriorly with increasing age. Other 

differences were more subtle and not characterized by clear age gradients or source presence 

from or before a given age (e.g., sources in the right posterior temporal region were not seen 

in age groups of 7–8.5 years and 18–27 years; sources in precentral gyri were not seen in age 

groups of 5-7 years and 11.5–18 years).  

Second, sources of phrasal CTS for (i) babble noise conditions on the one hand, and (ii) 

non-speech noise and noiseless conditions on the other hand, had among their 10 closest 

neighbors 66.1 % more sources for the same category (i.e., i or ii) than expected by chance (p 

< 0.0001). Fig. 8B presents the sources of phrasal CTS color-coded for the informational 

property of the noise. Sources in bilateral STG and IFG were more anterior for babble noise 

conditions than for non-speech noise and noiseless conditions. Sources in bilateral IFG 

localized in the pars orbitalis/triangularis for babble noise conditions, and in the pars 

triangularis/opercularis as well as in the inferior part of the precentral gyrus for non-speech 

noise and noiseless conditions. Finally, all sources in the posterior temporal areas were from 

babble noise conditions except for 3 right-sided sources from non-speech noise conditions. 
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Third, sources of syllabic CTS had among their 10 closest neighbors 76.8 % more 

sources for the same age group than expected by chance (p < 0.0001). To better understand 

this effect, Fig. 8C presents the sources of syllabic CTS color-coded by age group. Paralleling 

the effect found for phrasal CTS, sources of syllabic CTS in the right hemisphere tended to 

localize increasingly more posteriorly with increasing age. Other subtler effects included the 

absence of source in TPJ in the oldest age group (18–27), and more scattered source 

distributions along the ventrodorsal axis in the left Heschl gyrus in the two oldest age groups 

(11.5–18 and 18–27; sources reached the ventral bank of the STG and the ventral part of the 

postcentral gyrus). 
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Fig. 8. Sources of CTS color-coded for age group (A, phrasal; C, syllabic) and for the 

informational property of the noise (B, phrasal); the other property being shape-coded.  
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Discussion 

This study characterizes the maturation of neurophysiological markers of the 

perception and understanding of natural connected speech in silence and in noise with or 

without visual speech information. Our results highlight that while phrasal CTS in quiet 

conditions is adult-like from at least 5 years of age, syllabic CTS matures later in childhood. 

We also demonstrated two distinct neuromaturational effects related to the ability to perceive 

speech in babble noise: while the ability to maintain phrasal CTS matures rapidly between ~5 

and ~9 years, a much slower maturation process improves the ability to maintain syllabic CTS 

in babble noise through childhood and into early adulthood. Visual speech information 

increased phrasal CTS mainly in babble noise conditions and syllabic CTS similarly in all 

noise conditions. These effects were not modulated by age. The results also reveal a limited 

impact of age on the cortical sources of phrasal and syllabic CTS. 

 

Increase of syllabic but not phrasal CTS in silence during childhood 

Our data revealed different developmental trajectories related to the capacity of the 

brain to track the fluctuations of speech temporal envelope at different frequencies, in 

noiseless conditions. While phrasal CTS is adult-like from at least 5 years of age, syllabic 

CTS matures later, between 7.5 and 10.5 years. This difference in developmental trajectory is 

well in line with grain-size proposals (47, 48) extended to linguistic units we have proposed. 

Indeed, phrasal CTS is considered to partly reflect prosodic (17, 57) and linguistic (27, 58) 

processing of large speech units. Contrastingly, syllabic CTS would reflect parsing of syllable 

rhythms (27), and the sensitivity to this basic unit of speech (59) would be at the basis of 

efficient phonemic processing (60). Importantly, syllabic CTS is considered a lower-level 

process tightly related to the acoustic features of the auditory input (28, 61). 
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Our finding that phrasal CTS is adult-like from at least 5 years of age supports the 

view that tracking of slow phrasal and prosodic stress patterns is a foundational process that 

might be present since birth (62), and remains stable across middle adulthood (63). This result 

is not so surprising if one embraces the view that phrasal CTS partly underpins prosodic 

speech processing (17). Indeed, young infants already use such information to parse speech 

into words and phrases (64). Accordingly, other neurophysiological markers of brain 

processing of prosody in speech (i.e., closure positive shift) were reported in 6-months old in 

relation to brief pause detection but also to pitch variations (65). The result of stable phrasal 

CTS from 5 years on is also compatible with the view that phrasal CTS reflects lexical and 

syntactic processing. Indeed, typically developing children of that age possess basic syntactic 

skills (66) such as the ability to understand relative clauses (67, 68). 

