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ABSTRACT 13 

The trophic ecology of fourteen species of bathybenthic and bathypelagic fishes and six species of 14 

bathybenthic decapod crustaceans from the continental slope and rise of the Southeastern 15 

Mediterranean Sea (SEMS) was examined using stable isotope analysis. Mean δ13C values among 16 

fish species varied by more than 4.0‰, from -20.85‰ (Macroramphosus scolopax) to -16.57‰ 17 

(Conger conger and Centrophorus granulosus), and increased as a function of depth (200 - 1400 m). 18 

Mean δ13C values of the crustaceans showed smaller variation, between -16.38‰ (Polycheles 19 

typhlops) and -18.50‰ (Aristeus antennatus). This suggests a shift from pelagic to regenerated 20 

benthic carbon sources with depth. Benthic carbon regeneration is further supported by the low 21 

benthic-pelagic POM-δ13C values, averaging -24.7 ± 1.2‰, and the mixing model results, presenting 22 

very low contribution of epipelagic POM to the bathyal fauna. Mean δ15N values of fish and 23 

crustacean species ranged 7.91 ± 0.36‰ to 11.36 ± 0.39‰ and 6.15 ± 0.31‰ to 7.69 ± 0.37‰, 24 

respectively, resulting in trophic position estimates, occupying the third and the fourth trophic levels. 25 

Thus, despite the proximity to the more productive areas of the shallow shelf, low number of trophic 26 

levels (TL∼1.0) and narrow isotopic niche breadths (SEAc <1) were observed for bathybenthic 27 

crustaceans (TL = 3.62 ± 0.22) and bathypelagic fishes (TL = 4.33 ± 0.34) in the study area – 28 

probably due to the ultra-oligotrophic state of the SEMS resulting in limited carbon sources. Our 29 

results, which provide the first trophic description of deep-sea megafauna in the SEMS, offer insight 30 

into the carbon sources and food web structure of deep-sea ecosystems in oligotrophic marginal seas, 31 

and can be further used in ecological modeling and support the sustainable management of marine 32 

resources in the deep Levantine Sea.   33 
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1 Introduction 34 

Deep-sea ecosystems cover much of the oceans seafloor and play a major role in large-scale 35 

biogeochemical cycles (Walsh, 1991;Drazen and Sutton, 2017). They provide ecosystem services 36 

that are important to humans, including carbon sequestration, nutrient recycling and burial, waste 37 

accumulation and fisheries production (Danovaro et al., 2008;Mengerink et al., 2014;Thurber et al., 38 

2014). Recent studies have shown that an increasing number of stressors, including climate change 39 

(warming), deoxygenation, ocean acidification, as well as, overfishing, and natural resource extraction 40 

(e.g., Stramma et al., 2008;Yasuhara et al., 2008;Stramma et al., 2010;Helm et al., 2011;Tecchio et 41 

al., 2015) are expanding into deep environments, thus threatening the diversity and stability of deep-sea 42 

ecosystems. Consequently, studying the status of deep-sea communities and describing deep-sea 43 

ecosystem structures are currently gaining more and more attention.   44 

Continental slopes account for ~11% of the total ocean floor (Ramirez-Llodra et al., 2010), 45 

connecting the shallow shelf productive areas with the abyssal plains along steep seabed gradients. 46 

Covering large bathymetric ranges (~ 200 – 2000 m), these dynamic habitats exhibit strong spatial 47 

differences in temperature, salinity, nutrient concentrations and consequently, in habitat suitability 48 

(Koslow, 1993;Gordon et al., 1995;Neat et al., 2008;Bergstad, 2013;Pajuelo et al., 2016). Although 49 

bathyal habitats are relatively isolated from terrestrial inputs, they can support diverse deep-sea fauna 50 

(Gordon and Swan, 1997;Kelly et al., 1998;Menezes et al., 2006;Neat et al., 2008), even in ultra-51 

oligotrophic basins, such as the easternmost Mediterranean Sea (Goren et al., 2008). In deep-sea 52 

benthic ecosystems, fish can play key ecological and biogeochemical roles (Drazen and Sutton, 2017) 53 

by regulating nutrient limitation and zooplankton populations (Hopkins and Gartner, 1992;Pakhomov 54 

et al., 1996).  55 

Deep-benthic ecosystems largely rely on particulate organic matter (POM) that passively sinks from 56 

the surface waters or by lateral transport as a primary source of nutrients (Tecchio et al., 2013). 57 

Animals that carry out vertical diel migrations through the water column (Trueman et al., 2014) and 58 

occasional sink of large animal carcasses is another important food source to deep ecosystems (Smith 59 

and Baco, 2003). Each of these primary food sources carry a distinct isotopic signature that may 60 

reflect its origin, resulting from different chemo-physical processes. Thus, by knowing the isotopic 61 

composition of the food source that fuels a specific food web, it is possible to reconstruct the trophic 62 

structure and dynamics of specific habitats (Post, 2002).  63 

Stable isotope analysis (SIA) has been used successfully to study trophic level, important prey types, 64 

and trophic niche breadth in deep-sea ecosystems (e.g., Boyle et al., 2012;Shipley et al., 2017a). 65 

