
Uncovering hidden assembly artifacts: when unitigs are not safe

and bidirected graphs are not helpful.

Amatur Rahman1 Paul Medvedev1,2,3,†

1 Department of Computer Science and Engineering, The Pennsylvania State University
2 Department of Biochemistry and Molecular Biology, The Pennsylvania State University

3 Huck Institutes of the Life Sciences, The Pennsylvania State University

† Corresponding author, pzm11@psu.edu

Abstract

Recent assemblies by the T2T and VGP consortia have achieved significant accuracy but re-
quired a tremendous amount of effort and resources. More typical assembly efforts, on the other
hand, still suffer both from mis-assemblies (joining sequences that should not be adjacent) and
from under-assemblies (not joining sequences that should be adjacent). To better understand
the common algorithm-driven causes of these limitations, we investigated the unitig algorithm,
which is a core algorithm at the heart of most assemblers. We prove that, contrary to popular
belief, even when there are no sequencing errors, unitigs are not always safe (i.e. they are not
guaranteed to be substrings of the sequenced genome). We also prove that the unitigs of a
bidirected de Bruijn graph are different from those of a doubled de Bruijn graph and, contrary
to our expectations, result in under-assembly. Using experimental simulations, we then confirm
that these two artifacts exist not only in theory but also in the output of widely used assemblers.
To the best of our knowledge, this paper is the first to theoretically predict the existence of these
assembler artifacts and confirm and measure the extent of their occurrence in practice.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

1 Introduction

Reconstructing the full sequence of a genome from its sequencing data remains one of the most chal-
lenging problems in bioinformatics. Assemblers have suffered both from mis-assemblies (putting
together sequences that should not be adjacent) and under-assemblies (not putting together se-
quences whose adjacency should be apparent from the data) [2, 28]. Recent efforts by the Telomere-
to-Telomere consortium [20, 19] and the Vertebrate Genome Project [24] demonstrated how long
read technologies, long-range contact mapping, and manual curation can alleviate these errors.
However, the time and cost of those efforts remain prohibitive for most biology labs. In such cases,
mis- and under-assemblies continue to be a major limitation (e.g. [31]).

Understanding the common algorithm-driven causes of these limitations is made complicated
by the diversity and complexity of assembly algorithms. We can start by focusing on assemblers
that use de Bruijn graphs (dBGs) [12], which continue to be popular even for long-read data [3].
But even dBG-based assemblers differ on how they handle complexities arising from sequencing
errors, heterogeneity, or DNA double strandedness. Nevertheless, most assemblers are built on top
of the unitig algorithm, which returns all the maximal unitigs in an assembly graph [28]; a unitig
is a path whose vertices have exactly one incoming and one outgoing edge, with the exception that
the first and last vertex can have any number of incoming and outgoing edges, respectively. Being
a common denominator of most assemblers, the unitig algorithms is a good target for investigating
shared sources of of mis- and under-assemblies.

It is already known that the unitig algorithm contributes to under-assembly (e.g. see the safe
and complete framework of [30, 6]) and can trivially create mis-assemblies when there are sequencing
errors. The effect of sequencing errors on assembly errors has even been theoretically studied more
broadly in [25, 26, 27]. However, it is widely assumed that if it were not for sequencing errors,
unitigs would always be safe (i.e. substrings of the sequenced genome). In an earlier work [15],
we attempted to formally prove this but could only do so by assuming perfect coverage. This
assumption was also necessary in another earlier work [30], where it was suggested that without it,
unitigs may not be safe. Unitigs were also implied to be unsafe in certain models of the assembly
problem [6]. We therefore hypothesize that, contrary to popular belief, there are non-contrived
conditions which lead to unsafe unitigs on error-free data.

The unitig algorithm also needs to account for the fact that the strand from which a read is
sequenced is unknown. Most assemblers do so via two common approaches to constructing the
dBG. In one, every k-mer is “doubled” prior to constructing the dBG, i.e. for every k-mer in
the input, both it and its reverse complement is added to the dBG (e.g. SPAdes [4]). In the
other approach, edges are given two instead of one orientation, thereby capturing the way that
double-stranded strings can overlap. This results in a bidirected dBG [18], used in assemblers
such as ABySS [29, 13]). Due to its more elegant construction, we hypothesize that the use of the
bidirected dBG reduces the number of under-assemblies compared to the doubled dBG.

In this paper, we perform a theoretical and empirical study to validate our two hypothesis
about common algorithm-driven sources of mis- and under-assemblies. First, despite widespread
belief to the contrary, we show that even on error-free data, unitigs do not always appear in the
sequenced genome (i.e. they are unsafe). Our experimental results confirm that at least two different
assemblers exhibit this behavior in practice. Second, we establish that there is a bijection between
maximal unitigs in the doubled and bidirected dBGs, except that palindromic unitigs in the doubled
dBG are split in half in the bidirected dBG. This is the opposite of what we hypothesized, showing
that naively using the bidirected graph actually contributes to under-assembly compared to the
doubled graph. Our experimental results confirm that this artifact appears in some assemblers but
not in others. Nevertheless, we also find that the extent of these two artifacts is limited. To the

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

best of our knowledge, this paper is the first to theoretically predict the existence of these assembler
artifacts and confirm and measure the extent of their occurrence in practice.

2 Preliminaries

In this section we give the formal definitions for our paper. The reader may wish to delay reading
the last three paragraphs (relating to bidirected graphs) until they are used in Section 4.

Strings: In this paper, we assume all strings are over the four-letter DNA alphabet. A string of
length k is called a k-mer. We define sufk(x) (respectively, prek(x)) to be the last (respectively,
first) k characters of x. When the subscript is omitted from pre, and suf , we assume it is k − 1.
For x and y with suf(x) = pre(y), we define gluing x and y, denoted by x� y, as x concatenated
with the last |y|−k+1 characters of y. Given two strings x and y, we define occy(x) as the number
of times that x occurs in y. The reverse complement of x is denoted as x. For a set of strings
S, S denotes the set of the reverse complements of all strings of S. A string x is a palindrome iff
x = x. A string x is canonical if it is the lexicographically smaller of x and x. For s ∈ {0, 1},
we define orient(x, s) to be x if s = 0 and to be x if s = 1. To canonize x is to replace it by its
canonical version, canon(x) = mini(orient(x, i)). We say that x0 and x1 have a (s0, s1)-oriented-
overlap if suf(orient(x0, 1− s0)) = pre(orient(x1, s1)). Intuitively, such an overlap exists between
two strings if we can orient them in such a way that they are glueable. For example, GTT and
TTG has a (1, 0)-oriented overlap, and AAC and TTG have a (0, 0)-oriented overlap. We define
the non-canonical k-spectrum spk(x) as the set of all k-mer substrings of x.

Directed de Bruijn graphs: Given a set of k-mers K, the basic node-centric directed de Bruijn
Graph, Gbasic(K), is directed graph where nodes are the k-mers of K, and an edge exists from
k-mer x to k-mer y iff suf(x) = pre(y). A double directed de Bruijn graph on K, Gdbl(K) is a basic
de Bruijn graph on the set of k-mers K ∪K, i.e. Gdbl(K) = Gbasic(K ∪K). Observe that for any
k-mer x such that suf(x) 6= pre(x), the existence of the edge from x to y in Gdbl(K) implies the
existence of a different edge from y to x. We refer to such a pair of edges as mirrors. For a k-mer
x such that suf(x) = pre(x), the Gdbl(K) will contain an edge from x to x; we call this edge a
self-mirror.

Walks and unitigs in directed graphs For a vertex x in a directed graph, the in-degree d−(x)
(respectively, out-degree d+(x)) is the number of edges incoming to (respectively, outgoing from)
it. The sequence of vertices w = (x0, . . . , xn), for n ≥ 0, is a walk iff for all 1 ≤ i ≤ n there exists
an edge from xi−1 to xi. Vertices x0 and xn are called endpoints, and a walk sometimes has one
endpoint. The spelling of a walk is defined as spell(w) = x0�· · ·�xn. A walk is said to be circular
iff n ≥ 1 and x0 = xn, and a simple cycle if for all i and j such that 0 ≤ i < j ≤ n, xi = xj implies
i = 0 and j = n. A simple periodic cycle is a walk that starts with a simple cycle and then keeps
on looping around it without ever existing; formally, a walk is a simple periodic cycle if there exists
0 ≤ i ≤ n− 1 such that (x0, . . . , xi) is a simple cycle and xi+1, . . . , xn is a repetition of x0, . . . , xi,
except the last repetition may be partial. A walk is a unitig if it is not a periodic cycle and for all
1 ≤ i ≤ n, d−(xi) = 1 and for all 0 ≤ i ≤ n − 1, d+(xi) = 1. A unitig is maximal if it is not a
proper subwalk of another unitig.

Bidirected de Bruijn graph: A bidirected graph G is a pair (V,E) where the set V are called
vertices and E is a set of edges. Intuitively, every vertex has two sides; formally, a vertex-side is a
pair (u, s), where u ∈ V and s ∈ {0, 1}. An edge e is a set of two vertex-sides {(u0, s0), (u1, s1)},
where ui ∈ V and si ∈ {0, 1}, for i ∈ {0, 1}. Intuitively, an edge is an undirected connection

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

between two (not-necessarily distinct) vertex-sides. We say that an edge e is incident to each of
the two vertex-sides. Note that there can be multiple edges between two vertices, but only one
edge once the sides are fixed. A labeled bidirected graph is a bidirected graph G where every vertex
u has a string label lab(u), and for every edge e = {(u0, s0), (u1, s1)}, there is a (s0, s1)-oriented-
overlap between lab(u0) and lab(u1). G is said to be overlap-closed if there is an edge for every
such overlap. Let K be a set of canonical k-mers. The node-centric bidirected de Bruijn graph,
denoted by Gbid(K), is the overlap-closed labeled bidirected graph where the vertices and their
labels correspond to K. Figure S1A shows an example of a bidirected graph.

Walks and unitigs in bidirected graphs: An edge in a bidirected graph is an inverted loop if
its two vertex-sides are equal. An inverted loop {(u, s), (u, s)} is lonely if it is the only edge incident
to (u, s). We define the degree of a vertex-side d(u, s) to be the number of edges incident to it,
but with an inverted loop contributing two to the degree. A sequence t = (u0, s0, u1, s1, . . . , un, sn)
with n ≥ 0 is a walk if for all 1 ≤ i ≤ n, there exists an edge ei = {(ui−1, 1 − si−1), (ui, si)}. The
vertex-sides (u0, s0) and (un, 1− sn) are called the first and last endpoint sides, respectively. Note
that even when n = 0, there are two endpoint sides. The spelling of a walk is defined as spell(w) =
orient(lab(un), sn)�· · ·�orient(lab(un), sn). The reverse of t is rev(t) = (un, 1−sn, . . . , u0, 1−s0).
Note that, as expected, spell(t) = spell(rev(t)). Note that if t′ is a subwalk of t, then rev(t′) is a
subwalk of rev(t) and spell(t′) is a substring of spell(t) (the converse is not necessarily true when
k is even). Figure S1BC gives an example illustrating a walk in a bidirected graph and Figure S1D
shows a corresponding walk in a doubled directed dBG.