We found evidence for a developmental boost in syllabic CTS in quiet conditions in 

the right- (but not left-) hemisphere. This boost mostly occurred between the age of 7.5 and 

10.5 years, and signified the start of right-hemisphere dominance for syllabic CTS. This 

transition suggests that, although operational early in life (62, 69), temporal parsing of the 

speech signal at the syllabic level refines with brain maturation. And indeed, children aged 

below 10 are less accurate than adults at identifying syllable boundaries when these are 

defined only by amplitude modulations in speech temporal envelope (70). The right-

hemispheric dominance in noiseless conditions observed for syllabic CTS after age ~10 and 

for phrasal CTS is consistent with previous findings in children and adults (5, 17, 19, 21, 30, 

61, 71, 72). It is even at the core of the asymmetric sampling in time hypothesis, which argues 

that prosodic and syllabic information are preferentially processed in the right hemisphere, 

while phonemic information is preferentially processed in the left hemisphere or bilaterally 

(73). As previously argued (74), the fact that language brain functions become asymmetric in 

the course of development suggests asymmetry is a hallmark of maturity. 
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Development of the neurophysiological basis of speech perception in noise 

Our results highlight two distinct neuromaturational effects related to the ability to perceive 

speech in babble noise. First, the ability to maintain phrasal CTS in babble noise matures 

rapidly between ~5 and ~9 years, with a marked transition at age ~7. Second, a much slower 

maturation process—best characterized by a linear progression with age—improves the 

ability to maintain syllabic CTS in babble noise through childhood and into early adulthood. 

Following the rationale developed in the previous subsection, our results indicate a rapid 

maturation at age ~7 of the neurophysiological mechanisms at play in processing prosodic 

and suprasegmental linguistic information in natural connected speech in babble noise, and a 

slower, progressive maturation into early adulthood of the mechanisms involved in the 

extraction of hierarchically lower syllabic, phonemic or even acoustic information from 

speech in babble noise. This is well in line with our working hypotheses: neuronal processing 

of larger linguistic units (words and phrases) develops before that of smaller syllabic units, 

and coping with noise necessitates additional processes that mature later on. 

The maturational time-course of the ability to maintain phrasal CTS in babble noise 

closely parallels that of the ability to recognize words in the presence of two-talker speech. 

The latter improves progressively from 5 to 10 years of age, reaching adult-like levels at age 

11 (40, 75, 76). This maturation trajectory is specific to informational noise since speech 

recognition in speech-shaped noise is close to adult-like already at age 5 (40, 75), as was 

phrasal CTS in non-speech noise in our data. This suggests that maintenance of phrasal CTS 

reflects a range of processes involved in the ability to perceive and understand linguistic 

chunks larger than syllables or words in babble noise. This interpretation is further supported 

by the similar developmental trajectory of our measures of SiN comprehension, and by the 

finding that CTS resistance to babble noise is positively related to speech comprehension after 

having accounted for age. 
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The degree of maintenance of phrasal CTS in babble noise could actually underpin the 

maturation of auditory stream formation, which is the process of grouping together sounds 

from the same source (77). Forming auditory streams is a challenging aspect of speech 

perception in noise, and failure in forming streams seems to explain the behavioral difficulties 

understanding speech from among two same-gender talkers (52). From the point of view of 

development, the ability to form auditory streams based on frequency separation appears to be 

immature at age 5-8, and adult-like at age 9–11 (78). Since these developmental milestones 

match well with those found for phrasal CTS in babble noise in our study, the way babble 

noise impacts phrasal CTS could represent an electrophysiological signature of the ability to 

form auditory streams. 

The slow maturation of the ability to maintain syllabic CTS in noise closely parallels 

the evolution of phonemic perception in noise. Although such slow evolution was not evident 

in our phonemic perception test (see Supplementary Material), it is clearly seen in normative 

data for this test where twice more items were used to assess an even larger sample of 

participants than ours (79). In that study, phonemic perception in noise improved steadily 

from age 5, topped in the 15-19 year group, and then decreased in the subsequent age ranges, 

the first of which was overly broad (20-49 years) unfortunately. Our data therefore provide a 

neurophysiological ground for the slow maturation of phonemic perception in noise. It also 

suggests a more important role of the left hemisphere since maturation was not observed in 

the non-speech noise condition in the right hemisphere. This is well in line with the classical 

dominant role of the left hemisphere for language comprehension. 

 

Impact of visual speech on CTS 

Our data did not reveal any evidence for a maturation of the boost in CTS afforded by 

visual speech across the tested age range. This is somewhat surprising since audiovisual 
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integration processes mature rather slowly. For some tasks, adult-like performance is reached 

after age 12 (45, 46, 80). 

The analysis of our comprehension scores hinted at a transition between age 6 and 9 in 

the ability to leverage visual speech to enhance comprehension. This is in-line with the 

observation that at around 6.5 years of age, children start to benefit from having phonetic 

knowledge about severely degraded speech sounds when asked to match such a sound with a 

visual speech video (81). Possibly then, a CTS boost induced by visual speech may be driven 

by audiovisual congruence detection, an ability that is already observed at 2 months of age 

(43, 44). Although this suggestion provides an interesting avenue for future work, it is 

currently rather tentative as processing congruence in audiovisual speech seems to start at 

around 200 ms (82), can take several hundreds of milliseconds (81, 83) and therefore overlaps 

in time with other processes (such as processing of lexico-semantic information) that are 

difficult to disentangle. 

In the S1 discussion, we elaborate further on the beneficial effects of visual speech on 

CTS we observed across all age ranges. 