Nitrogen stable-isotope composition (δ15N) is used to determine the trophic position of an animal, as 66 

it preferentially fractionates as a function of its diet, where the heavy isotopes are retained in the 67 

consumers in respect to their prey by 2–4‰ (Post, 2002). Carbon isotopes (δ13C) fractionate much 68 

less with each trophic step (˂1‰), but can be effectively used to infer basal sources of carbon. 69 

Moreover, SIA provides an integrated view of an organism’s diet over time-scales relevant to tissue 70 

turnover rates rather than digestion rates (Peterson and Fry, 1987;Post, 2002), thereby providing 71 

estimates of the trophic position of an organism within a specific food web.  72 

Knowledge of food web structure and dynamics is key to our understanding of ecological 73 

communities and their functioning (Polis and Strong, 1996;Winemiller and Polis, 1996). This 74 

fundamental information is, however, lacking in many oceanographic regions, including the 75 

Southeastern Mediterranean Sea (hereafter, SEMS) (Parzanini et al., 2019) – one of the most 76 

oligotrophic, nutrient-impoverished marginal basin, worldwide (Kress et al., 2014). The SEMS 77 
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provides a miniature model of processes occurring in vast oligotrophic gyres, an ideal location to 78 

study food web structure and functioning under sever nutrient limitation. Furthermore, the SEMS is 79 

one of the regions where sea surface temperatures are rising at the fastest rates under recent climate 80 

changes (Sisma‐Ventura et al., 2014;Ozer et al., 2017) and is one of most vulnerable marine regions 81 

to species invasions (Rilov and Galil, 2009), which have been also reported from deep-sea habitats 82 

(Galil et al., 2019). Understanding deep-sea community structure and functioning is of prime 83 

importance for developing better predictions regarding the ecological effects of future climate 84 

change.   85 

To date, much of the research describing the trophic ecology of the Eastern Mediterranean Sea 86 

(EMS) has focused on zooplankton groups (Koppelmann et al., 2003;Koppelmann et al., 87 

2009;Hannides et al., 2015;Protopapa et al., 2019), shallow rocky reefs (Fanelli et al., 2015), and on 88 

anthropogenically-influenced coastal environments (Grossowicz et al., 2019), while less attention has 89 

been paid to deep-sea fishes and crustaceans that occupy higher trophic levels. Here we used bulk 90 

carbon and nitrogen stable isotopes (δ13C and δ15N) to study the trophic ecology of bathypelagic and 91 

bathybenthic fishes and crustaceans from the southeast Mediterranean continental slope and rise. We 92 

explored potential factors that may explain the variability in isotope values across species. These data 93 

offer insights into the carbon sources and trophic complexity of deep-sea ecosystems in oligotrophic 94 

marginal seas. 95 

2 Materials and methods 96 

2.1 Study sites and sampling design 97 

Sampling campaigns were conducted in the course of three oceanographic cruises during 2017-2019, 98 

as part of the national deep-water monitoring program of the Israeli Mediterranean Sea performed by 99 

Israel Oceanographic and Limnological Research (IOLR). Sampling sites were divided to three major 100 

benthic habitats: (1) the end of the continental shelf, with an average depth of 200 m; (2) the 101 

continental slope with depth range of 500-600 m; and (3) the deep bathyal plateau (continental rise) 102 

with depth range of 1000-1400 m (Figure 1). Specimens were collected onboard the R/V Bat-Galim, 103 

using a semi-balloon trawl net with an opening of eight meters and mesh size of 10 mm. Once the 104 

trawls were retrieved, animals were sorted, enumerated, weighted and visually identified to species 105 

level. The total length (cm) of each specimen was recorded. Specimens for SIA were selected and 106 

frozen whole at –20 °C until processed at the IOLR.  107 

POM was collected during three research expeditions in winter 2018, summer 2020, and winter 2021, 108 

across the shelf, slope and rise of the SEMS (Figure 1). POM samples were collected throughout the 109 

water column using 8-L Niskin bottles. Water samples were then filtered on pre-combusted 47-mm 110 

glass fiber filters (Whatman) in duplicates at low pressure and dried at 60 °C for 24 h prior to isotope 111 

analysis.  112 

2.2 Stable Isotopes analysis 113 

SIA was conducted on 86 fish and 46 crustacean specimens as well as 77 POM samples (Table 1). 114 

White muscle tissue for SIA was dissected from the dorsal musculature of fishes and from the 115 

abdominal segment of the crustaceans. Samples were rinsed with deionized water, frozen, and 116 

lyophilized for 48 h. Freeze-dried samples were homogenized using a mortar and pestle, weighed, 117 

and shipped to the Stable Isotope Facility at Cornell University for SIA analysis. The isotopic 118 

composition of organic carbon and nitrogen was determined by the analysis of CO2 and N2 119 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477062doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.20.477062
http://creativecommons.org/licenses/by-nc-nd/4.0/