A walk w = (u0, s0, . . . , un, sn) is said to be circular iff n ≥ 1 and (u0, s0) = (un, sn), and a
simple cycle if for all i and j such that 0 ≤ i < j ≤ n, (ui, si) = (uj , sj) implies i = 0 and j = n. A
simple periodic cycle is a walk that starts with a simple cycle and then keeps on looping around it
without ever exiting; formally, w is a simple periodic cycle if there exists 0 ≤ i ≤ n − 1 such that
(u0, s0, . . . , ui, si) is a simple cycle and (ui+1, si+1, . . . , (un, sn) is a repetition of (u0, s0, . . . , ui, si),
except the last repetition may be partial. A walk is a unitig if it is not a periodic cycle and for all
1 ≤ i ≤ n, d−(xi) = 1 and for all 0 ≤ i ≤ n− 1, d+(xi) = 1. A walk (u0, s0, . . . , un, sn) is a unitig if
it is not a periodic cycle and for all 0 ≤ i < n, d(ui, 1− si) = 1 and, for all 0 < i ≤ n, d(ui, si) = 1.
A unitig is said to be maximal if it is not a proper subwalk of another unitig. Note that all the
subwalks of a unitig must themselves be unitigs.

3 Safety of unitigs

In this section, we will give necessary and sufficient conditions for a unitig to be unsafe in the
basic dBG constructed from error-free reads. To properly formulate this question, consider a
set of reads of length at least k from a genome. Let K be the set of constituent k-mers in the
reads. In this section, we do not explicitly account for reverse complements, since they will be
considered in Section 4. We define a sequenced segment as a maximal substring of the genome
whose constituent k-mers all belong to K. A set of reads therefore induces a set S = {S1, . . . , S|S|}
of sequenced segments. Figure 1 illustrates this formulation. The genomic intervals from which the
sequenced segments originate do not overlap by more than k − 2 bases (otherwise they would not
be maximal), but the segments themselves may have longer overlaps due to repeats. Observe that
in formulating the problem, we can start with the set of sequenced segments themselves; the read
set that induced them becomes irrelevant since K = spk(S).

Given a set of sequenced segments S, we say that a unitig w in Gbasic(sp
k(S)) is unsafe iff

spell(w) is not a substring of a string in S. Equivalently, w is unsafe iff it is not a subwalk of a
walk that corresponds to a string in S. Our definition of unsafe captures the notion of a potential

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

mis-assembly, as the unitig is not present in the sequenced part of the genome. 1 We can now state
the main result of this section, which gives the necessary and sufficient conditions for a unitig to be
unsafe. The proof of this theorem, along with the necessary Lemmas, is left for Appendix A due
to space constraints.

Theorem 1. Let S be a set of sequenced segments and let w = (x0, . . . , xm) be a unitig in
Gbasic(spk(S)). Then w is unsafe if and only if for all S ∈ S, one of the following holds:

(i) S does not contain any k-mer of w,

(ii) occS(prek(S)) = 1 and prek(S) = xi for some 1 ≤ i ≤ m,

(iii) occS(sufk(S)) = 1 and sufk(S) = xj for some 0 ≤ j ≤ m− 1, or

(iv) occS(prek(S)) = occS(sufk(S)) = 2 and there exists 1 ≤ i ≤ j ≤ m−1 such that prek(S) = xi
and sufk(S) = xj.

The cases of Theorem 1 are illustrated in Figure 2 and can be understood intuitively as follows.
Since every k-mer of Gbasic(sp

k(S)) is in S, every k-mer of w must be touched by some S ∈ S.
Then, consider a walk g corresponding to such a string S. If g starts in the middle of w and does
not visit its own starting vertex again, then g does not fully contain w (case (ii)). Similarly, if g
ends in the middle of w and did not visit its own ending vertex previously, then g does not fully
contain w (case (iii)). If g starts and ends in the middle of w, with the ending vertex to the right of
the starting vertex, and contains each of those vertices exactly twice, then g does not fully contain
w (case (iv)). This is the “if” direction of Theorem 1, with the “only if” direction further stating
that under all other conditions, g fully contains w.

When the coverage is high enough so that every k-mer of a genome is sequenced, the whole
genome becomes one sequenced segment. In this case, Theorem 1 simplifies because the genome
has only one starting and ending vertex and, for a unitig w to be unsafe, the genome must somehow
contain every vertex of w without containing w as a subwalk.

Corollary 1. Let X be a string and let w = (x0, . . . , xm) be a unitig in Gbasic(spk(X)). Then
spell(w) is not a substring of X iff one of the following holds:

1. occX(prek(X)) = occX(sufk(X)) = 1, prek(X) = xi, sufk(X) = xi−1 for some 1 ≤ i ≤ m.

2. occX(prek(X)) = occX(sufk(X)) = 2, prek(X) = xi, sufk(X) = xj for some 0 < i ≤ j < m.

Moreover, this can hold for at most one unitig in Gbasic(spk(X)).

This corollary tells us that with perfect coverage, all unitigs, except possibly one, are safe. Note
that this is a stronger version of the perfect coverage case than the one given in [15], which made
an assumption that the starting vertex of X is a source and the ending vertex of X is a sink.

A natural question is how a scenario which gives an unsafe unitig looks like in terms of the
original genome. Figure 3 visualized the following natural possibility. Suppose that the sequenced
genome X has a repeat that appears as a maximal unitig ψ in Gbasic(sp

k(X)). Then, suppose that
the region encompassing the start of one copy and the region encompassing the end of the other

1The safety of unitigs has been previously studied for other notions of “safety” by [6]. While the authors did
not make the explicit conclusion and did not verify it in practice, their Theorem 6.1(d) implies that unitigs are not
guaranteed to be safe in the model of assembly they consider. Concretely, while a suffix or prefix of the unitig may
be present at the starts and ends of parts of the genome, the whole unitig might never be contained as a contiguous
sequence.

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

ACGTACTTAAACGGGGAATACCGCCTA

|||||CTAAA||||||||TACCG||||

|||||||||||||||||||||||||||
ACGTA||||||||GGGAA||||GCCTA
|||TACTT||||||GGAAT||||||||

Figure 1: Illustration of sequenced
segments. The black text on top
shows the reference genome of length
26. The seven sequences in red are
reads aligned to the reference. The
green boxes highlight the resulting se-
quenced segments when k = 3. Note
that the reads TACCG and GCCTA
form two separate segments as the k-
mer CGC is not present in K.

ACT CTT TTG
TGG

TGA
GAC

TAC

Figure 2: Illustration of the cases
in Theorem 1. The graph in the figure
represents Gbasic(spk(S)), where k =
3 and S = {CTTGG, CTTGACTT,
TACTT, TGAC}. The segments are
marked by dashed lines with their
starts marked with a dot and their
ends marked with a diamond. The
unitig w = {ACT,CTT, TTG} is un-
safe because for each of the segment,
one of the cases in Theorem 1 is true.
For segment colored in green, case (i)
holds. For red, case (ii), for blue, case
(iii) and for orange, case (iv) holds.

A

B

Figure 3: Panel A shows two parts
of a sequenced genome X. Regions
surrounded by green dashed boxes are
the sequenced segments S. The solid
blue boxes represent two copies of a
repeat. Panel B shows the result-
ing Gbasic(spk(S)), with dashed ver-
tices and edges representing vertices
that are in Gbasic(spk(X)) but not se-
quenced.

copy is not sequenced. Then ψ loses its maximality in Gbasic(sp
k(S)) and becomes a subwalk of

a bigger unitig w. Though w is a unitig in the graph from the sequencing data, it would not be
a unitig if all the k-mers of X were included in the graph. In Section 5, we will show that this
situation accounts for the majority of our experimental observations.

4 The relationship between the doubled dBG (Gdbl(K)) and the
bidirected dBG (Gbid(K))

In this section, we will characterize the relationship between the maximal unitigs of Gdbl(K) and
the maximal unitigs of Gbid(K) (Theorem 2). Due to space constraints, the lemmas and proofs
needed to prove Theorem 2 are in Appendix B. Here, we will instead give an intuitive walk-through
to elucidate the relationship between the two graphs. We will incrementally show the relationship
between objects in the doubled graph and the bidirected graph — first between vertices and vertex-
sides, then between edges, then between walks, and finally between maximal unitigs.

Let K be a set of canonical k-mers, with k odd. We only consider the case of odd k; when k is
even, there may be palindrome k-mers, which create special cases to handle both in the practical
assembler implementation and in the theoretical analysis. Since most assemblers anyway restrict k
to be odd, we limit ourselves to this case as well.

There is a natural mapping between vertices of Gdbl(K) and vertex-sides of Gbid(K). For a
vertex x in Gdbl(K), define FV (x) = (u, s), where u is a vertex in Gbid(K) and s ∈ {0, 1} such
that lab(u) = orient(x, s). By the definition of Gbid(K), there exists a unique u and unique s that
satisfy this condition. The uniqueness of s is guaranteed by the fact that x cannot be a palindrome.
Formally, FV is a bijection between vertices of Gdbl(K) and vertex-sides of Gbid(K) (Lemma B.10).

There is also a natural mapping between edges in Gdbl(K) and Gbid(K). Let x1 and x2 be
two k-mers in Gdbl(K) and let (u1, s1) = FV (x1) and (u2, s2) = FV (x2). We define the mapping
FE(x1, x2) = {(u1, 1−s1), (u2, s2)} such that (x1, x2) is an edge in Gdbl(K) if and only if FE(x1, x2)
is an edge in Gbid(K) (Lemma B.11). Note, however, that FE is not a bijection, since a pair of

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

TAGT

GTT

AAC

CAC

TAT

ATA

CTAACTAAC

CAC ATA

ACTA

GTG

1

2 3

2 3

01

0

GTT

ACT CTA

TAG

AAC

AGT

GTG

CAC TAT ATA

ACTAAAC

TAGTGTT

CAC

GTG

TATA2+0+

1+

0-
1+

0-

1-

2-

1+ 2+1+

1-

2+

1-2-

1+

2-1-

0-

(A) (B)

1+

1 1

Figure 4: Example of a bidirected dBG (Gbid(K)) (panel A) and a doubled dBG (Gdbl(K)) (panel B) on the same
underlying set of k-mers K = {CAA,AAC,ACT,CTA,CTC}. Each vertex side in Gbid(K) and each in- and out-
side of a vertex in Gdbl(K) is numbered with the corresponding degree. All maximal unitigs are shown using a long
filled rectangle with an arrow. The maximal unitigs of Gbid(K) are color coded so that red is Bno-loop, dark green is
Blast-loop, and light green is Bfirst-loop. The maximal unitigs of Gdbl(K) are color coded so that dark red is Dnon-pal

and blue is Dpal. Self-mirror edges in Gdbl(K) are shown in blue.

mirror edges (x, y) and (y, x) map to the same bidirected edge, i.e. FE(x, y) = FE(y, x).
The FV and FE mappings allow us to naturally define a mapping from walks in Gdbl(K) to walks

in Gbid(K). Let w = (x0, . . . , xn) be a walk in Gdbl(K). For each 0 ≤ i ≤ n, let (ui, si) = FV (xi)
and define FW (w) , (u0, s0, . . . , un, sn). FW is a spell-preserving bijection between the set of walks
in Gdbl(K) and the set of walks in Gbid(K) (Lemma B.12).

One might hypothesize that FW is also a bijection between the maximal unitigs of Gdbl(K)
and the maximal unitigs of Gbid(K). Surprisingly, it turns out to not be the case, though the
following more careful analysis reveals a close relationship. For Gdbl(K), let us partition the set of
maximal unitigs into non-palindromic strings Dnon-pal and palindromic strings Dpal. For Gbid(K),
let Bno-loop be the set of maximal unitigs where neither endpoint side has an incident lonely inverted
loop, let Bfirst-loop be the set of maximal unitigs where the only endpoint side with a lonely inverted
loop is the first one, and let Blast-loop be the set of maximal unitigs where the only endpoint side
with a lonely inverted loop is the last one. To avoid corner cases, let us further assume that there
are no circular unitigs in Gdbl(K), which eliminates the possibility of a maximal unitig having
lonely inverted loops at both endpoint sides and implies that Bno-loop, Bfirst-loop, and Blast-loop are
a partition of the maximal unitigs of Gbid(K) (Lemma B.16). Figure 4 shows an example.