 

Recruited neural network and impact of maturation and noise 

 Our results showed that source configuration was affected by age for both phrasal and 

syllabic CTS, and by informational noise properties for phrasal CTS. 

The effect of age for both phrasal and syllabic CTS appeared to be mainly explained 

by an anterior-to-posterior shift (of about 1 cm) of right-hemisphere sources from youngest 

(5–7 years) to oldest (18–27 years) age groups. Whether this shift reflects a genuine 

developmental effect is difficult to tell since changes in brain anatomy from childhood to 

adulthood induce small, but consistent, age-dependent errors in the normalization of 

individual brains to a template (84). Besides these unclear effects of age, our results rather 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.20.476739doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.20.476739
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

23 

emphasize the close similarity in location of cortical generators of CTS across the 

investigated age range. This is in line with a host of findings indicating that the architecture of 

the language network is settled from age 3, with subsequent maturation essentially refining 

bottom-up communication and specialization of each node of the network (85). 

In S2 Discussion, we discuss the interesting effect of noise properties on the 

configuration of CTS sources. 

 

Limitations 

We manipulated several properties of the noise but not all of those known to impact 

SiN perception. It is therefore worth noting that the developmental trajectories we report for 

CTS resistance to noise are valid only for the conditions we explored, and might be affected 

by other aspects of the listening condition, much like the maturation timeline of behavioral 

effects depends on the number of speakers making up the background noise (86), noise 

intensity (87), or availability of spatial cues (88). 

We have used natural connected speech as auditory material. Although this adds to the 

ecological validity of our results, it makes it difficult to resolve the development of brain 

functions supporting multiple distinct aspects of language. For example, phrasal CTS taps in 

brain function supporting linguistic (syntactic, lexical, grammatical) as well as paralinguistic 

(prosody) information. Studies relying on carefully synthesized speech in which, e.g., prosody 

is removed (27). 

Characterization of behavioral performance was suboptimal. We only asked simple 

comprehension questions, and comprehension scores suffered ceiling effects. This may 

explain why the link between CTS and behavior, which has been well documented in other 

studies (18, 20, 22, 89), was either weak (for phrasal nCTS) or non-significant (for syllabic 

nCTS) in our study despite having a sample size (n = 144) that largely surpasses that of 
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previous studies. A more extensive neuropsychological assessment of language processing 

abilities could have further supported the behavioral relevance of the multiple developmental 

effects we identified. 

 

Conclusion 

This study reveals distinct developmental trajectories for the neuronal processing of 

prosodic/syntactic (phrasal CTS) and syllabic/phonemic/acoustic information (syllabic CTS), 

and depending on the presence and the type of background noise. Overall, our results indicate 

that cortical processing of large linguistic units matures before that of smaller units, and that 

additional neuromaturational milestones need reaching for such processing to be optimal in 

adverse noise conditions. Unexpectedly, although visual speech information boosted the 

ability of the brain to track speech in noise, such boost was not affected by brain maturation. 

Finally, the ability to maintain phrasal tracking in noise was positively related to speech 

comprehension. These results therefore indicate that CTS tags behaviourally relevant neural 

mechanisms that progressively mature with age and experience following the trajectory 

presumed by grain-size proposals. Thus, the modulation of CTS by noise provides objective 

neurodevelopmental markers of multiple aspects of speech processing in noise. 

 

Material and Methods 

Participants 

In total, 144 native French-speaking healthy right-handed children and young adults 

(age range: 5–27 years, 77 females) participated in this study. For some of the upcoming 

analyzes, participants were assigned to 5 age groups: 5–7 years (n = 31, 17 females), 7–8.5 

years (n = 34, 17 females), 8.5–11.5 years (n = 28, 13 females), 11.5–18 years (n = 27, 15 

females) and 18–27 years (n = 25, 15 females). Of note, the data collected from 73 of them 
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was used in a previous study by our team (32). All participants had normal hearing according 

to pure-tone audiometry (i.e., hearing thresholds between 0 and 20 dB HL for 125, 250, 500, 

1000, 2000, and 4000 and 8000 Hz), and normal dichotic perception, speech, and SiN 

perception for their age (data missing for the 20 youngest participants) according to another 

test assessing speech perception in noise (79). 

The study had prior approval by the ULB-Hôpital Erasme Ethics Committee (Brussels, 

Belgium). Each participant or their legal representative gave written informed consent before 

participation. Participants were compensated with a gift card worth 25 euros for the 

neuroimaging assessment reported in the present study. 

 

Stimuli 

The stimuli were derived from 12 audiovisual recordings of 4 native French-speaking 

narrators (2 females, 3 recordings per narrator) telling a story for ~6-min (mean ± SD, 6.0 ± 

0.8 min) Stories consisted of children’s fairy tales; for more details, see our previous report 

(32). In each video, the first 5 s were kept unaltered to enable participants to unambiguously 

identify the narrator’s voice and face they were requested to attend to. The remainder of the 

video was divided into 10 consecutive blocks of equal size that were assigned to 9 conditions. 