   Levantine bathyal food web  

 
4 

continuous-flow produced by combustion on a Carlo Erba NC2500 connected on-line to a DeltaV 120 

isotope ratio mass spectrometer coupled with a ConFlo III interface.  121 

Measured isotope ratios are reported in the δ-notation, i.e., as the deviation in per mill (‰) from the 122 

international standards: 123 

𝜹
𝑺𝒂𝒎𝒑𝒍𝒆 = ( 

𝑹𝑺𝒂𝒎𝒑𝒍𝒆

𝑹𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅
−𝟏) ×𝟏𝟎𝟑

 124 

where, R represents the 15N/14N or 13C/12C ratio. Stable isotope data are expressed relative to 125 

international standards of Vienna PeeDee belemnite and atmospheric N2 for carbon and nitrogen, 126 

respectively. The analytical precision for the in-house standard was ± 0.04‰ [1σ] for both δ13C and 127 

δ15N. The C/N ratios of fishes and crustaceans in this study were low (species mean C/N ranged 128 

between 2.33–4.48; where in 97% of individuals C/N < 4.0, see Supplementary Figures 1, 2), 129 

suggesting that lipids did not significantly affect the δ13C interpretation (Post et al., 2007). Therefore, 130 

all data analyses were performed on uncorrected δ13C values. To determine if the isotopic signatures 131 

of POM samples changed with depth, we used collection depth to classify POM samples as 132 

epipelagic (0–200 m), mesopelagic (200–800 m), or bathypelagic (>800 m). 133 

2.3 Data analysis 134 

The trophic position (Trophic Level, TrLi) was calculated for each species according to Post et al. 135 

(2007): 136 

𝐓𝐫𝐋𝒊 = [(𝛅𝟏𝟓𝐍𝐢 − 𝛅𝟏𝟓𝐍𝐛𝐚𝐬𝐞) ∆𝟏𝟓𝐍] +  𝛌⁄  137 

where, 𝛿15𝑁𝑖  is the mean species δ15N, and 𝛿15𝑁𝑏𝑎𝑠𝑒 stands for the primary producer or primary 138 

consumer being used to set the isotopic baseline. We applied the trophic discrimination factor ∆15𝑁 139 

of 3.15‰, which was previously used to calculate the trophic level of meso- and bathypelagic fish 140 

(Valls et al., 2014;Richards et al., 2018). The 𝜆 represents the trophic level of the organism being 141 

used to set the baseline. Following Protopapa et al. (2019), epipelagic POM was set as the baseline 142 

and 𝜆 was set to an intermediate value of 1.5, since it consists mostly of phytoplankton (TL = 1) and 143 

micro- and mesozooplankton (TL = 2) (Albo-Puigserver et al., 2016), equally contributing due to 144 

intensive top-down control in this region (Belkin et al., 2022). 145 

Least-squares linear regression analysis was conducted for each species to explore the relationship 146 

between fish length and the δ13C and δ15N values.  Spatial variation in δ13C and δ15N of both fishes 147 

and crustaceans was investigated using least-squares linear regression between isotopic values and 148 

bathymetric depths. All statistical analyses were performed in R v. 4.0.5 (R Core Team, 2020). 149 

The trophic breadth of each species (n >3) and trophic similarity among species were assessed by 150 

calculating Standard Ellipse Area (SEA) using the R package SIBER v. 2.1.6 (Jackson et al., 151 

2011;Jackson and Parnell, 2021). Size-corrected SEAs (SEAc) were calculated for each species, 152 

which adjusts for underestimation of ellipse area at small sample sizes and allows for inter-study 153 

comparison of ellipse sizes (Jackson et al., 2011). Fish and crustacean community metrics were 154 

calculated based on Layman et al. (2007).  155 

Bayesian mixing models were applied using R package MixSIAR v. 3.1.12 (Stock et al., 2018;Stock 156 

et al., 2021) to estimate the relative contribution of epi-, meso-, and bathypelagic POM to each 157 

species. These models are sensitive to variable discrimination factors (Bond and Diamond, 2011;Olin 158 
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et al., 2013), which may be influenced by diet (Caut et al., 2009), tissue type (Malpica-Cruz et al., 159 

2012), temperature (Britton and Busst, 2018), and species-specific metabolic rates (Pecquerie et al., 160 

2010). Largely, greater δ15N discrimination factors (>3.0‰) are associated with lower trophic-level 161 

species, and are significantly lower (<3.0‰) in higher trophic level species, due to the greater dietary 162 

protein quality of higher trophic level predators (Robbins et al., 2005). Since discrimination factors 163 

for bathyal megafauna are yet to be determined, we used discrimination factors of 3.15 ± 1.28‰ for 164 

δ15N and 0.97 ± 1.08‰ for δ13C (Sweeting et al., 2007), which have been previously used to study 165 

the trophic structure of meso- and bathypelagic fishes in the Gulf of Mexico (Richards et al., 2018) 166 

and in the Western Mediterranean Sea (Valls et al., 2014). Each model was run with identical 167 

parameters (number of MCMC chains = 3; chain length = 300000; burn in = 200000; thin = 100), and 168 

model convergence was determined using Gelman-Rubin and Geweke diagnostic tests (Stock et al., 169 