We also need to define a function head which, informally, takes a maximal palindromic unitig
in Gdbl(K), extracts the first half of it, and maps it to Gbid(K). Formally, head(w) maps a walk
w = (x0, . . . , xn) in Dpal to the walk FW ((x0, . . . , xn−1

2
)) in Gbid(K). Note that n−1

2 is necessarily

an integer since w is a palindrome and hence n must be odd (Lemma B.1). We can now state the
main theorem of this section.

Theorem 2. Let K be a set of canonical k-mers where k is odd and Gdbl(K) does not contain a
circular unitig.

(i) The function FW is a bijection from Dnon-pal to Bno-loop.

(ii) The function rev is a bijection between Blast-loop and Bfirst-loop.

(iii) head is a bijection from Dpal and Blast-loop

Figure 5 schematically illustrates the relationship captured by Theorem 2. The theorem says
that for maximal unitigs that are non-palindromic in Gdbl(K) and do not have inverted self loops

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

𝐵!"#$""%

𝐵&'()*#$""%𝐵$+)*#$""%𝐷%+$
TATA

HEAD

𝐷!"!#%+$
CAC, GTG, AAC, GTT, ACTA, TAGT

FW
TAT

CAC, GTG, AAC, GTT, ACTA, TAGT

ATA

rev𝐷 𝐵

Figure 5: Overview of relationship between maximal unitigs in double and bidirected graph for odd k. We use the
example from Figure 4, where K = {AAC,ACT,CTA,CAC,ATA}. The set of maximal unitigs from Gdbl(K), D
is partitioned into Dpal and Dnon-pal. The set of maximal unitigs from Gbid(K), B is partitioned into Blast-loop,
Bfirst-loop and Bno-loop. The arrows between different subsets of D and B denote bijections.

incident at the endpoint sides in Gbid(K), FW is in fact a bijection. However, every maximal unitig
w that is palindromic in Gdbl(K) is split into two maximal unitigs in Gbid(K): one that spells the
first half of w and has a self loop incident at the last endpoint side, and one that spells the second
half of w and has a self loop at the first endpoint side. These are necessarily reverses of each other.

Inverted loops are caused by k-mers x where suf(x) = suf(x) (e.g. GTA). When these type
of k-mers are not present in K, there are no inverted loops in Gbid(K) or palindromic unitigs in
Gdbl(K). Hence, Dpal = Bfirst-loop = Blast-loop = ∅, and Theorem 2 immediately simplifies.

Corollary 2. Let K be a set of k-mers, with odd k, which does not contain any x such that
suf(x) = suf(x). Then FW is a bijection from the maximal unitigs in Gdbl(K) to the maximal
unitigs in Gbid(K).

5 Empirical results

Occurrence of unsafe unitigs in real genomes: Theorem 1 predicts the possibility of unsafe
unitigs. To verify the extent to which this happens with real genomes, we use T2T human reference
chromosome 1 [20]. We simulated error-free reads of length 100 with varying target coverages and
varying k. Note that for this experiment, we want to test if mis-assemblies occur even when the
data is perfect, so making the reads error-free is necessary. From these reads, we constructed the
basic de Bruijn graph and output its maximal unitigs, using a version of BCALM [7, 8] modified
to ignore reverse-complementary. We confirmed that the unitigs that were unsafe were exactly the
unitigs that satisfied the conditions of Theorem 1.

Table 1 shows the number of unsafe unitigs, as a function of the coverage and of k. There are
as many as 17,635 unsafe unitigs (at coverage 2x and k = 71). The best indicator for the number
of unsafe unitigs is the percent of k-mers sampled (or the number of sequenced segments), i.e. the
number of unsafe unitigs goes down as the percent of sampled k-mers goes up. This trend is in line
with the prediction of Corollary 1, which states that once the coverage is perfect, we expect to see
at most one unsafe unitig. Our results indicate that the artifacts identified by Theorem 1 do occur
in real genomes, though they become less common as more of the genomic k-mers are sampled.

An unsafe unitig is not necessarily a mis-assembly, as it may be a substring of the unsequenced
genome by luck. We define an unitig to be mis-assembled if its spelling is not a substring of the
reference. Table 1 shows that the number of mis-assembled unitigs is substantially lower than the
unsafe unitigs, e.g. with 708 mis-assembled unitigs at 2x coverage and k = 71. Thus the potential
for mis-assembly does not usually translate into a real mis-assembly, though many mis-assemblies
remain.

We further check how many of these mis-assembled unitigs fit the example in Fig. 3. A formal
definition to capture this example is included in Appendix A for reference. Table 1 shows that the

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

Table 1: The presence of unsafe and mis-assembled unitigs in human chromosome 1, using simulated error-free reads.

coverage k % k-mers
sampled

n. sequenced
segments

n. unitigs n. unsafe n. mis-assembled n. Figure 3
cases

1x

71

26.47 1,838,685 1,747,456 12,396 449 383
2x 45.94 2,710,240 2,582,737 17,635 708 628
10x 95.82 1,051,772 1,243,975 2,758 36 36
20x 99.88 61,358 373,335 32 1 0

2x

21 80.76 987,257 4,545,450 2,924 260 224
31 76.25 1,208,314 2,823,743 4,489 379 352
41 70.78 1,478,524 2,251,762 6,460 480 447
51 64.09 1,808,896 2,093,319 9,115 578 532
61 55.93 2,213,535 2,230,578 12,838 709 645
71 45.94 2,710,240 2,582,737 17,635 708 628

vast majority of mis-assembled cases are in fact caused by this situation, where a repeat has an
occurrence in which its start is unsequenced and another occurrence in which its end is unsequenced.

Presence of unsafe unitigs in the contig output of real assemblers: We investigated
the extent to which the artifact predicted by Theorem 1 appears in output of real assemblers.
Assemblers do not simply output the unitigs of a graph but perform many other steps, hence it was
not clear if this artifact would appear in the output contigs. Unfortunately, it is not clear how to
verify this artifact with real data, as sequencing errors make it difficult to know which of the mis-
assembled contigs are caused by the conditions of Theorem 1. We therefore again used a simulated
error-free dataset from the T2T chromosome 1, using the ART simulator [11], with read length
of 250 and varying coverages. This time, we simulated reads from either strand, since assemblers
are not typically run in single-stranded mode. We then constructed the doubled de Bruijn graph
using k = 74 and output its maximal unitigs (note that Theorem 1 holds for even k). We also ran
SPAdes [4] and MEGAHIT [14] to assemble the reads (see Appendix C for parameter details). We
then identified unitigs and the assembler contigs that were mis-assembled, but allowing for reverse
complements. We will say that a string x matches a string y with a threshold of t if a fraction t of
the k-mers of x occur in y.

Table 2 shows that nearly all of the mis-assembled unitigs matched at least one mis-assembled
SPAdes contig with a threshold of 1. Similarly, most of the mis-assembled SPAdes contigs matched
at least one mis-assembled unitig at a threshold of 1. For MEGAHIT, the threshold of 1 turned out
to be stringent; this is not surprising, since assemblers have many steps that may add or remove
k-mers from the graph; additionally, MEGAHIT varies the value of k internally and may therefore
join k-mers that do not have an overlap of length k − 1. Using a threshold of 0.5, however, we
found that, similarly to SPAdes, most mis-assembled unitigs matched a mis-assembled contig of
MEGAHIT and vice-versa. These results indicate that the artifact predicted by Theorem 1 not
only appears in unitigs of the raw graph but also in the output of widely used assemblers like
SPAdes and MEGAHIT.

Presence of palindrome splitting in a real genome: To measure the extent of the “palin-
drome splitting” artifact predicted by Theorem 2, we let K be the set of all constituent k-mers in
human chromosome 21 (grch38.p13), after excising the Ns. We confirmed the correctness of The-
orem 2 by verifying that the spellings of Dnon-pal are equal to the spellings of Bno-loop and that
the spellings of Blast-loop are equal to the spellings of Dpal and are the reverse complements of the
spellings of Bfirst-loop. Table 3 shows that the splitting artifact is present but rare, e.g. for k = 15,
there were 186 palindromic maximal unitigs in Gdbl(K) which were split in Gbid(K). The artifact

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

Table 2: The extent to which mis-assembled unitigs contribute to mis-assembled contigs of real assemblers. Here,
U is the set of mis-assembled unitigs in Gdbl, S is the set of mis-assembled contigs of SPAdes, and M is the set of
mis-assembled contigs of MEGAHIT. We use A @t B to indicate the subset of A that matches at least one element
of B at a threshold of t.

Gdbl SPAdes MEGAHIT

coverage |U | |S| |S @1 U | |U @1 S| |M | |M @0.5 U | |U @0.5 M |

1x 234 3,366 233 209 3,070 111 179
2x 129 4,423 128 87 2,677 75 119
3x 44 8,329 44 40 1832 21 39
4x 13 7,365 13 13 1240 5 13
5x 5 6,526 5 5 986 0 5
6x 1 5,795 1 1 832 0 1

Table 3: Extent of the palindrome splitting artifact predicted by Theorem 2 in chr21.

k |D| |B| |Dnon-pal| |Dpal| |Blast-loop| |Bfirst-loop| |Bno-loop|

15 1,465,800 1,465,986 1,465,614 186 186 186 1,465,614
29 60,849 60,866 60,832 17 17 17 60,832
35 36,542 36,552 36,532 10 10 10 36,532
43 18,459 18,462 18,456 3 3 3 18,456

becomes rarer with decreasing k (e.g. for k = 43, there were only 3 split palindromes), which is
expected since palindrome frequency in real genomes decreases with length.

Presence of palindrome splitting in real assemblers: Most assembler papers do not contain
enough detail to ascertain what kind of de Bruijn graph they use to handle reverse complements nor
what modifications, if any, they make to the unitig algorithm used for the final output. Looking at
MEGAHIT [14], SPAdes [4], ABySS [29, 13], and minia [9], only the SPAdes paper is unambiguously
clear in saying how it handled reverse complements (it used the doubled dBG). Furthermore, since
these assemblers implement many heuristics, the splitting artifact may be absent even if they did
use bidirected graphs. We therefore tested the behavior of these assemblers by looking for evidence
of palindrome splitting in their output, rather than in their technical descriptions.

Since large exact palindromes are uncommon in typical genomes, we created a synthetic genome
by modifying a ∼ 7 mil bp long contig from human chromosome 4 (grch38.p13) as follows. We
randomly sampled a 1,000bp-long region and replaced the last 500bp by the reverse complement
of first 500 bp; we then repeated the sampling process 700,000 times. We then simulated error-free
Illumina reads with ART. We used a read length of 100bp so that assemblers will not be able to
supplement the dBG with read information in a way that hides the palindrome splitting artifact.
We used 10x coverage so that most k-mers would be sampled.

First, we find the reference location of each unitig w in Dpal. Then, we find all exact alignments
of the assembler contigs to the reference. We say that w is fully-covered if there exists a contig
whose alignment spans w’s. Otherwise, we say w is split if one half of w’s region does not overlap
with any contig alignments while the other half has a contig aligned that ends precisely in the
middle of w at one end and extends past w at the other end. A unitig is ambiguous if it does fall
into either category. Appendix C contains a more precise definition of these cases.

Table 4 shows that ABySS clearly exhibits the palindrome splitting artifact, with all non-
ambiguous unitigs being split and none fully-covered. The opposite was true for SPAdes and
MEGAHIT, with all non-ambiguous unitigs being fully-covered and none split. minia on the other
hand exhibited mixed behavior. Of the 417 non-ambiguous cases, 34 were split and 383 were fully-

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

Table 4: Presence of the palindrome splitting artifact in real assemblers on a synthetic genome. We used k = 31
for all the assemblers (see Appendix C for details). We filtered out unitigs shorter than 500 bp, amounting to 440
palindromic strings in ABySS and minia and 433 palindromic strings in SPAdes and MEGAHIT.