Two blocks were assigned to the noiseless condition in which the audio track was kept but the 

video was replaced by static pictures illustrating the story (mean ± SD picture presentation 

time across all videos, 27.7 ± 10.8 s). The remaining 8 blocks were assigned to 8 conditions in 

which the original sound was mixed with a background noise at 3 dB signal-to-noise ratio 

(SNR). This SNR was chosen as we assumed it was high enough to ensure children cope with 

the noise and keep their attention to the story, and low enough to introduce non-negligible 

interference; both assumptions proved accurate a posteriori. There were 4 different types of 

noise, and each type of noise was presented once with visual speech information (the original 
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video), and once without visual speech information (static pictures illustrating the story). The 

different types of noise differed in the degree of energetic and informational interference they 

introduced (90). The least-energetic non-speech (i.e., non-informational) noise was a white 

noise high-pass filtered at 10000-Hz. The most-energetic non-speech noise had its spectral 

properties dynamically adapted to mirror those of the narrator’s voice ~1 s around. The 

different-gender babble (i.e. informational) noise was a 5-talker cocktail party noise recorded 

by individuals of gender different from the narrator's (i.e., a 5-male talker for female 

narrators, and vice-versa). The same-gender babble noise was a 5-talker cocktail party noise 

recorded by individuals of gender identical to the narrator’s. For both babble noises, the 5 

individual noise components were obtained from a French audiobook database 

(http://www.litteratureaudio.com), normalized, and mixed linearly. The assignment of 

conditions to blocks was random, with the constraint that each of the 5 first and last blocks 

contained exactly 1 noiseless audio and each type of noise, 2 with visual speech and 2 

without. Smooth audio and video transitions between blocks was ensured with 2-s fade-in and 

fade-out. Ensuing videos were grouped in 3 disjoint sets featuring one video of each of the 

narrators (total set duration: 23.0, 24.3, 24.65 min), and there were 4 versions of each set 

differing in condition random ordering. 

 

Experimental paradigm 

During the imaging session, participants were laying on a bed with their head inside 

the MEG helmet. The lying position was chosen to maximize participants’ comfort and 

reduce head movements. Participants’ brain activity was recorded while they were attending 4 

videos (separate recording for each video) of a randomly selected set and ordering of the 

videos presented in a random order, and finally while they were at rest (eyes opened, fixation 

cross) for 5 min. They were instructed to watch the videos attentively, listen to the narrators’ 
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voice while ignoring the interfering noise, and remain as still as possible. After each video, 

they were asked 10 yes/no simple comprehension questions. Videos were projected onto a 

back-projection screen placed vertically, ~120 cm away from the MEG helmet. The inner 

dimensions of the black frame were 35.2 cm (horizontal) and 28.8 cm (vertical), and narrators 

face spanned ~15 cm (horizontal) and ~20 cm (vertical). Participants could see the screen 

through a mirror placed above their head. In total the optical path from the screen to 

participants’ eyes was of ~150 cm. Sounds were delivered at 60 dB (measured at ear-level) 

through a MEG-compatible front-facing flat-panel loudspeaker (Panphonics Oy, Espoo, 

Finland) placed ~1 m behind the screen. 

 

Data acquisition 

During the experimental conditions, participants’ brain activity was recorded with 

MEG at the CUB Hôpital Erasme. MEG was preferred to electroencephalography for its 

higher spatial resolution (91), and for its increased sensitivity to CTS (4). Neuromagnetic 

signals were recorded with a whole-scalp-covering MEG system (Triux, Elekta) placed in a 

lightweight magnetically shielded room (Maxshield, Elekta), the characteristics of which have 

been described elsewhere (92). The sensor array of the MEG system comprised 306 sensors 

arranged in 102 triplets of one magnetometer and two orthogonal planar gradiometers. 

Magnetometers measure the radial component of the magnetic field, while planar 

gradiometers measure its spatial derivative in the tangential directions. MEG signals were 

band-pass filtered at 0.1–330 Hz and sampled at 1000 Hz. 

We used 4 head-position indicator coils to monitor subjects’ head position during the 

experimentation. Before the MEG session, we digitized the location of these coils and at least 

300 head-surface points (on scalp, nose, and face) with respect to anatomical fiducials with an 

electromagnetic tracker (Fastrack, Polhemus). 
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Finally, subjects’ high-resolution 3D-T1 cerebral images were acquired with a 

magnetic resonance imaging (MRI) scanner (MRI 3T, Signa, General Electric) after the MEG 

session. 

 

Data preprocessing 

Continuous MEG data were first preprocessed off-line using the temporal signal space 

separation method implemented in MaxFilter software (MaxFilter, Neuromag, Elekta; 

correlation limit 0.9, segment length 20 s) to suppress external interferences and to correct for 

head movements (93, 94). To further suppress physiological artifacts, 30 independent 

components were evaluated from the data band-pass filtered at 0.1–25 Hz and reduced to a 

rank of 30 with principal component analysis. Independent components corresponding to 

heartbeat, eye-blink, and eye-movement artifacts were identified, and corresponding MEG 

signals reconstructed by means of the mixing matrix were subtracted from the full-rank data. 

Across subjects and conditions, the number of subtracted components was 3.45 ± 1.23 (mean 

± SD across subjects and recordings). Finally, time points at timings 1 s around remaining 

artifacts were set to bad. Data were considered contaminated by artifacts when MEG 

amplitude exceeded 5 pT in at least one magnetometer or 1 pT/cm in at least one gradiometer. 