2018). 170 

 171 

3 Results 172 

3.1 Stable isotopes 173 

16.14‰ for crustaceans. Fish mean δ13C values differed by 4.27‰, separating the most depleted 174 

(Macrorhamphosus scolopax: –20.85 ± 0.46‰, sampling depth of 200 m) and the most enriched 175 

species (Centrophorus granulosus and Conger conger: –16.89 and –16.57‰, respectively, sampling 176 

depth of ~1000m) (Table 1, Figure 2). Crustaceans species-specific mean δ13C varied less by 177 

2.07‰, where the most depleted species was Parapenaeus longirostris (–18.45 ± 0.10‰, sampling 178 

depth of 200 m) and the most enriched species was Polycheles typhlops (–16.38 ± 0.21‰, sampling 179 

depth of ~1400 m). Species-specific differences in δ13C and δ15N were significant for both fish 180 

(MANOVA, F13,144 = 19.73, p < 0.001) and crustaceans (MANOVA, F5,78 = 14.62, p < 0.001). 181 

Species-specific mean δ15N values varied from 11.36 ± 0.39‰ (Nezumia sp. 1100 m depth) to 7.91 ± 182 

0.36‰ (M. scolopax, 200 m depth) in fish and from 6.15 ± 0.31‰ (Plesionika edwardsii; 200-600 m 183 

depth) and 8.07 ± 0.21‰ (Aristaeomorpha foliacea; 1400 m depth) in crustaceans. Fish mean δ15N 184 

values positively correlated with the δ13C values (r2 = 0.6, p < 0.001, Figure 2, Supplementary 185 

Figure 1) and varied among species (ANOVA, F13,72 = 24.22, p < 0.001). Crustaceans, however, did 186 

not show this correlation between δ15N and δ13C (r2 = 0.002, p > 0.05, Figure 2, Supplementary 187 

Figure 2), observed in fish from similar depths. Due to limited spatial coverage within each species, 188 

spatial variation could not be tested within each species, and therefore, spatial trends were tested by 189 

addressing all fish species together. Fish δ13C values positively varied with bottom depth (r2 = 0.42; 190 

P <0.01, Figure 3), where the most enriched samples are found at the continental rise (> 1000 m) and 191 

the most depleted at the shallow slope (200m) at the edge of the shelf. This pattern was less clear in 192 

the case of fish δ15N values (Figure 4), where species-specific mean values seem more variable in 193 

the continental rise (> 1000 m). Crustaceans mean δ15N values positively correlated with depth (r2 = 194 

0.76, p = 0.053, Figure 4), while their mean δ13C values showed no such correlation (Figure 3).  195 

POM collected from depths ranging from 0 to 1135 m, exhibited a wide δ13C range (–27.36 to –196 

21.54‰) and δ15N range (–3.25 to 12.76‰), with POM samples generally becoming more enriched 197 

in 15N and more depleted in 13C at bottom depths (Figure 5). Significant differences in POM δ13C 198 

and δ15N among the three vertical depth zones were observed (MANOVA, F2,148 = 8.65, p < 0.001). 199 

POM-δ13C and C/N ratio exhibited a negative correlation (Supplementary Figure 3), which was not 200 

observed in POM-δ15N and C/N ratio.    201 
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3.2 Trophic level estimates 202 

We used the average epipelagic POM-δ15N value (0.52 ± 1.84‰) as a baseline for estimating 203 

species-specific TL, following Richards et al. (2018). The δ15N of bathypelagic primary consumers 204 

was not available for similar calculation.  However, based on the low δ15N values of zooplankton in 205 

the eastern Mediterranean, it was assumed that the primary food source, namely smaller zooplankton, 206 

phytoplankton and particles has a δ15N value around zero (Koppelmann et al., 2009). Large 207 

mesozooplankton (333 mm mesh size, upper water column) δ15N values in the EMS show an 208 

enrichment trend across a west-east transect (SE Crete mean δ15N value ~2.0‰ and SE Cyprus mean 209 

δ15N value ~4.0‰, Koppelmann et al. 2009). The average Δ15N of phytoplankton-zooplankton and 210 

zooplankton-fish in the study area yielded enrichment factors of 2.5 and 3.9‰, respectively 211 

(Grossowicz et al. 2019). Using this factor, our measured epipelagic POM-δ15N value (0.52 ± 212 

1.84‰) could be also inferred and confirmed using the large mesozooplankton δ15N value of ~4.0‰ 213 

reported by Koppelmann et al. (2009). When epipelagic POM data were used to set the baseline, fish 214 