Contigs Unitigs in Dpal

Assembler n. contig n. fully-covered n. split n. ambiguous

MEGAHIT 4,882 427 0 13
SPAdes 7,209 423 0 17
ABySS 53,046 0 66 367
minia 23,318 383 34 16

covered. These results indicate that the palindrome splitting artifact of Theorem 2 does persist all
the way to the contig output stage in some assemblers. However, this artifact requires the presence
of long exact palindromes in the reference, which is uncommon in most genomes.

6 Discussion

Our theoretical study uncovered two artifacts of the unitig algorithm for genome assembly. The
first is that even without sequencing errors, it can create mis-assemblies in places of imperfect
coverage. The second is that when the bidirected graph is used to model double-strandedness,
the unitig algorithm under-assembles by failing to merge the two halves of palindromes. Our
experiments confirmed the presence of these theoretically-predicted artifacts in real genomes and
popular assemblers. Fortunately, the impact of these artifacts is not large and can be addressed.
Mis-assembly issues due to the first artifact can be resolved by increasing coverage or, potentially,
breaking unitigs at places where the coverage along them is uneven. Under-assembly issues due to
the palindrome artifact are rare in real genomes and, moreover, can be trivially fixed by forcing
the unitigs to “push their way through” lonely inverted loops.

One of the tangential outcomes of this paper is that we have given proper definitions for things
like walks and unitigs in the context of bidirected graphs. Previous papers used these concepts
somewhat informally; when definitions were given, they worked in the context of that paper but
failed to have more general desired properties. For example, our previous work had an inconsistency
in the way that a walk was defined on a single vertex versus on many vertices [22]. One key takeaway
is that as a rule thumb, when working with bidirected graphs one should avoid thinking in terms of
vertices but think instead of vertex-sides. The definitions we have provided in this paper generalize
further than previous ones and are able to form the basis for the type of analysis we have done in
this paper. For example, we are the first to prove the bijection between walks in the doubled and
bidirected dBGs. We hope that these definitions will facilitate future attempts to formally study
questions in bidirected graphs.

Bidirected graphs give an elegant way to capture the double-stranded nature of DNA in a dBG,
but our results here indicate that, for the unitig algorithm, they do not give any theoretical advan-
tage. One of the claimed advantages of using the bidirected graph framework in assembly is that
it allows one to take advantage of results from graph theory that may otherwise be hidden. The
primary example of this is a result (involving one of the authors) in [18] where a variant of the
assembly problem was theoretically solved in polynomial time by relying on a reduction to the flow
problem in bidirected graphs [10]. When viewed in retrospect, however, it is not clear that this con-
nection was necessary. The algorithm being reduced to [10] was too cumbersome to implement and,
when the assembly problem later necessitated a software solution, an approximation algorithmwas
used instead [16, 17]. But the approximation algorithm worked on the doubled graph, erasing the

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

advantage of having initially formulated the problem on bidirected graphs. Therefore, it remains
to be seen if there are situations where the connection to graph theoretical results on bidirected
graphs can prove useful for genome assembly. Alternatively, using a different setting may better
help identify the advantages of bidirected graphs, e.g. pangenomics [21], rearrangement analysis [5],
or compression [23]. Quantifying these advantages would be an exciting future direction.

Reproducibility: Scripts for the experimental evaluations are available on GitHub [1].
Acknowledgements: PM thanks Rayan Chikhi, Alexandru Tomescu, and Mihai Pop for useful

discussions. This material is based upon work supported by the National Science Foundation under
Grant No. 1453527 and 1931531. AR was supported by NIH Computation, Bioinformatics, and
Statistics training program.

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

References

[1] https://github.com/medvedevgroup/assembly-artifacts-paper-experiments.

[2] Can Alkan, Saba Sajjadian, and Evan E Eichler. Limitations of next-generation genome
sequence assembly. Nature methods, 8(1):61–65, 2011.

[3] Anton Bankevich, Andrey Bzikadze, Mikhail Kolmogorov, Dmitry Antipov, and Pavel A.
Pevzner. Lja: Assembling long and accurate reads using multiplex de bruijn graphs. bioRxiv,
2021.

[4] Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A Gurevich, Mikhail Dvorkin,
Alexander S Kulikov, Valery M Lesin, Sergey I Nikolenko, Son Pham, Andrey D Prjibelski,
et al. Spades: a new genome assembly algorithm and its applications to single-cell sequencing.
Journal of computational biology, 19(5):455–477, 2012.

[5] Anne Bergeron, Julia Mixtacki, and Jens Stoye. A unifying view of genome rearrangements.
In International Workshop on Algorithms in Bioinformatics, pages 163–173. Springer, 2006.

[6] Massimo Cairo, Shahbaz Khan, Romeo Rizzi, Sebastian Schmidt, Alexandru I Tomescu, and
Elia C Zirondelli. The Hydrostructure: a Universal Framework for Safe and Complete Algo-
rithms for Genome Assembly. arXiv preprint arXiv:2011.12635, 2020.

[7] Rayan Chikhi, Antoine Limasset, Shaun Jackman, Jared T Simpson, and Paul Medvedev.
On the representation of de Bruijn graphs. In Research in Computational Molecular Biology,
RECOMB 2014, volume 8394 of Lecture Notes in Computer Science, pages 35–55. Springer,
2014.

[8] Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de Bruijn graphs from
sequencing data quickly and in low memory. Bioinformatics, 32(12):i201–i208, 2016.

[9] Rayan Chikhi and Guillaume Rizk. Space-efficient and exact de bruijn graph representation
based on a bloom filter. Algorithms for Molecular Biology, 8(1):1–9, 2013.

[10] Harold N. Gabow. An efficient reduction technique for degree-constrained subgraph and bidi-
rected network flow problems. In STOC, pages 448–456, 1983.

[11] Weichun Huang, Leping Li, Jason R Myers, and Gabor T Marth. Art: a next-generation
sequencing read simulator. Bioinformatics, 28(4):593–594, 2012.

[12] Ramana M Idury and Michael S Waterman. A new algorithm for dna sequence assembly.
Journal of computational biology, 2(2):291–306, 1995.

[13] Shaun D Jackman, Benjamin P Vandervalk, Hamid Mohamadi, Justin Chu, Sarah Yeo,
S Austin Hammond, Golnaz Jahesh, Hamza Khan, Lauren Coombe, Rene L Warren, et al.
Abyss 2.0: resource-efficient assembly of large genomes using a bloom filter. Genome research,
27(5):768–777, 2017.

[14] Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah Lam. Megahit:
an ultra-fast single-node solution for large and complex metagenomics assembly via succinct
de bruijn graph. Bioinformatics, 31(10):1674–1676, 2015.

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

[15] Paul Medvedev. Modeling biological problems in computer science: a case study in genome
assembly. Briefings in bioinformatics, 20(4):1376–1383, 2019.

[16] Paul Medvedev and Michael Brudno. Ab initio whole genome shotgun assembly with mated
short reads. In RECOMB, pages 50–64, 2008.

[17] Paul Medvedev, Marc Fiume, Misko Dzamba, Tim Smith, and Michael Brudno. Detecting
copy number variation with mated short reads. Genome Research, 20(11):1613–1622, 2010.

[18] Paul Medvedev, Konstantinos Georgiou, Gene Myers, and Michael Brudno. Computability of
models for sequence assembly. In WABI, pages 289–301, 2007.

[19] Karen H Miga, Sergey Koren, Arang Rhie, Mitchell R Vollger, Ariel Gershman, Andrey
Bzikadze, Shelise Brooks, Edmund Howe, David Porubsky, Glennis A Logsdon, et al. Telomere-
to-telomere assembly of a complete human x chromosome. Nature, 585(7823):79–84, 2020.

[20] Sergey Nurk, Sergey Koren, Arang Rhie, Mikko Rautiainen, Andrey V Bzikadze, Alla
Mikheenko, Mitchell R Vollger, Nicolas Altemose, Lev Uralsky, Ariel Gershman, et al. The
complete sequence of a human genome. bioRxiv, 2021.

[21] Benedict Paten, Adam M Novak, Jordan M Eizenga, and Erik Garrison. Genome graphs and
the evolution of genome inference. Genome research, 27(5):665–676, 2017.

[22] Amatur Rahman, Rayan Chikhi, and Paul Medvedev. Disk compression of k-mer sets. Algo-
rithms for Molecular Biology, 16(1):1–14, 2021.

[23] Amatur Rahman and Paul Medevedev. Representation of k-mer sets using spectrum-preserving
string sets. Journal of Computational Biology, 28(4):381–394, 2021.

[24] Arang Rhie, Shane A McCarthy, Olivier Fedrigo, Joana Damas, Giulio Formenti, Sergey Koren,
Marcela Uliano-Silva, William Chow, Arkarachai Fungtammasan, Juwan Kim, et al. Towards
complete and error-free genome assemblies of all vertebrate species. Nature, 592(7856):737–746,
2021.

[25] Ilan Shomorony, Thomas Courtade, and David Tse. Do read errors matter for genome assem-
bly? In 2015 IEEE International Symposium on Information Theory (ISIT), pages 919–923.
IEEE, 2015.

[26] Ilan Shomorony, Thomas A Courtade, and David Tse. Fundamental limits of genome assembly
under an adversarial erasure model. IEEE Transactions on Molecular, Biological and Multi-
Scale Communications, 2(2):199–208, 2016.

[27] Ilan Shomorony, Samuel H Kim, Thomas A Courtade, and David NC Tse. Information-optimal
genome assembly via sparse read-overlap graphs. Bioinformatics, 32(17):i494–i502, 2016.

[28] Jared T Simpson and Mihai Pop. The theory and practice of genome sequence assembly.
Annual review of genomics and human genetics, 16:153–172, 2015.

[29] Jared T Simpson, Kim Wong, Shaun D Jackman, Jacqueline E Schein, Steven JM Jones, and
Inanç Birol. Abyss: a parallel assembler for short read sequence data. Genome research,
19(6):1117–1123, 2009.

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

[30] Alexandru I Tomescu and Paul Medvedev. Safe and complete contig assembly via omnitigs.
In International Conference on Research in Computational Molecular Biology, pages 152–163.
Springer, 2016.

[31] Lei Yang, Raunaq Malhotra, Rayan Chikhi, Daniel Elleder, Theodora Kaiser, Jesse Rong, Paul
Medvedev, and Mary Poss. Recombination Marks the Evolutionary Dynamics of a Recently
Endogenized Retrovirus. Molecular Biology and Evolution, 09 2021.

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

A Safety of unitigs: full exposition

Proof of Theorem 1 and Corollary 1

In this subsection, we will prove Theorem 1 and Corollary 1. In the following, we will always have
S be a set of sequenced segments and w = (x0, . . . , xm) be a unitig in Gbasic(sp

k(S)). We start
with a lemma that, roughly speaking, says that if a walk corresponding to some S ∈ S touches w,
it must contain all of w except that it may begin or end somewhere along the way.

Lemma A.1. Let S be a set of sequenced segments and let w = (x0, . . . , xm) be a unitig in
Gbasic(spk(S)). Let S ∈ S and let g = (g0, . . . , g|S|) be the walk corresponding to S. Suppose
there exists i and j such that xi = gj. Then,

(i) If sufk(S) /∈ {xi, . . . , xm−1}, then gj+δ = xi+δ for all δ ∈ [0,m− i].

(ii) If prek(S) /∈ {x1, . . . , xi}, then gj−δ = xi−δ for all δ ∈ [0, i].