We extracted the temporal envelope of the attended speech (narrators’ voice) using a 

state-of-the-art approach (95). Briefly, audio signals were bandpass filtered using a 

gammatone filter bank (15 filters centered on logarithmically-spaced frequencies from 150 Hz 

to 4000 Hz), and subband envelopes were computed using Hilbert transform, elevated to the 

power 0.6, and averaged across bands. 
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CTS quantification with accuracy of speech temporal envelope reconstruction 

For each condition and participant, a global value of cortical tracking of the attended 

speech was evaluated for all left-hemisphere gradiometer sensors at once, and for all right-

hemisphere gradiometer sensors at once. Using the mTRF toolbox (54), we trained a decoder 

on MEG data to reconstruct speech temporal envelope, and estimated its Pearson correlation 

with real speech temporal envelope. This correlation is often referred to as the reconstruction 

accuracy, and it provides a global measure of cortical tracking of speech (CTS). 

The decoder tested on a given condition was built based on MEG data from all the 

other conditions. This procedure was preferred over a more conventional cross-validation 

approach in which the decoder is trained and tested on separate chunks of data from the same 

condition because of the paucity of data (i.e., at most ~2.4 min of data per condition). It is 

based on the rationale that the different conditions do modulate response amplitude but not its 

topography and temporal dynamics. In practice, electrophysiological data were band-pass 

filtered at 0.2–1.5 Hz (phrasal rate) or 2–8 Hz (syllabic rate), resampled to 10 Hz (phrasal) or 

40 Hz (syllabic) and standardized. The decoder was built based on MEG data from –500 ms 

to 1000 ms (phrasal) or from 0 ms to 250 ms (syllabic) with respect to speech temporal 

envelope. Filtering and delay ranges were as in previous studies for phrasal (4, 55), and 

syllabic CTS (10, 14, 31, 56). Regularization was applied to limit the norm of the derivative 

of the reconstructed speech temporal envelope (54), by estimating the decoder for a fixed set 

of ridge values (λ = 2-10, 2-8, 2-6, 2-4, 2-2, 20). The regularization parameter was determined 

with a classical 10-fold cross-validation approach: the data is split into 10 segments of equal 

length, the decoder is estimated for 9 segments and tested on the remaining segment, and this 

procedure is repeated 10 times until all segments have served as test segment. The ridge value 

yielding the maximum mean reconstruction accuracy is then retained. The ensuing decoder 

was then used to reconstruct speech temporal envelope in the left-out condition. 
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Reconstruction accuracy was then estimated in 10 disjoint consecutive segments. We then 

retained the mean of this reconstruction accuracy, leaving us with one value for all 

combinations of subjects, conditions, hemispheres, and frequencies of interest. 

Normalized CTS in SiN conditions 

Based on CTS values, we derived the normalized CTS (nCTS) in SiN conditions as 

the following contrast between CTS in SiN (CTSSiN) and noiseless (CTSnoiseless) conditions: 

nCTS = (CTSSiN – CTSnoiseless)/(CTSSiN + CTSnoiseless). 

Such contrast presents the advantage of being specific to SiN processing abilities by factoring 

out the global level of CTS in the noiseless condition. However, it can be misleading when 

derived from negative CTS values (which may happen since CTS is an unsquared correlation 

value). For this reason, CTS values below a threshold of 10% of the mean CTS across all 

subjects, conditions and hemispheres were set to that threshold prior to nCTS computation. 

Thanks to this thresholding, the nCTS index takes values between –1 and 1, with negative 

values indicating that the noise reduces CTS. 

 

Developmental trajectory of CTS in noiseless and nCTS in SiN conditions 

We used repeated measures ANOVA to assess the effect of brain hemisphere (left vs. 

right) and age group on CTS in noiseless conditions (dependent variable). This analysis was 

run separately for phrasal and syllabic CTS. 

We used the same approach to analyze nCTS values in SiN conditions, this time with 

two additional factors: type of noise (least-energetic non-speech, most-energetic non-speech, 

different-gender babble vs. same-gender babble) and type of visual input (with vs. without 

visual speech). For both phrasal and syllabic nCTS, Mauchly sphericity tests indicated non-

sphericity for the effect and interactions including the factor “type of noise” (p < 0.01). For 

this reason, Greenhouse-Geisser corrections were applied when needed. 
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For statistically significant effects involving age group, we used a model fitting 

approach to estimate the developmental trajectory of (n)CTS averaged across irrelevant 

factors. This approach is explained here for CTS, but the same was used for nCTS. We fitted 

to individual values of CTS three models involving different types of dependence on age: 

Constant model: CTS(age) = CTCconstant 

 Linear model: CTS(age) = CTS0 + slope × age 

 Logistic model: CTS(age) = CTSmin + (CTSmax – CTSmin)/(1+exp(–ka × (age–agetrans))) 

The logistic model features an evolution of CTS with age from CTSmin to CTSmax with a 

transition at agetrans occurring at rate ka. Following this model, the maturation of CTS values 

roughly starts at agetrans – 2.2/ka and finishes at agetrans + 2.2/ka, corresponding to 10 % and 90 

% of the evolution from CTSmin to CTSmax (respectively). We also report on the percentage of 

increase in CTS, which is obtained as  (CTSmax – CTSmin)/CTSmin × 100 %. 