TL ranged from 3.85 ± 0.11 (M. scolopax; 200 m depth) to 4.91 (C. conger; 1000 m depth), while the 215 

average TL of all fish species was 4.33 ± 0.34 (Figure 6). Crustaceans- δ15N values yielded TLs 216 

between 3.29 and 3.78, with an average of 3.62 ± 0.22 (Figure 6).  217 

Of the species examined, only few enabled an estimation of ontogenetic effect (Figure 7). This is due 218 

to the low range of body size within individual species that were sampled in this study. Nevertheless, 219 

the crustaceans A. eximia (r2 = 0.82; p < 0.001) and P. edwardsii (r2 = 0.72; p < 0.05) exhibited a 220 

positive relationship between length and δ15N values. Size and δ13C values did not yield significant 221 

correlations. Positive relationship between size and δ15N values was also observed for the fish Dentex 222 

macrophthalmus (r2 = 0.59; p < 0.05). 223 

3.3 Trophic niche breadth 224 

Isotopic niche breadth, calculated using SEAc (Table 2, Figure 8), was largest for the fish collected 225 

from the shallow continental slope Coelorinchus caelorhincus (SEAc = 2.04), D. macrophthalmus 226 

(SEAc = 0.94) and M. scolopax (SEAc = 0.66), and for the shrimps A. foliacea (SEAc = 0.96) and 227 

Aristeus antennatus (SEAc = 0.63), both opportunistic carnivores. The smallest isotopic niche 228 

breadth belonged to Bathypterois mediterraneus (SEAc = 0.009), a planktivorous fish. Fish and 229 

crustacean community metrics (Table 3) showed higher convex hull area (TA) in fish (TA = 7.37) 230 

than in crustaceans (TA = 0.81), indicating a larger trophic community width (Layman et al. 2007). 231 

3.4 Bayesian mixing models 232 

The results of the mixing models indicate that most deep-sea fish and crustacean consumers included 233 

in this study derive the bulk of their carbon from bathypelagic POM (Figure 9). Relative 234 

contributions of epi- and mesopelagic POM ranged from 0.3 ± 0.3% in Nezumia sp. to 17.1 ± 8.1% in 235 

Lepidotrigla cavillone, while contributions from bathypelagic POM were much higher, ranging from 236 

73.7 ± 4.3% in L. cavillone to 99.3 ± 0.5% in Nezumia sp., with the exception of M. scolopax that 237 

had similar bathypelagic and mesopelagic contribution (45.7 ± 5.0% and 40.4 ± 12.4%, respectively). 238 

Diagnostic plots of posterior distributions (Supplementary Figure 4) revealed high negative 239 

correlations between bathypelagic POM and epi/mesopelagic POM (Repi-bathy = -0.78, Rmeso-bathy = -240 

0.49) and a low negative correlation between epi- and mesopelagic POM (Repi-meso = -0.17). The 241 

negative correlation is likely caused by the similar δ13C signatures of sources and not from a missing 242 

carbon source, since producer data fully constrain consumer data when an appropriate trophic 243 

enrichment factor is applied (Richards et al., 2018) and that model diagnostics indicate that the model 244 
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fully converged (Gelman-Rubin Diagnostic: all variables <1.01; Gweke Diagnostic: <5% of variables 245 

outside ± 1.96 for each chain).  246 

4 Discussion 247 

This is the first attempt to elucidate the trophic ecology of deep-sea fish and crustacean species in the 248 

SEMS. The knowledge gained in this study provides insights into the main energy sources sustaining 249 

deep-sea food webs in one of the most oligotrophic, nutrient-improvised marine basins, worldwide. 250 

However, insights gained in this study are not limited to the SEMS alone, and can be ascribed to 251 

many oligotrophic basins with limited carbon and nutrient sources.  252 

Our δ13C and δ15N values varied across fish species and as a function of bathymetric depth, 253 

suggesting that depth and diet are controlling the trophic positions inferred from our stable isotope 254 

data. As expected, top predators such as the European conger eel C. conger, occupied the highest 255 

trophic position. The rattail Nezumia sp., a small macrourid fish that was collected from similar 256 

depths of >1000 m, yielded similar high δ15N values. Both species occupied a maximum trophic level 257 

of 4.89-4.91. Polunin et al. (2001) found similar trophic position of 4.4 for both the shark 258 

Centroscymnus coelolepsis and Nezumia aequalis in the continental slope of the Balearic Islands. 259 

High δ15N values of Nezumia (11.09 ±0.58‰ and 11.31‰) were also recorded by Fanelli and Cartes 260 

(2010) in the Archipelago of Cabrera (Algerian Basin) and by Papiol et al. (2013) in the Balearic 261 

Islands (Catalan Sea, West Mediterranean), respectively, and were attributed to the suprabenthic 262 

crustaceans and polychaetes that constitute the diet of this macrourid. Our TL data also agree well 263 

with that of benthic carnivorous fish from Bay of Banyuls-sur-Mer (northwest Mediterranean, 264 

France; Carlier et al., 2007). Among the fish, the lowest trophic level (3.85±0.11) was found in the 265 

snipefish M. scolopax, which feeds on hyperbenthic demersal zooplankton during daytime 266 

(Carpentieri et al., 2016). This was also inferred from the results of the mixing models, indicating a 267 

relatively high contribution of mesopelagic POM to the diet of M. scolopax. Relatively to the fish, 268 

the bathybenthic crustaceans measured in this study occupied lower trophic positions – between 3.29 269 

and 3.78, in agreement with the TL of deep benthic invertebrates of the Western Mediterranean 270 