Proof. We will only prove (i), since the argument for (ii) is symmetric. We use induction on δ.
For δ = 0, we have that the implication of (i) reduces to gj = xi, which is vacuously true because
it is also a condition of the theorem. Now we assume that (i) holds for δ− 1, i.e. gj+δ−1 = xi+δ−1.
Since xi+δ−1 6= sufk(G), gj+δ−1 is not the last vertex of g. Because xi+δ−1 is a non-last vertex of a
unitig, it has only one out-neighbor, which is xi+δ. Therefore, gj+δ = xi+δ, which shows that that
(i) holds for δ.

Using this lemma, we can now prove some general properties of unsafe unitigs.

Lemma A.2. Let S be a set of sequenced segments and let w = (x0, . . . , xm) be a unitig in
Gbasic(spk(S)). If w is unsafe then

(i) m ≥ 1,

(ii) there exists S ∈ S such that prek(S) ∈ {x1, . . . , xm},

(iii) there exists S ∈ S such that sufk(S) ∈ {x0, . . . , xm−1},

(iv) for all S ∈ S and their corresponding walks g, either g and w do not share a vertex, or
prek(S) ∈ {x1, . . . , xm}, or sufk(S) ∈ {x0, . . . , xm−1}, and

(v) for all S ∈ S and all i, occS(xi) ≤ 2.

Proof. For (i), consider a unitig that has just one vertex x. Since each k-mer in Gbasic(sp
k(S)),

there must be at least one S ∈ S whose walk contains x. Hence, the unitig that is composed of
only x is safe. For (ii), assume for sake of contradiction that for all S ∈ S, prek(S) /∈ {x1, . . . , xm}.
Since every vertex of the graph must be contained in at least one string, let S′ ∈ S be a string
that contains xm. Applying Lemma A.1(ii) with i = m, we get that the walk corresponding to
S′ must contain w, contradicting that w is unsafe. The case of (iii) is symmetric to (ii), using x0

instead of xm and applying Lemma A.1(i) with i = 0. For (iv), let g = (g0, . . . , g|S|) and assume for
sake of contradiction that there exists a S ∈ S such that g shares a vertex with w and prek(S) /∈
{x1, . . . , xm} and sufk(S) /∈ {x0, . . . , xm−1}. Let xi and gj be the vertices of w and g, respectively,
that are equivalent. We can apply Lemma A.1 to get that (gj , . . . , gj+m−i) = (xi, . . . , xm) and
(gj−i, . . . , gj) = (x0, . . . , xi). This means that w is a subwalk of g, which is a contradiction. For
(v), let S ∈ S and let g = (g0, . . . , g|S|) be its corresponding walk. If g and w do not share any
vertices, then occS(xi) = 0 ≤ 2 for all i and we are done. Otherwise, we can apply (iv) to get that

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

either (1) prek(S) ∈ {x1, . . . , xm} or (2) sufk(S) ∈ {x0, . . . , xm−1}. Let us consider (1) — we will
omit the argument for (2) since it is symmetrical. Then g0 = xi for some 1 ≤ i ≤ m. Note that g0

is the first occurrence of xi in g. Assume for the sake of contradiction that occS(xi) > 2. To get
the second occurrence of xi, g must first visit x0. After this second visit to xi, g must continue all
the way until xm if it is to visit xi for a third time. Therefore, at the second visit to xi, g must in
fact visit (x0, . . . , xm), which contradicts that w is unsafe.

The case when a sequenced segment contains its first and/or last k-mer more than once puts
additional constraints on how it can contain a unitig.

Lemma A.3. Let S be a set of sequenced segments and let w = (x0, . . . , xm) be a unitig in
Gbasic(spk(S)). Let S ∈ S such that at least one of the following holds:

(i) occS(prek(S)) = 2 and there exists an integer i ∈ [1,m] such that xi = prek(S), or

(ii) occS(sufk(S)) = 2 and there exists an integer j ∈ [i,m− 1] such that xj = sufk(S).

Then, spell(w) is not a substring of S iff both (i) and (ii) hold.

Proof. We only prove case (i) since case (ii) is symmetrical. Let g be the walk corresponding to
S. In the first phase, g starts from xi and, since it must visit xi a second time, continues until xm.
Then at some point it enters w through x0 and proceeds to visit xi for the second and last time.
We will refer to the time from the end of the first phase to the point it enters x0 as the second
phase, and the rest of the walk as the third phase. Observe that g does not contain w as a subwalk
in either the first or second phase.

Now we prove the if direction. During phase 1, g visits xj exactly once. During phase 2, g does
not visit xj . During phase 3, g proceeds from x0 forward along the unitig until it hits xj for the
second time. Since xj is occurs exactly twice and is the last vertex of g, this is the end of g. Since
j < m, g does not contain w as a subwalk during the third phase.

Now we prove the only if direction. Assume w is not a subwalk of g. Therefore, during the
third phase g cannot go until xm and must stop earlier at some xj = sufk(S), for some integer
j ∈ [i,m − 1]. This xj was visited once during phase 1 and not visited during phase 2 and now
visited a second and final time during phase 3.

These lemmas are all the pieces we need to prove Theorem 1.

Theorem 1. Let S be a set of sequenced segments and let w = (x0, . . . , xm) be a unitig in
Gbasic(spk(S)). Then w is unsafe if and only if for all S ∈ S, one of the following holds:

(i) S does not contain any k-mer of w,

(ii) occS(prek(S)) = 1 and prek(S) = xi for some 1 ≤ i ≤ m,

(iii) occS(sufk(S)) = 1 and sufk(S) = xj for some 0 ≤ j ≤ m− 1, or

(iv) occS(prek(S)) = occS(sufk(S)) = 2 and there exists 1 ≤ i ≤ j ≤ m−1 such that prek(S) = xi
and sufk(S) = xj.

Proof. First we prove the if direction. We will show that for all S ∈ S and its corresponding walk
g, if one of the four conditions hold, then w is not a subwalk of g. If (i) holds, then w is trivially
not a subwalk of g. Now, if prek(S) = xi for some 1 ≤ i ≤ m and xi is visited only once by g, If
(ii) holds, then g starts with xi but never visits xi again, therefore (x0, . . . , xi) is not a subwalk of

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

g. Hence, w is not a subwalk of g. Similarly, if (iii) holds, then (xj , . . . , xm) is not a subwalk of g
and hence w is not a subwalk of g. If (iv) holds, then Lemma A.3 implies that w is not a subwalk
of g.

Now we prove the only if direction. We will show that for all S ∈ S and their corresponding walk
g, if w is not a subwalk of g, then one of the four conclusions hold. By Lemma A.2.(iv), either (1) g
does not contain any k-mer from w, (2) prek(S) ∈ {x1, . . . , xm}, or (3) sufk(S) ∈ {x0, . . . , xm−1}.
In case of (1), g trivially does not contain w, and condition (i) is satisfied. In case of (2), let
i ∈ [1,m] be an integer such that xi = prek(S). By Lemma A.2.(v), occS(xi) is either 1 or 2. If
occS(xi) = 1, then condition (ii) immediately holds. If occS(xi) = 2, then Lemma A.3 implies that
there exists an integer j ∈ [i,m − 1] that satisfies condition (iv). In case of (3), let j ∈ [0,m − 1]
be an integer such that xj = sufk(S). Again, by Lemma A.2.(v), occS(xj) is either 1 or 2. If
occS(xj) = 1, then condition (iii) immediately holds. If occS(xj) = 2, then Lemma A.3 implies
that there exists an integer i ∈ [i,m− 1] that satisfies condition (iv).

Corollary 1. Let X be a string and let w = (x0, . . . , xm) be a unitig in Gbasic(spk(X)). Then
spell(w) is not a substring of X iff one of the following holds:

1. occX(prek(X)) = occX(sufk(X)) = 1, prek(X) = xi, sufk(X) = xi−1 for some 1 ≤ i ≤ m.

2. occX(prek(X)) = occX(sufk(X)) = 2, prek(X) = xi, sufk(X) = xj for some 0 < i ≤ j < m.

Moreover, this can hold for at most one unitig in Gbasic(spk(X)).

Proof. We can apply Theorem 1 to set S = {X}. Since X must contain all k-mers of w, w is
unsafe if and only if condition (ii), (iii) or (iv) from Theorem 1 holds for S = X. First, assume
Condition (ii) is true for X. Then by Theorem 1, w is unsafe. Consider the walk g corresponding
to X. Because g begins at xi and all vertices in Gbasic(K) must be in g at least once, (xi, . . . , xm)
is a subwalk of g. This is the one and only occurrence of xi in g. Since xi is the first vertex in g
occuring only once, xi−1 cannot precede xi. Hence, xi−1 must be the end of g, i.e., sufk(S) = xi−1.
Note that, this is the one and only occurrence of xi−1 in g. Thus, Condition (iii) is also true for
X. With a symmetric argument, we can show that if Condition (iii) is satisfied, then Condition
(ii) is satisfied. Combining both gives us the first condition of the corollary. Finally, observe that
Condition (iv) is identical to Condition 2 in the corollary. The fact that these conditions can hold
for at most one unitig follows directly from the fact that there is only one vertex for prek(S) in the
graph.

Formal definition of the case of Figure 3

In Section 5, we quantify the number of unsafe unitigs that fall into the case of Figure 3. To make
this precise, we give a formal classification for this case. Let X be a genome and let S be a set of
its sequenced segments. We say that an unsafe walk w = (x0, . . . , xm) satisfies the case of Figure 3
if

(i) there exists 0 < i ≤ j < m such that ψ = (xi, . . . , xj) is a unitig in Gbasic(sp
k(X)),

(ii) spell(ψ) occurs at least twice in X,

(iii) in one of the occurrences, the k-mer preceding spell(ψ) is not in S,

(iv) in another of the occurrences, the k-mer following spell(ψ) is not in S,

(v) there exists S ∈ S and an integer i′ ∈ [i, j] such that spell((xi′ , . . . , xj)) is a suffix of S, and

(vi) there exists S ∈ S and an integer j′ ∈ [i′ − 1, j] such that spell((xi, . . . , xj′)) is a suffix of S.

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

ACTAAC

Walk Spelling
AAC, 0 AAC

AAC, 1 GTT

ACT, 0 ACT

ACT, 1 AGT

AAC, 0, ACT, 0 AACT

ACT, 1, AAC, 1 AGTT

0 1 0

Vertex-sides

Vertex labels

1

(A) (B)

CTAACTAAC

ACT CTAAAC

AGTGTT TAG

(D)

(C)

s0 s1 s2

s3s4s5

Figure S1: An example illustrating some of the bidirected graph terminology. Panel (A) shows a bidirected graph
with two vertices. Panel (B) shows a list of all possible walks in this graph and their spellings. Note that walk
(AAC, 0, ACT, 0) and (ACT, 1, AAC, 1) are reverses of each other. The endpoint sides of the walks, in both cases,
are (AAC, 0) and (ACT, 1). Panel C and D show an example of a doubled dBG (Gdbl(K)) and a bidirected dBG
(Gbid(K)) using K = {AAC,ACT,CTA}. Panel C shows Gbid(K) as well as the order of vertex-sides as they appear
in a walk w = (AAC, 0, ACT, 0, CTA, 0, CTA, 1, ACT, 1, AAC, 1) = (s0, . . . , s5), with spell(w) = AACTAGTT . Note
that in this case, since spell(w) is a palindrome, the reverse walk is identical: rev(w) = w. Panel D shows Gdbl(K).

B The relationship of Gdbl(K) and Gbid(K): full exposition

In this section, we will prove Theorem 2. We start by providing additional definitions that are
necessary to understand the proofs in this section.