Parameters were estimated with the least-square criterion, so that their values for the 

constant and linear models were trivial to obtain. Parameters of the logistic model were 

estimated with fminsearch Matlab function. 

The models were compared statistically with a classical F test. 

 

Source reconstruction of CTS 

As a preliminary step to estimate brain maps of CTS, MEG signals were projected into 

the source space. For that, MEG and MRI coordinate systems were co-registered using the 3 

anatomical fiducial points for initial estimation and the head-surface points for further manual 

refinement. When a participant’s MRI was missing (n = 39), we used that of another 

participant of roughly the same age, which we linearly deformed to best match head-surface 

points using the CPD toolbox (96) embedded in FieldTrip toolbox (Donders Institute for 

Brain Cognition and Behaviour, Nijmegen, The Netherlands, RRID:SCR_004849) (97). The 
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individual MRIs were segmented using Freesurfer software (Martinos Center for Biomedical 

Imaging, Boston, MA, RRID:SCR_001847) (98). Then, a non-linear transformation from 

individual MRIs to the MNI brain was computed using the spatial normalization algorithm 

implemented in Statistical Parametric Mapping (SPM8, Wellcome Department of Cognitive 

Neurology, London, UK, RRID:SCR_007037) (99, 100). This transformation was used to 

map a homogeneous 5-mm grid sampling the MNI brain volume onto individual brain 

volumes. For each subject and grid point, the MEG forward model corresponding to three 

orthogonal current dipoles was computed using the one-layer Boundary Element Method 

implemented in the MNE software suite (Martinos Centre for Biomedical Imaging, Boston, 

MA, RRID:SCR_005972) (101). The forward model was then reduced to its two first 

principal components. This procedure is justified by the insensitivity of MEG to currents 

radial to the skull, and hence, this dimension reduction leads to considering only the 

tangential sources. Source signals were then reconstructed with Minimum-Norm Estimates 

inverse solution (102). 

We followed a similar approach to that used at the sensor level to estimate source-

level CTS. For each grid point, we trained a decoder on the two-dimensional source time-

series to reconstruct speech temporal envelope. Again, the decoder was trained on the data 

from all but one condition, and used to estimate CTS in the left-out condition. To speed up 

computation, the training was performed without cross-validation, with the ridge value 

retained in a sensor-space analysis run on all gradiometer sensors at once. This procedure 

yielded a source map of CTS for each participant, condition, and frequency range of interest; 

and because the source space was defined on the MNI brain, all CTS maps were inherently 

corregistered with the MNI brain. Hence, group-averaged maps were simply produced as the 

mean of individual maps within age groups, conditions and frequency ranges of interest. 
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We further identified the coordinates of local maxima in group-averaged CTS maps. 

Such local maxima of CTS are sets of contiguous voxels displaying higher CTS values than 

all neighbouring voxels. We only report statistically significant local maxima of CTS, 

disregarding the extents of these clusters. Indeed, cluster extent is hardly interpretable in view 

of the inherent smoothness of MEG source reconstruction (103–105). 

Note that the adult MNI template was used in both children and adults despite the fact 

that spatial normalization may fail for brains of small size when using an adult template (106). 

However, this risk is overall negligible for the population studied here. Indeed, the brain 

volume does not change substantially from the age of 5 years to adulthood (106). This 

assumption has been confirmed by a study that specifically addressed this question in children 

aged above 6 years (107). This said, the precise anatomical location of anterior frontal and 

temporal opercular sources might be limited due to the greater deformation in those regions 

(84). 

 

Significance of local maxima of CTS 

The statistical significance of the local maxima of CTS observed in group-averaged 

maps for each age group, condition and frequency range of interest was assessed with a non-

parametric permutation test that intrinsically corrects for multiple spatial comparisons (108). 

First, participant and group-averaged null maps of CTS were computed with the MEG signals 

and the voice signal in each story rotated in time by about half of story length (i.e., the first 

and second halves were swapped, thereby destroying genuine coupling but preserving spectral 

properties). The exact temporal rotation applied was chosen to match a pause in speech to 

enforce continuity. Group-averaged difference maps were obtained by subtracting genuine 

and null group-averaged CTS maps. Under the null hypothesis that CTS maps are the same 

whatever the experimental condition, the labeling genuine or null are exchangeable prior to 
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difference map computation (108). To reject this hypothesis and to compute a significance 

level for the correctly labeled difference map, the sample distribution of the maximum of the 

difference map’s absolute value within the entire brain was computed from a subset of 1000 

permutations. The threshold at p < 0.05 was computed as the 95 percentile of the sample 

distribution (108). All supra-threshold local maxima of CTS were interpreted as indicative of 

brain regions showing statistically significant CTS and will be referred to as sources of CTS. 