(Carlier et al., 2007).       271 

In the fish species examined here, mean δ15N values spanned 3.45‰, about 1.1 TL, while in the 272 

crustacean species mean δ15N values spanned 1.92‰, about 0.6 TL (assuming trophic enrichment 273 

factor of 3.15‰). Our observed ranges of estimated trophic levels are in line with other studies 274 

examining Mediterranean (1.1 TL, Valls et al., 2014), Pacific (1.6 TL, Choy et al., 2015), and the 275 

Gulf of Mexico (0.62 TL, Richards et al., 2018) . Different feeding strategies as well as different 276 

migration habits may explain wider range of δ15N (Shipley et al., 2017a;Richards et al., 2020). 277 

Despite of the reliance on similar basal production, mesopelagic fishes from the Western 278 

Mediterranean were segregated by trophic position, between 2.9 for the small bristlemouth 279 

Cyclothone braueri to 4.0 for the lanternfish Lobianchia dofleini (Valls et al., 2014), and bathyal 280 

fishes off the Balearic Islands appeared to be foraging over two to three full trophic levels (Polunin et 281 

al., 2001). Our results support a much narrower trophic range for bathyal fish and bathybenthic 282 

decapod crustaceans in the SEMS. We attribute this narrow range to the ultra-oligotrophic state of the 283 

SEMS, resulting in limited carbon sources to sustain the deep-sea food webs, reflected by a general 284 

increase of δ13C in fish as function of bottom depth. This pattern could be driven by a number of 285 

factors including shifting production sources, or shifts in community composition and feeding 286 

strategies, and or switching from benthic to pelagic prey (Fanelli et al., 2011;Trueman et al., 2014).  287 

For example, 13C became more depleted in individuals captured at greater depths in the deep-sea 288 

island slope system of the Exuma Sound, the Bahamas (Shipley et al., 2017b). Inshore-to-offshore 289 
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depletion in 13C values were also apparent in epipelagic fishes in the northern California Current, 290 

where copepods, gelatinous zooplankton, and nekton showed a significant linear decrease in δ13C 291 

with distance offshore (Miller et al., 2008).    292 

The major carbon sources supporting deep-sea food webs are poorly defined, aside from oligotrophic 293 

open-ocean gyres, where sinking phytoplanktonic-POM is considered the main energy source 294 

(Shipley et al., 2017b). This was observed by a narrow range of δ13C in meso- and bathypelagic 295 

predatory fishes in the Gulf of Mexico, indicating similar epipelagic carbon source (Richards et al., 296 

2018). Conversely, the results of our mixing-models show that the majority of carbon (92.19 ± 297 

12.54%) supporting the species examined in this study is not derived from epipelagic sources. An 298 

alternative hypothesis is that the source of carbon in the deep-sea originates from the shelf. A 299 

significant proportion of neritic-derived primary production may be transported into deep-sea 300 

systems by currents (Suchanek et al., 1985;Sanchez-Vidal et al., 2012;Efrati et al., 2013), or via 301 

lateral transport (Fahl and Nöthig, 2007), and once assimilated into the food web, more enriched 13C 302 

values are to be expected (Polunin et al., 2001;Fanelli et al., 2011). Katz et al. (2020) used deep-sea 303 

sediment traps in the Israeli Southeastern Mediterranean Sea and showed that lateral transport from 304 

the continental margin contributes the greatest fraction of particulate flux to the seafloor. Therefore, 305 

we suggest that lateral transport constitutes the main source of carbon to the deep-sea food web in the 306 

Southeastern Mediterranean Sea. 307 

Since the carbon signature of primary producers can significantly vary between macroalgae and 308 

different phytoplankton groups (Fanelli et al., 2011;Grossowicz et al., 2019), food webs that show a 309 

linear relationship between δ15N and δ13C values are suggestive of a single food source (Polunin et 310 

al., 2001;Carlier et al., 2007). Generally weak δ13C–δ15N correlations were found in deep-sea 311 

macrozooplankton and micronekton off the Catalan slope likely due to the consumption of different 312 

kinds of sinking particles (e.g. marine snow, phytodetritus). Multiple recycling of POM constituted 313 

an enrichment effect on the δ13C and δ15N values of deep-sea macrozooplankton and micronekton 314 

(Fanelli et al., 2011). Our results yielded significant positive correlation between fish δ15N and δ13C 315 

values, further supporting a single food source.  316 

Our results showed that δ13C fractionates less than 1.0‰ for each trophic position. The Δ13C between 317 

the mean water column POM- δ13C (-24.13 ± 1.56‰) and fish/crustaceans δ13C (-18.10 ± 0.93‰) of 318 

the SEMS amounted to 6.04‰ (equal to at least six trophic positions), and therefore, cannot be 319 

attributed to trophic enrichment, but rather to the regeneration of benthic carbon sources. Moreover, 320 

our δ13C-C/N data support the potential effect of microbially degraded phyto-detritus resulting in 321 

higher isotopic values of nitrogen and carbon in deep benthic food webs compared with pelagic food 322 