Let K be a set of k-mers. A unitig in a directed graph that is not a proper subwalk of another
unitig that ends at the same vertex is said to be prefix-maximal; a unitig that is not a proper
subwalk of another unitig that starts with the same vertex is said to be suffix-maximal. Notice that
a unitig is maximal iff it is both prefix- and suffix-maximal.

Let (u, s) be a vertex-side in Gbid(K). We define dil(u, s) to indicate the presence of an inverted
loop, i.e. dil(u, s) = 1 if there is an inverted loop incident to side (u, s) and dil(u, s) = 0 otherwise.
A unitig t in Gbid(K) is prefix-maximal if it is not a proper subwalk of another unitig that ends at
the same vertex-side as t. A unitig is suffix-maximal if it is not a proper subwalk of another unitig
that starts with the same vertex-side as t. Note that a unitig is maximal iff it is both prefix- and
suffix-maximal.

We will prove Theorem 2 by first building a collection of Lemmas. First, we make a simple
observation. A palindrome must have an even number of characters, otherwise there is a middle
character that would need to be equal to its own reverse complement. Hence, a palindromic walk,
in either the doubled or the bidirected graph must have an even number of nucleotides.

Lemma B.1. Let K be a set of k-mers.

1. For all palindromic walks w = (x0, . . . , xn) in Gdbl(K), k and n have the same parity.

2. For all palindromic walks t = (u0, s0, . . . , un, sn) in Gbid(K), k and n have the same property.

Proof. A palindromic string must have an even number of nucleotides. The number of nucleotides
in spell(w) and in spell(t) is k + n, Hence the parity of k and n must be the same.

From here on out, we proceed by first proving Lemmas for the directed de Bruijn graphs (both
the regular one and the doubled one) (Appendix B.1), then proving Lemmas for the bidirected graph
(Appendix B.2), then proving Lemmas which connect the two types of graphs (Appendix B.3), and,
finally, proving Theorem 2 (Appendix B.4).

18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

B.1 Directed graph

First, we make the observation that unitigs cannot repeat vertices unless they are a simple cycle.
This is generally stated without proof, but the statement is actually not true when unitigs are
allowed to be periodic cycles. In our definition of unitig, we forbid this case, allowing us to prove
the observation.

Lemma B.2. For all unitigs w in a directed graph, either w is a simple cycle or it does not repeat
any vertices.

Proof. Let w = (x0, . . . , xn) be a unitig. Suppose that w repeats a vertex. Let 0 ≤ j ≤ n be the
smallest value for which there exists 0 ≤ i < j such that xi = xj . If i > 0, then xi has xi−1 and
xj−1 as an in-neighbor. By the minimality of our choice of i, xi−1 6= xj−1, and hence d−(i) ≥ 2.
This contradicts that w is a unitig. If i = 0, then let j + 1 ≤ ` ≤ n− 1 be the largest index greater
than j such that x` = x` mod (j+1). In other words, ` is the first place after xj where the unitig is
about to “fall off the cycle”. If such an ` does not exist, then either j = n and w is a simple cycle,
or w is a simple periodic cycle, contradicting the definition of a unitig. Otherwise, the vertex x` has
as out-neighbors both x`+1 and x`+1 mod (j+1). By the choice of `, these out-neighbors are distinct
and hence d+(x`) ≥ 2. This contradicts that w is a unitig.

A very simple property in the doubled graph is is that the in-degree (respectively, out-degree)
of a vertex is equal to the out-degree (respectively, in-degree) of its reverse complement.

Lemma B.3. Let K be a set of k-mers and let x be a vertex in Gdbl(K). Then d+(x) = d−(x) and
d−(x) = d+(x).

Proof. Observe that for all vertices y in the Gdbl(K), there is an edge from x to y in Gdbl(K) iff
there is an edge from y to x. This is true even if x = y and these two edges are identical. Hence
d+(x) = d−(x) and d−(x) = d+(x).

We defined maximal unitigs as those that are not proper sub-walks of other unitigs. We can give
an equivalent definition for directed graphs, in terms of vertex degrees. Since it is widely known,
we state it without proof.

Lemma B.4. Let G be a directed graph and let w = (x0, . . . , xn) be a unitig in G. Then

(i) w is prefix-maximal if and only if d−(x0) 6= 1 or there exists a vertex x′ that has an edge to
x0 and d+(x′) > 1.

(ii) w is suffix-maximal if and only if d+(xn) 6= 1 or there exists a vertex x′ that has an edge from
xn and d−(x′) > 1.

Palindromic unitigs play a special role in Theorem 2. We observe that in a palindromic unitig
of the doubled graph, the only edge from a k-mer to its reverse complement is the middle one.

Lemma B.5. Let K be a set of k-mers with odd k. Let w = (x0, . . . , xn) be a palindromic unitig
in Gdbl(K) that is not a simple cycle. Then for all 0 ≤ i ≤ n − 1, we have that xi = xi+1 iff
i = (n− 1)/2.

Proof. First note that by Lemma B.1, n is odd and n ≥ 1. Let m = (n − 1)/2. Because spell(w)
is a palindrome, xi = xn−i for all 0 ≤ i ≤ n. The only if direction of the Lemma statement follows
immediately by plugging in i = m and getting xm = xn−m = xm+1. For the if direction, assume
that xi = xi+1 for all 0 ≤ i ≤ n− 1. Then xi = xi+1 = xn−i−1 = xn−i−1. By the fact that w is not
a simple cycle and Lemma B.2, it cannot have any repeated vertices. Hence, i = n − i − 1 which
only happens when i = m.

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

We also observe that a maximal unitig that is not a palindrome cannot contain within it a
palindrome of length ≥ k.

Lemma B.6. A non-palindromic maximal unitig w in Gdbl(K) cannot contain a proper sub-unitig
that is palindromic.

Proof. For the sake of contradiction, let z be a proper sub-unitig of w that is a palindrome. First
suppose that there exists a k-mer y such that y precedes z in w and y follows z in w. In that case,
observe that the walk (y, z, y) is also a sub-unitig of w and also a palindrome. We can then extend
z in this way until no longer possible, i.e. there do not exist a k-mer y such that y precedes z in w
and y follows z in w. Let w′ be this maximally extended walk. Note that by construction, w′ is a
sub-unitig of w and it is proper because w′ is palindromic and w is not. Let the first vertex of w′

be x, and, hence, the last one is x.
Consider the case when w starts with x. Because w 6= w′, there must exist an out-neighbor

u of x in w. Its mirror must also exist, i.e. an edge from u to x. Lemma B.4 states that x is
the first vertex of a maximal unitig, it must either (a) have one other in-neighbor besides u or
(b) u must have at least one other out-neighbor besides x. For case (a), Lemma B.3 implies that
d+(x) = d−(x) > 1. For case (b), Lemma B.3 implies that d+(u) = d−(u) > 1. In either case, the
degrees of x or of u contradict the definition of being part of a unitig. The case when w ends with
x is symmetric and omitted.

Now consider the case when w does not start with x and does not end with x. Let a be the
vertex preceding x in w, and let b be the vertex following x in w. There exist a mirror edge from b to
x. Since w′ was chosen so that it cannot be extended, a 6= b. Hence x has two distinct in-neighbors,
a and b. Since w contains x as a non-first vertex, this contradicts that w is a unitig.

B.2 Bidirected graph

As is the case with directed graphs (Lemma B.4), there is a definition of maximality for bidirected
unitigs that has to do with degrees rather than sub-unitigs. We are not aware of this equivalence
being explicitly proven, so we do so here:

Lemma B.7. Let K be a set of canonical k-mers. Let t = (u0, s0, . . . , un, sn) be a unitig in Gbid(K).
Then

(i) t is prefix-maximal if and only if d(u0, s0) 6= 1 or there is an edge {(u0, s0), (u′, s′)} such that
d(u′, s′) > 1, and

(ii) t is suffix-maximal if and only if d(un, 1 − sn) 6= 1 or there is an edge {(un, 1 − sn), (u′, s′)}
such that d(u′, s′) > 1.

Proof. We will only prove (i) since the proof of (ii) is symmetric. First, we prove the only if
direction. We need to consider three cases. The first case is when d(u0, s0) 6= 1. If d(u0, s0) = 0,
then t is prefix-maximal because there is no other walk of which it is a subwalk with the same
last vertex-side (un, sn). The second case is when d(u0, s0) > 1. Consider any walk t′ that ends in
(un, sn) and of which t is a proper subwalk. Observe that (u0, s0) would not be the first vertex-side
of t′. Therefore, since d(u0, s0) > 1, t′ cannot be a unitig and t must be prefix-maximal. The third
case is when (u0, s0) has degree one and (u′, s′) is its only neighbor. Again, consider any walk t′

that ends in (un, sn) and of which t is a proper subwalk. Observe that (u′, 1− s′) belongs to t′ but
is not the last vertex-side of t′. Therefore, since we assumed that d(u′, s′) > 1, t′ cannot be a unitig
and t must be prefix-maximal.

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

To prove the if direction we prove the contrapositive. In other words, we will show that if
the degree of (u0, s0) is one and its sole neighbor (u′, s′) also has degree at most 1, then t is not
prefix-maximal. First, observe that t′ = (u′, 1− s′, u0, s0, . . . , un, sn) is a valid walk, since the edge
{(u′, s′), (u0, s0)} exists. Then, observe that the degree of (u′, s′) is exactly one because it has
degree at most one (by our assumption) and also has a neighbor (i.e. (u0, s0)). Therefore, the
degree requirements for t′ being a unitig are fulfilled. Finally, observe that t is a proper subwalk of
t′ ending in the same vertex-side, (un, sn). Therefore, t is not prefix-maximal.

In a bidirected graph, a walk and its reverse are either both unitigs or not and, if they are, are
either both are maximal or not.

Lemma B.8. Let K be a set of canonical k-mers and let w be a unitig in Gbid(K).

(i) rev(w) is a unitig in Gbid(K).

(ii) w is prefix-maximal iff rev(w) is suffix-maximal.

(iii) w is suffix-maximal iff rev(w) is prefix-maximal.

Proof. Let (u0, s0, . . . , un, sn) = w and (u′0, s
′
0, . . . , u

′
n, s
′
n) = rev(w). For (i), by definition of rev,

we have that u′i = un−i and s′n = 1− sn−i. Applying the definition of unitig to w, we get that

d(ui, 1− si) ≤ 1 for all 0 ≤ i < n and d(ui, si) ≤ 1 for all 0 < i ≤ n.

These can be equivalently stated as

d(u′n−i, s
′
n−i) ≤ 1 for all 0 ≤ i < n and d(u′n−i, 1− s′n−i) ≤ 1 for all 0 < i ≤ n

If we change the index variables, these can be equivalently restated as

d(u′i, s
′
i) ≤ 1 for all 0 < i ≤ n and d(u′i, 1− s′i) ≤ 1 for all 0 ≤ i < n.

This is precisely the definition of rev(w) being a unitig.
For (ii) and (iii), first observe that Lemma B.7 gives an alternate, equivalent, definition for

prefix- and suffix-maximal. For (ii), observe that if apply the alternate definition of suffix-maximal
to rev(w) and plug in that u′n = u0 and s′n = 1 − s0, we get precisely the alternate definition of
w being prefix-maximal. For (iii), observe that if apply the alternate definition of prefix-maximal
to rev(w) and plug in that u′0 = un and s′0 = 1− sn, we get precisely the alternate definition of w
being suffix-maximal.

While we showed that it is natural for the doubled graph to have a palindromic unitig, this is
impossible in a bidirected graph.

Lemma B.9. Let K be a set of canonical k-mers, with k odd. Then a unitig of Gbid(K) cannot be
a palindrome.