Permutation tests can be too conservative for voxels other than the one with the 

maximum observed statistic (108). For example, dominant CTS values in the right auditory 

cortex could bias the permutation distribution and overshadow weaker CTS values in the left 

auditory cortex, even if these were highly consistent across subjects. Therefore, the 

permutation test described above was conducted separately for left- and right-hemisphere 

voxels. 

 

Effect of age group and conditions on CTS source location 

We evaluated for each frequency range if sources of CTS tended to cluster according to 

some categories. Five different categories were considered: (i) age-group category (5 age 

groups), (ii) visual category (with vs. without visual input), (iii) 3-noise category (noiseless 

vs. non-speech noises vs. babble noises), (iv) 2-noise category (noiseless and non-speech 

noises vs. babble noises), and (v) presence of noise category (noiseless vs SiN). For this 

analysis, we gathered the coordinates of all sources of CTS in all conditions (8 SiN and 2 

instances of noiseless speech). For each (target) source and category we computed the 

proportion of the 10 closest sources (excluding those for the same condition within the same 

age group as the target source) sharing the same category as the target source, we divided that 

proportion by that expected by chance (i.e., the total number of sources sharing the same 

category as the target source divided by the total number of sources), subtracted 1, and 
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multiplied by 100 %. The mean of these values for a given category across all sources 

indicates the increase in chance (in percent; compared with what is expected by chance) of 

finding another CTS source of that category in the close vicinity. For statistical assessment, 

this mean value was compared with its permutation distribution where the CTS sources were 

assigned to random labels (1000 permutations). 
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Supplementary Material 

Table S1. Results of the ANOVAs run on CTS in the noiseless condition. 
 Phrasal CTS Syllabic CTS 

 F df1 df2 p F df1 df2 p 
Hemisphere 33.08 1 139 <0.0001 31.83 1 139 <0.0001 

Age 0.94 4 139 0.44 1.76 4 139 0.14 
Age x Hemisphere 0.70 4 139 0.59 2.91 4 139 0.0238 

 

Table S2. Results of the ANOVAs run on nCTS in noisy conditions. 
 Phrasal CTS Syllabic CTS 

 F df1 df2 p F df1 df2 p 
Noise 218 1.73 241 < 0.0001 119 2.77 384 < 0.0001 

Hemisphere 13.1 1 139 0.0004 3.69 1 139 0.057 
Visual input 160 1 139 < 0.0001 31.38 1 139 < 0.0001 

Age  13.3 4 139 < 0.0001 1.25 4 139 0.29 
Hemisphere x Noise 9.01 2.10 292 < 0.0001 0.68 2.80 389 0.55 

Visual input x Noise 29.7 2.61 263 < 0.0001 0.99 2.82 392 0.40 
Age x Noise 11.9 6.92 241 < 0.0001 1.36 11.1 384 0.19 

Age x Hemisphere x Noise 0.95 8.40 292 0.48 1.87 11.2 389 0.041 
Age x Visual input  0.90 4 139 0.47 0.95 4 139 0.44 

Age x Visual input x Noise  1.21 10.4 363 0.28 0.72 11.3 392 0.72 

 

Table S3. Parametric models of the dependence on age of phrasal nCTS (averaged across 

hemispheres) and syllabic nCTS (averaged across least- and most-energetic conditions or 

across different- and same-gender conditions) in conditions with and without visual speech. 
Noise type Constant vs. Linear Linear vs. Logistic Constant vs. Logistic Model 

 F(1,142) p F(2,140) p F(3,140) p nCTS(age) = 

Phrasal nCTS without visual speech 
least-energetic non-speech 1.62 0.21 0.17 0.85 0.64 0.59 –0.003 
most-energetic non-speech 2.43 0.12 1.19 0.31 1.61 0.19 –0.009 

different-gender babble 20.9 <0.0001 8.76 0.0003 13.57 <0.0001 –0.39+0.25/(1+exp(–1.4(age–7.3))) 
same-gender babble 34.1 <0.0001 9.12 0.0002 18.74 <0.0001 –0.43+0.28/(1+exp(–1.4(age–7.9))) 

Phrasal nCTS with visual speech 

least-energetic non-speech 1.60 0.21 1.07 0.35 1.25 0.29 –0.005 
most-energetic non-speech 4.37 0.038 6.52 0.0020 5.92 0.0008 –0.03+0.06/(1+exp(–1072(age–6.8))) 

different-gender babble 23.6 <0.0001 9.47 0.0001 15.1 <0.0001 –0.39+0.34/(1+exp(–0.89(age–6.7))) 
same-gender babble 22.9 <0.0001 11.6 <0.0001 16.5 <0.0001 –0.33+0.27/(1+exp(–1.1(age–7.3))) 