web (Papiol et al., 2013;Romero-Romero et al., 2021). 323 

Deep-sea ecosystems are subjected to exacerbating anthropogenic stressors, including overfishing, 324 

chemical pollution, mining, dumping, litter, plastics, and climate change (Davies et al., 2007). In 325 

oligotrophic environments such as the ultra-oligotrophic SEMS, deep-sea ecosystems are further 326 

vulnerable to reduced food availability (Kröncke et al., 2003). Regeneration of benthic carbon 327 

sources, supported by this study, provides oligotrophic deep-sea food webs with a greater ability to 328 

endure carbon limitation. Nonetheless, benthic carbon source originating in lateral transport from the 329 

shallow shelf to the deep-sea, as indicated here, may carry detrimental implications to the ecosystem 330 

via pollutant accumulation and biomagnification (Liu et al., 2020). This is particularly important in 331 

marginal seas that are prone to anthropogenic pollution (Kim et al., 2019;Shoham-Frider et al., 332 

2020). Continuous studies should be undertaken to further unveil the implications of lateral transport 333 

and benthic carbon regeneration to deep-sea food webs. 334 
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5 Data Availability Statement 335 

The datasets generated for this study can be found in the open-access data repository PANGAEA, 336 

and will be made publicly available with publication. 337 

6 Figures and Tables 338 

6.1 Figures 339 

 340 
Figure 1. Map of sampling sites in the SEMS. The locations of POM samples are presented in black 341 

circles, and locations of fishes and crustaceans by trawl net are presented in black lines.  342 
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 343 

Figure 2. Isotope biplot of δ13C and δ15N values of Levantine deep-sea decapod crustaceans (circles) 344 

and fishes (triangles), zooplankton (cross, based on Koppelmann et al. 2009), and POM (squares). 345 

Data points represent means and error bars represent ±SD.  346 
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 347 

Figure 3. Correlations between mean δ13C (‰) and depth (m) in Levantine deep-sea decapod 348 

crustaceans (left) and fish (right). Dash lines represent Least-squares regression line. 349 

 350 
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 351 

Figure 4. Correlations between mean δ15N (‰) and depth (m) in Levantine deep-sea decapod 352 

crustaceans (left) and fish (right). Dash lines represent Least-squares regression line. 353 

 354 

 355 

 356 
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 357 

Figure 5. Violin charts with boxplots showing POM-δ15N (‰), POM-δ13C (‰) and POM-C/N ratio 358 

collected from epipelagic (0-200 m), mesopelagic (201-800 m), and bathypelagic (>800 m) depths in 359 

the Southeastern Mediterranean Sea during 2018-2021.  360 

  361 
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 362 

 363 

Figure 6. Trophic level (TL) estimates calculated using δ15N data of deep-sea Levantine decapod 364 

crustaceans (red) and fish (blue) species, using epipelagic POM to establish isotopic baseline. 365 

 366 

 367 
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 368 

Figure 7. Least-squares regression analysis between total length (cm) and δ15N values in the decapod 369 

crustaceans A. eximia (n=10) and P. edwardsii (n=6), and the fish D. macrophthalmus (n=7). 370 

371 
Figure 8. Trophic niche breadth of Levantine deep-sea fish and decapod crustaceans (n≥3) estimated 372 

by size-corrected standard ellipse area (SEAB) boxplots (showing 95, 75 and 50 % credibility 373 

intervals). Black circles represent means; red x symbols represent the maximum likelihood estimates 374 

of SEAB. Ae - Acanthephyra eximia; Pe - Plesionika edwardsii; Aa - Aristeus antennatus; Af - 375 

Aristaeomorpha foliacea; Pt - Parapenaeus longirostris; Pl - Parapenaeus longirostris; Gm - Galeus 376 

melastomus; Es - Etmopterus spinax; Ns - Nezumia sp.; Hd - Helicolenus dactylopterus; Hm - 377 

Hoplostethus mediterraneus; Cc - Coelorinchus caelorhincus; Bm - Bathypterois mediterraneus; Dm 378 

- Dentex macrophthalmus; Ms - Macroramphosus scolopax; Lc - Lepidotrigla cavillone; Se - 379 

Scorpaena elongata. 380 
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 381 

 382 

Figure 9. Estimated relative contributions (%) of POM collected from epi-, meso- and bathypelagic 383 

depths (0-200, 201-800, >800 m, respectively) to Levantine deep-sea fish and decapod crustaceans, 384 

based on Bayesian mixing models. Bars represent mean contributions and error bars represent ±SD. 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 
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6.2 Tables 394 

Table 1: Sample descriptions and bulk δ13C and δ15N isotope data (mean ± SD). 395 

Sample type / Species 

(abbreviation) n Depth (m) Total length (cm) Total weight (g) δ13C (‰) δ15N (‰) C/N 

Fish 

Bathypterois mediterraneus (Bm) 3 200 9.73±1.63 5.00±2.08 -17.76±0.21 9.62±0.01 2.94±0.02 

Centrophorus granulosus (Cg) 1 600 n/a n/a -16.89 9.55 2.39 

Coelorinchus caelorhincus (Cc) 11 200-600 15.55±4.11 17.00±15.65 -18.82±0.90 9.81±0.84 3.36±0.37 