Proof. Let t = (u0, s0, . . . , un, sn) be a palindromic walk. By Lemma B.1, n is odd, and so
n ≥ 1. For convenience, let m = (n − 1)/2. By definition, spell(t) = spell(t). In particu-
lar, the two “central” k-mers of spell(t) must be reverse complements of each other. Formally,
orient(lab(um), sm) = orient(lab(um+1), sm+1). Since the labels of vertices in a bidirected graph
are distinct, lab(um) 6= lab(um+1) and hence sm = 1−sm+1. Applying the definition of a bidirected
walk to t, we get that {(um, 1−sm), (um+1, sm+1)} is an edge. The fact that sm = 1−sm+1 implies
that this edge is an inverted loop incident to (um, 1− sm). Thus d(um, 1− sm) ≥ 2, implying that
t does not satisfy the definition of being a unitig.

21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

B.3 Connecting the directed and bidirected graphs

So far, we have proven properties of the doubled graph and of the bidirected graph separately;
in this section, we prove lemmas about the relationship between the two graphs, when k is odd.
Recall that for a k-mer x ∈ K, we defined FV (x) = (u, s), where (u, s) is the unique vertex-side in
Gbid(K) such that lab(u) = orient(x, s).

Lemma B.10. Let K be a set of canonical k-mers where k is odd. FV is a bijection between
vertices of Gdbl(K) and vertex-sides of Gbid(K).

Proof. To show that FV is a bijection, we will show that for all vertex-sides (u, s) in Gbid(K), there
exists a unique k-mer x in Gdbl(K) such that FV (x) = (u, s). Consider a value of x such that
FV (x) = (u, s). By definition, lab(u) = orient(x, s)). Since k is odd and x is not a palindrome, the
value of x satisfying this must be unique. By construction of Gdbl(K) and Gbid(K), k must be a ver-
tex in Gdbl(K). Further, if x = orient(lab(u), s), then orient(x, s) = orient(orient(lab(u), s), s) =
lab(u) and so x satisfies the condition that FV (x) = (u, s).

We will use F−1
V to denote the inverse of FV , which was shown in Lemma B.10 is F−1

V (u, s) =

orient(lab(u), s). We will use x
FV⇐=⇒ (u, s) to denote that a vertex x of Gdbl(K) and a vertex-side

(u, s) in Gbid(K) are associated with each other by FV .
Recall that for two Gdbl(K) k-mers x1 and x2, we define the mapping FE(x1, x2) = {(u1, 1 −

s1), (u2, s2)}, where (u1, s1) = FV (x1) and (u2, s2) = FV (x2). Though the mapping is not a
bijection, it preserves the property of being an edge in the respective graph2:

Lemma B.11. Let K be a set of canonical k-mers where k is odd. Let x1 and x2 be vertices
in Gdbl(K). We have that (x1, x2) is an edge in Gdbl(K) if and only if FE(x1, x2) is an edge in
Gbid(K).

Proof. By the definition of bidirected edges, FE(x1, x2) = {(u1, 1− s1), (u2, s2)} is an edge iff

suf(orient(lab(u1), s1)) = pre(orient(lab(u2), s2)). (1)

Recall that by the definition of FE , lab(u1) = orient(x1, s1) and lab(u2) = orient(x2, s2). We can
therefore rewrite Equation (1) equivalently as

suf(orient(orient(x1, s1), s1)) = pre(orient(orient(x2, s2), s2)). (2)

Now, using the fact that orient(orient(y, s), s) = y, for all y and s, we can rewrite Equation (2) as

suf(x1) = pre(x2) (3)

Since we obtained Equation (3) from Equation (1) using equivalent transformations, it shows that
the two statements are equivalent and completes the proof.

2As an aside, we mention how one would obtain a bijection. This is not necessary for the proofs of this
paper, but may be a useful observation in its own right. Let E be the set of edges in Gdbl(K), let α ⊆ E
be all the self-mirror edges, and let β be the partition of E \ α into mirror edge-pairs. For example, if E =
{(AGG,GGA), (TCC,CCT), (TTA, TAA)}, then α = {(TTA, TAA)} and β = {{(AGG,GGA), (TCC,CCT)}}.
For an element {(x, y), (y, x)} ∈ β, we define FEG({(x, y), (y, x)}) = FE(x, y). For a self-mirror edge (x, y) ∈ α, we
define FEG({(x, y)}) = FE(x, y). One can then show that FEG is a bijection between α ∪ β and edges in Gbid(K).

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

One particular case of Lemma B.11 that we will often invoke is that there is an edge from x to
x in Gdbl(K) if and only if there is an inverted loop incident to (u, 1− s) in Gbid(K).

Now recall that FW is defined as a function that maps a walk w = (x0, . . . , xn) in Gdbl(K)
to a sequence FW (w) = (u0, s0, . . . , un, sn), with (ui, si) = FV (xi) for all 0 ≤ i ≤ n. We show
that FW (w) is in fact a walk in Gbid(K) and, moreover, FW is a bijection from the set of walks in
Gdbl(K) to the set of walks in Gbid(K).

Lemma B.12. Let K be a set of canonical k-mers where k is odd. FW is a spell-preserving bijection
from the set of walks in Gdbl(K) to the set of walks in Gbid(K).

Proof. Let w = (x0, . . . , xn) be a walk in Gdbl(K) and let (ui, si) = FV (xi) for all 0 ≤ i ≤ n. We
will first show that FW (w) = (u0, s0, . . . , un, sn) is a walk in Gbid(K). By definition of FV , FW (w)
is a sequence of vertex-sides. Consider the edge from xi to xi−1, for all 1 ≤ i ≤ n. By Lemma B.11,
there is an edge {(ui−1, 1−si−1), (ui, si)} in Gbid(K). This shows that every two consecutive vertex-
sides in FW (w) are connected by an edge, thus completing the proof that FW (w) is a walk. The
fact that it is spell preserving follows from its definition.

To show that FW is a bijection, we need to show that for all walks t = (u0, s0, . . . , un, sn) in
Gbid(K), there exists a unique walk w in Gdbl(K) such that t = FW (w). Let w = (x0, . . . , xn) be an
arbitrary walk in Gdbl(K). In order for FW (w) = t, we need that FV (xi) = (ui, si) for all 0 ≤ i ≤ n.
Because FV is bijection (Lemma B.10), there is exactly one value of xi to satisfy this, and that is
xi = F−1(ui, si) = orient(lab(ui), si). Therefore, w = (orient(lab(u0), s0), . . . , orient(lab(un), sn))
is the unique walk in Gdbl(K) to satisfy FW (w) = t.

Given the above proof, we can write the inverse of FW as F−1
W (u0, s0, . . . , un, sn) =

(orient(lab(u0), s0), . . . , orient(lab(un), sn)). We will use w
FW⇐=⇒ t to denote that a walk w in

Gdbl(K) and a walk t in Gbid(K) are associated with each other by FW .
Notice that if k were to be even, then Lemma B.12 would not hold. In particular, Let x ∈ K

be a palindrome k-mer and let u be the vertex in Gbid(K) such that lab(u) = x. Then both of the
walks (u, 0) and (u, 1) would spell x, while in the Gdbl(K) there would only be one walk that spells
x.

Since unitigs are defined in terms of degrees, it is useful to first understand how the degrees of
vertices in Gdbl(K) relate to the degrees of vertex sides in Gbid(K).

Lemma B.13. Let K be a set of canonical k-mers where k is odd. Let x be a vertex in Gdbl(K)

and let (u, s) be a vertex-side is Gbid(K) such that x
FV⇐=⇒ (u, s). Then,

(i) d+(x) = d(u, 1− s)− dil(u, 1− s)

(ii) d−(x) = d(u, s)− dil(u, s).

Proof. For proving part (i), we will first prove an upper bound and then a matching lower bound.
We start with the upper bound. Let Y be the set of all out-neighbors of x which are not equal to
x. Note that Y may contain x. Let Y ′ = {FV (y) | y ∈ Y } and observe that since FV is injective
(Lemma B.10), |Y ′| = |Y |. By Lemma B.11, for each vertex-side (u′, s′) ∈ Y ′, there is an edge
{(u, 1− s), (u′, s′)} and so d(u, 1− s) ≥ |Y ′|.

We show that d+(x) = d(u, 1 − s) − dil(u, 1 − s) by considering two cases. In the first case,
assume that there does not exist an edge (x, x). Then d+(x) = |Y |. Moreover, by Lemma B.11,
the edge {(u, 1 − s), (u, 1 − s)} does not exist, so dil(u, 1 − s) = 0. Putting these facts together,
d+(x) = |Y | = |Y ′| ≤ d(u, 1− s) = d(u, 1− s)− dil(u, 1− s).

23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

In the second case, assume that there exists an edge (x, x). Lemma B.11 says that there is an
inverted loop incident to side (u, 1− s), so dil(u, 1− s) = 1. An inverted loop adds 2 to the degree
of (u, 1− s), i.e. d(u, 1− s) ≥ |Y ′|+ 2; it also contributes 1 to out-degree of x, i.e. d+(x) = |Y |+ 1.
Putting these together, we get d(x) = |Y |+1 = |Y ′|+1 ≤ d(u, 1−s)−1 = d(u, 1−s)−dil(u, 1−s).

For the lower bound, let Z ′ be the set of all vertex-sides (u′, s′) such that (u′, s′) 6= (u, 1 − s)
and there is an edge {(u, 1− s), (u′, s′)}. Let Z = {z | FV (z) ∈ Z ′}. By Lemma B.10, |Z| = |Z ′|.
By Lemma B.11, for every z ∈ Z, there is an edge from x to z in Gdbl(K) and therefore d+(x) ≥
|Z| = |Z ′|.

Now we show that d(u, 1− s) ≤ d+(x) + dil(u, 1− s) by considering two cases. In the first case,
assume that there is no inverted loop touching (u, 1−s). Then, d(u, 1−s) = |Z ′| and dil(u, 1−s) = 0.
We can therefore write d(u, 1− s) = |Z ′|+ dil(u, 1− s) ≤ d+(x) + dil(u, 1− s). In the second case,
assume there exists an inverted loop touching (u, 1 − s). In this case, d(u, 1 − s) = |Z ′| + 2.
By Lemma B.11, there is an edge from x to x and x /∈ Z. Thus, d + (x) ≥ |Z| + 1. Putting this
together, d(u, 1− s) = |Z ′|+ 2 = |Z|+ 2 ≤ d+(x) + 1 = d+(x) + dil(u, 1− s).

For part (ii), observe that FV (x) = (u, 1− s). We can then apply part (i) of this theorem to x,
u, and 1 − s, and get that d+(x) = d(u, s) − dil(u, s). By Lemma B.3, d−(x) = d+(x), and hence
d−(x) = d+(x) = d(u, s)− dil(u, s).

An immediate consequence of the degree-preserving lemma is that if F (w) is a unitig, then so
is w. The converse is not always true however.

Lemma B.14. Let K be a set of canonical k-mers where k is odd. Let w = (x0, . . . , xn) and

t = (u0, s0, . . . , un, sn) be two walks related by w
FW⇐=⇒ t.

(i) If t is a unitig, then w is a unitig.

(ii) If w is a unitig and for all 1 ≤ i ≤ n, xi−1 6= xi, then t is a unitig.

Proof. For (i), when n = 0, w is trivially a unitig because it has only one vertex. For n > 0,
since t is a unitig, d(ui, si) = 1 for 0 < i ≤ n. Moreover, since an inverted loop would make a
degree ≥ 2, we have dil(ui, si) = 0. Using Lemma B.13, d−(xi) = 1. Similarly, for all 0 ≤ i < n,
d(ui, 1− si) = 1, dil(ui, 1− si) = 0, and Lemma B.13 gives that d+(xi) = 1. Hence w is a unitig.