Syllabic nCTS without visual speech 
non-speech, left hem 6.35 0.013 1.22 0.30 2.94 0.035 –0.080 + 0.0054 × age 

babble, left hem 3.00 0.086 2.29 0.11 2.54 0.059 –0.21         [–0.27 + 0.0050 × age] 
non-speech, right hem 0.79 0.38 0.45 0.64 0.56 0.64 0.0035 

babble, right hem 3.66 0.058 0.12 0.89 1.28 0.28 –0.18         [–0.24 + 0.0052 × age] 
Syllabic nCTS with visual speech 

non-speech, left hem 1.94 0.17 0.00 1.00 0.64 0.59 0.025         [–0.009 + 0.0029 × age] 
babble, left hem 8.51 0.0041 0.20 0.82 2.94 0.036 –0.24 + 0.0080 × age 

non-speech, right hem 2.28 0.13 0.00 1.00 0.75 0.53 0.042 
babble, right hem 2.89 0.091 0.40 0.67 1.22 0.30 –0.12         [–0.17 + 0.0045 × age] 
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Fig. S1. Dependence on age of phrasal nCTS (averaged across hemispheres) in conditions 

without (A) and with visual speech (B), and of syllabic nCTS (averaged across least- and 

most-energetic conditions or across different- and same-gender conditions) in conditions 

without (C) and with visual speech (D). 
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Fig. S2. Dependence on age of speech comprehension scores contrasted between conditions 

with vs. without visual speech information. Although Spearman correlation was not 

statistically significant, a non-linear model explained significantly more variance than a 

constant model (F(3,138) = 2.94, p = 0.035), and marginally more than a linear model 

(F(2,138) = 2.84, p = 0.062), which itself explained marginally more variance than a constant 

model (F(1,138) = 3.07, p = 0.082). According to the non-linear model (score(age) = –0.065 + 

0.086/(1+exp(–1.2(age–7.3)))), the gain in comprehension afforded by visual speech 

increased as a function of age, and was positive only from age 8.2. 
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S1 Discussion. Beneficial effect of visual speech on CTS in noise 

The beneficial effect of synchronized visual speech for speech perception and 

comprehension is largely documented, especially in noise conditions (41, 109). It was also 

observed on CTS in adults (34, 37, 110, 111). In our study, visual speech boosted phrasal 

CTS mainly in babble noise conditions (but also in the most-energetic non-speech condition) 

and syllabic CTS in all noise conditions with no effect of age. This suggests that the brain 

would leverage visual speech to parse speech into syllables no matter what the listening 

conditions are, while it would use such visual information to parse speech into phrases only 

when parsing is made difficult by challenging competing noise. This distinction nicely echoes 

the view that audiovisual integration dissociates into two modes, one in which vision and 

audition provide complementary information and one in which they provide redundant 

information (112). Given that parsing a continuous speech stream into meaningful units is a 

difficult task, the brain would always strive to combine the information from both modalities. 

The complementary mode of audiovisual speech integration would be based on the extraction 

of relevant features of the mouth configuration to derive phonetic information, 

complementing those derived from acoustic speech signals (112). Parsing of phrases based on 

auditory information is typically easier because listeners can rely on three main prosodic cues: 

pitch change, final lengthening, and pauses (65). Accordingly, visual speech information 

about phrase boundaries, which is at best redundant with auditory speech information, would 

be of use for phrasal parsing only when access to these cues is compromised, as in 

challenging noise conditions. This complementary mode of audiovisual speech integration 

would rather be based on the extraction of the temporal dynamics of lip, jaw and head 

movements to support speech parsing (112). 
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S2 Discussion. Impact of noise properties on the neural network for CTS 

Overall, sources of phrasal CTS were more widely distributed in language-related 

areas (113) than those of syllabic CTS. This differential recruitment may reflect the increased 

reliance on top-down information from higher-order language areas to facilitate speech 

processing at the phrasal level compared to syllabic level (114). 

The dominant sources of syllabic CTS clustered around Heschel's gyrus bilaterally, 

while those of phrasal CTS located in middle and posterior STG, in line with previous reports 

(17, 104). Interestingly, STG sources of phrasal CTS extended more anteriorly in the 

informational noise condition compared with the other conditions. This is in line with the 

existence of a posterior-to-anterior gradient in the STG with increasing complexity of the 

auditory stimulus (115). 

Sources of phrasal CTS also located in ventral posterior temporal areas, attributed to 

semantic aspects (113) and sentence-level processing (116). However, this recruitment of the 

ventral stream was essentially restricted to the informational noise condition, probably 

reflecting the reliance on semantic processes to correctly parse phrasal boundaries in 

challenging conditions. 

In the frontal lobe, the reliance on semantic processing in phrasal CTS may be 

reflected by the anterior shift of sources towards IFG pars orbitalis in informational noise, 

consistent with the functional segmentation of the IFG characterized by a posterior-dorsal 

(phonology) to anterior-ventral (semantics) gradient (117–119). However, the presence of 

syllabic CTS sources in the anterior-ventral IFG is somewhat at odds with this functional 

segregation of the IFG. Tentatively, it might relate to lower-level semantic processes, such as 

those potentially needed to predict plausible syllabic sequences. Finally, the dorsal part of the 

pars opercularis was reported to be involved in syntactic processing (116). Our data fit well 

into this perspective, since phrasal but not syllabic CTS sources localized in this region, and 
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only in the least-challenging conditions. In more challenging conditions, emphasis is expected 

to be placed on semantic rather than syntax, as exemplified by suppressed evoked responses 

to syntactic violations in challenging noisy conditions (120). 
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