Conger conger (CCo) 1 1000 87 1296 -16.57 11.25 3.03 

Dentex macrophthalmus (Dm) 12 200 13.67±0.97 42.00±8.96 -18.67±0.65 9.22±0.45 3.38±0.26 

Etmopterus spinax (Es) 3 1100 30.67±1.17 121.00±15.31 -17.61±0.05 8.83±0.33 2.62±0.20 

Galeus melastomus (Em) 4 1100 33.53±4.99 114.00±39.62 -17.75±0.28 7.97±0.13 2.42±0.10 

Helicolenus dactylopterus (Hd) 14 500-600 17.50±1.75 95.00±29.88 -17.99±0.27 8.82±0.28 3.09±0.16 

Hoplostethus mediterraneus (Hm) 6 500-600 16.00±1.41 62.00±5.66 -17.49±0.20 10.29±0.67 3.04±0.16 

Lepidotrigla cavillone (Lc) 6 200 10.03±0.60 14.00±2.22 -19.13±0.25 8.35±0.35 3.10±0.25 

Lophius budegassa (Lb) 2 1000 65.55±21.14 37.00±2.12 -17.17±0.18 9.80±0.46 3.09±0.01 

Macroramphosus scolopax (Ms) 5 200 9.08±0.79 5.00±1.48 -20.85±0.46 7.91±0.36 4.48±0.72 

Nezumia sp. (Ns) 13 500-1100 17.39±1.44 14.00±3.61 -17.13±0.26 11.18±0.47 3.14±0.14 

Scorpaena elongata (Se) 5 200 n/a n/a -17.93±0.14 6.72±0.19 2.83±0.01 

Decapod crustaceans 

Acanthephyra eximia (Ae) 11 1400 12.04±2.19 13.18±7.49 -17.59±0.30 6.95±0.64 2.90±0.11 

Aristaeomorpha foliacea (Af) 3 1400 9.83±1.53 5.36±1.54 -17.97±0.87 7.68±0.68 2.90±0.06 

Aristeus antennatus (Aa) 16 600-1400 11.69±1.21 8.52±2.97 -18.26±0.52 7.69±0.37 2.85±0.14 

Parapenaeus longirostris (Pl) 7 200 10.17±0.82 4.34±1.18 -18.45±0.10 6.72±0.19 2.94±0.08 

Plesionika edwardsii (Pe) 6 200-600 12.40±1.51 5.81±1.99 -17.69±0.17 6.15±0.31 2.39±0.12 

Polycheles typhlops (Pt) 3 1100-1400 6.93±0.81 2.86±0.58 -16.38±0.21 7.67±0.18 3.36±0.05 

POM 

Epipelagic 29 0-200 n/a n/a -23.90±1.08 0.52±1.84 8.75±2.83 

Mesopelagic 19 201-800 n/a n/a -24.12±1.29 3.74±3.85 10.92±3.69 

Bathypelagic 29 >800 n/a n/a -24.36±2.06 4.80±2.42 9.81±3.61 

 396 
  397 
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Table 2: Metrics for estimating isotopic niche size in fourteen fish and six decapod crustaceans from 398 

the Levantine bathyal (n≥3). TA, total area (‰2) encompassed by all data points of each species; 399 

SEA, standardized ellipse area for each species; SEAC, size-corrected standardized ellipse area. 400 

Sample type / Species TA SEA SEAC 

Fish 

B. mediterraneus 0.00 0.00 0.01 

C. caelorhincus 3.20 1.84 2.04 

D. macrophthalmus 1.61 0.85 0.94 

E. spinax 0.01 0.03 0.05 

G. melastomus 0.09 0.10 0.15 

H. dactylopterus 0.53 0.21 0.22 

H. mediterraneus 0.34 0.25 0.31 

L. cavillone 0.31 0.27 0.34 

M. scolopax 0.60 0.49 0.66 

Nezumia sp. 0.90 0.37 0.41 

S. elongata 0.24 0.24 0.32 

Crustaceans 

A. eximia 0.90 0.50 0.56 

A. foliacea 0.27 0.48 0.96 

A. antennatus 1.91 0.59 0.63 

P. longirostris 0.08 0.06 0.07 

P. edwardsii 0.21 0.16 0.20 

P. typhlops 0.03 0.06 0.12 

 401 

Table 3: Community metrics for estimating isotopic niche size (Layman et al. 2007) in bathypelagic 402 

fish and bathybenthic crustaceans. TA, total area (‰2) encompassed by all data points of each 403 

assemblage (crustaceans, fish); CD, mean distance to centroid (trophic diversity); MNND, mean 404 

nearest neighbour distance (trophic similarity); SDMNND, the standard deviation of MNND (trophic 405 

evenness). 406 

 Crustaceans Fish 

δ13C range 1.54 4.67 

δ15N range 2.07 3.71 

TA 1.87 7.37 

CD 0.81 1.29 

MNND 0.75 0.82 

SDNND 0.43 0.52 

 407 

 408 
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