For (ii), first observe that there is no inverted loop incident to (ui, si), for 1 ≤ i ≤ n. If that
were the case, then Lemma B.11 implies that there is an edge from xi to xi. Since w is a unitig, the
only in-neighbor of xi is xi−1. Hence, xi−1 = xi, which contradicts the conditions of the Lemma.
Now, since dil(ui, si) = 0, Lemma B.13 implies that d(ui, si) = d−(xi) + dil(ui, si) = d−(xi) = 1.
Using a symmetrical argument (omitted), d(uj , 1 − sj) = 1 for all 0 ≤ j < n. Therefore, t is a
unitig.

Similarly, we can relate the maximality of unitigs in Gdbl(K) and Gbid(K). A maximal unitig
in Gdbl(K) is maximal in Gbid(K), on the condition that is a unitig in Gbid(K); however, the other
direction only holds with a restrictive condition.

Lemma B.15. Let K be a set of canonical k-mers where k is odd. Let w = (x0, . . . , xn) and

t = (u0, s0, . . . , un, sn) be two walks related by w
FW⇐=⇒ t. Suppose that both w and t are unitigs.

(i) If t is prefix-maximal and has no lonely inverted loop at the first endpoint side, then w is
prefix-maximal.

(ii) If w is prefix-maximal, then t is prefix-maximal.

24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

(iii) If t is suffix-maximal and has no lonely inverted loop at the last endpoint side, then w is
suffix-maximal.

(iv) If w is suffix-maximal, then t is suffix-maximal.

Proof. We will prove (i) and (ii) only, since the proofs of (iii) and (iv) are symmetric. For (i), if
there is more than one edge incident to (u0, s0), then d(u0, s0) ≥ 2. If there are no edges incident
to (u0, s0), then d(u0, s0) = 0. In both cases, Lemma B.13 implies that d−(x0) = d(u0, s0) 6= 1 and
Lemma B.4 implies that w is prefix-maximal.

Now consider the case that d(u0, s0) = 1. By the conditions of the Lemma, there is no in-
verted loop incident at (u0, s0), and Lemma B.13 implies d−(x0) = 1. Since t is prefix-maximal,
by Lemma B.7, there is a vertex side (u′, s′) and an edge e = {(u′, s′), (u0, s0)} such that d(u′, s′) > 1.
Let x′ = F−1

V (u′, 1 − s′) and Lemma B.11 implies that there is an edge from x′ to x0 in Gdbl(K).
Observe that because d(u0, s0) < 2, e is not an inverted loop. Therefore, (u′, s′) has at least one
incident edge that is not an inverted loop. Because an inverted loop adds at least two to the
degree, d(u′, s′)− dil(u′, s′) > 1. Thus, Lemma B.13 implies that d+(x′) > 1. By Lemma B.4, w is
a prefix-maximal unitig.

For (ii), suppose for the sake of contradiction that t is not prefix-maximal. Then Lemma B.7
implies that d(u0, s0) = 1 and there exists a vertex-side (u′, s′) with d(u′, s′) = 1 and an edge
e = {(u′, s′), (u0, s0)}. Let x′ = F−1

V (u′, 1 − s′). Note that dil(u0, s0) = dil(u′, s′) = 0 because
vertex-sides with degree 1 cannot have an inverted loop incident to them. Lemma B.13 then
implies that d−(x0) = d(u0, s0) = 1 and d+(x′) = d(u′, s′) = 1. In addition, Lemma B.11 applied
to e says that there is an edge from x′ to x. By Lemma B.4, these facts imply that w is not
prefix-maximal, which is a contradiction.

Theorem 2 has a condition that there are no circular unitigs. We now show that this implies
that a unitig in Gbid(K) cannot have lonely inverted loops incident to both of the endpoint sides.

Lemma B.16. Let K be a set of canonical k-mers where k is odd. Let w = (x0, . . . , xn) be a walk
in Gdbl(K) such that FW (w) is a unitig. If the two endpoint sides of FW (w) have lonely inverted
loops incident on them, then w′ = (x0, . . . , xn, xn, . . . , x0, x0) is a circular unitig in Gdbl(K).

Proof. First, to show that w′ is a walk in Gdbl(K), we need to show that there exist edges (x0, x0)
and (xn, xn). This follows by applying Lemma B.11 to the inverted loop edges at the endpoints of
F (w), i.e. to {(u0, s0), (u0, s0)} and {(un, 1− sn), (un, 1− sn)}.

Second, to show that w′ is a unitig, we will show that all the necessary vertex degrees are
1. By Lemma B.14, w is a unitig, and hence d+(xi) = 1 for all 0 ≤ i < n and d−(xi) = 1 for
all 0 < i ≤ n. Let (ui, si) = FV (xi) for all 0 ≤ i ≤ n. Because the endpoint sides of F (w)
each have a lonely inverted loop, d(u0, s0) = 2 and d(un, 1 − sn) = 2. Applying Lemma B.13,
d−(x0) = d(u0, s0) − dil(u0, s0) = 2 − 1 = 1 and d+(xn) = d(un, 1 − sn) − dil(un, 1 − sn) = 1.
Applying Lemma B.3 to all these, we get that d−(xi) = 1 for all 0 ≤ i ≤ n and d+(xi) = 1 for all
0 ≤ i ≤ n.

B.4 Proof of Theorem 2

Theorem 2. Let K be a set of canonical k-mers where k is odd and Gdbl(K) does not contain a
circular unitig.

(i) The function FW is a bijection from Dnon-pal to Bno-loop.

(ii) The function rev is a bijection between Blast-loop and Bfirst-loop.

25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

(iii) head is a bijection from Dpal and Blast-loop

Proof.

(i) We already know from Lemma B.12 that FW is a bijection between walks in Gdbl(K) and
Gbid(K). It remains to show that

(1) For a unitig w that is maximal and non-palindromic in Gdbl(K), FW (w) ∈ Bno-loop.

(2) For a unitig t ∈ Bno-loop, F−1(t) is a maximal and non-palindromic unitig in Gdbl(K).

First, we prove (1). Because w is a non-palindromic maximal unitig, by Lemma B.6, there
is no edge 0 ≤ i < n such that xi = xi+1, because then (xi, xi+1) would be a palindromic
sub-unitig of w. Hence we can apply Lemma B.14 to say that FW (w) is a unitig and we
can apply Lemma B.15 to say that FW (w) is maximal. Hence FW (w) ∈ B. To show that
FW (w) /∈ B2 ∩ B3, first assume for the sake of contradiction that there is a lonely inverted
loop at the last endpoint side of FW (w). Then by Lemma B.11 there is an edge from xn to
xn. By Lemma B.13, d+(xn) = 2 − 1 = 1. By Lemma B.3, d−(xn) = d+(xn) = 1. Because
w is maximal, if d+(xn) = 1, then d−(xn) > 1. This is a contradiction. The argument that
there is no lonely inverted loop at the first endpoint side of FW (w) is symmetric and omitted.

Now, we prove (2). Let w = F−1(t). Since t is a unitig, Lemma B.14 implies that w is a unitig
also. Moreover, Lemma B.9 implies that t is non-palindromic; since FW is spelling preserving
(Lemma B.12), w is also non-palindromic. Since the Theorem assumes that Gdbl(K) does not
have circular unitigs, Lemma B.16 implies that t cannot have a lonely inverted loop at both
endpoints. Since t /∈ B2 ∪ B3, it also cannot have an inverted loop at exactly one endpoint.
We can therefore apply Lemma B.15 to get that w is maximal.

(ii) Observe that rev is by definition a function that is its own inverse and is a bijection on
the set of walks in Gbid(K). Furthermore, Lemma B.8 implies that rev remains a bijection
when restricted to maximal unitigs in Gbid(K). Finally, observe that for a walk t, the first
(respectively, last) endpoint side of t is the last (respectively, first) endpoint side of rev(t).
These facts together imply that rev is a bijection between Bfirst-loop and Blast-loop.

(iii) To show that head is a bijection we show

(1) for all w ∈ Dpal, head(w) ∈ Blast-loop,

(2) for all t ∈ Blast-loop, there exists a w ∈ Dpal such that head(w) ∈ Blast-loop.

(3) the above w is unique.

First, we prove (1). Let w = (x0, . . . , xn). By Lemma B.1, n is odd and at least 1. Let
m = (n − 1)/2 and let h , (x0, . . . , xm). Since w is a palindromic unitig and, by the
conditions of the Theorem, non-circular, Lemma B.5 implies that for all 0 ≤ i < n, xi 6= xi+1.
Then by Lemma B.14, head(w) = FW (h) is a unitig. Simultaneously, because w is a maximal
unitig, h is a prefix-maximal unitig. Lemma B.15 then implies that FW (h) is prefix-maximal.

Now we show that FW (h) is suffix-maximal and has a lonely inverted loop at the last endpoint.
Let (u0, s0, . . . , um, sm) , FW (h). Since w is palindromic, Lemma B.5 implies that xm =
xm+1, and, hence, um = um+1. By Lemma B.11, there is an inverted loop incident to (um, 1−
sm), i.e. the last endpoint of FW (h). Because w is a unitig, d+(xm) = d−(xm+1) = 1,
Lemma B.13 then implies that d(um, 1−sm) = d+(xm)+dil(um, 1−sm) = 2. By Lemma B.7,
FW (h) is suffix-maximal and therefore we have shown that FW (h) ∈ Blast-loop.

26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

Next we prove (2). Let (u0, s0, . . . , un, sn) = t and let xi = F−1
V (ui, si). Let w =

(x0, . . . , xn, xn, . . . , x0) be a sequence of vertices in Gdbl(K). We will first show that w is
a walk, then that it is palindromic, then that it is a unitig, and finally that it is maximal.
Note that w is equivalently defined to be the concatenation of F−1

W (t) with F−1
W (rev(t)).

Applying Lemma B.12, the sequences (x0, . . . , xn) and (xn, . . . , x0) are walks. Since t is in
Blast-loop, there is an inverted loop incident to (un, 1 − sn). By Lemma B.11, this implies
there is an edge from xn to xn in Gdbl(K). Therefore, w is a walk. It is palindromic by its
definition. Since t is a unitig, by Lemma B.8, rev(t) is a unitig. Now applying Lemma B.14,
w and rev(w) are both unitigs. Because the inverted loop is lonely, d(un, 1 − sn) = 2, and
by Lemma B.13, d+(xn) = 1. Applying Lemma B.3, d−(xn) = 1. Hence w is a unitig.

As t is in Blast-loop, this implies that no lonely inverted loop is incident to (u0, s0). We can
apply Lemma B.15 to get that F−1(t) is prefix-maximal. Because w starts with F−1(t), w is
also prefix-maximal. By Lemma B.8, F−1(rev(w)) is suffix-maximal. Because w ends with
F−1(rev(w)), w is also suffix-maximal. Hence, w is maximal.

For (3), let (u0, s0, . . . , un, sn) = t and let xi = F−1
V (ui, si). Let w′ be a walk in Dpal such that

head(w′) ∈ Blast-loop. We will show that w′ = (x0, . . . , xn, xn, . . . , x0). Since head(w′) has
n+ 1 vertices, w must have 2n+ 2 vertices. Hence we can write w = (x′0, . . . , x

′
2n+1). Since w

is a palindrome, we have that x′i = x′2n+1−i for all 0 ≤ i ≤ 2n+ 1. We can therefore rewrite w

as w = (x′0, . . . , x
′
n, x
′
n, . . . , x

′
0). Next, observe that head(w′) = FW ((x′0, . . . , x

′
n)). Since this

must be equal to t and FW is a bijection (Lemma B.12), we get that (x′0, . . . , x
′
n) = (x0, . . . , xn).

We can therefore rewrite w as w = (x0, . . . , xn, xn, . . . , x0), which is the same as w.

C Experimental details

Choice of k parameter for the assemblers: To ensure that the results across the assemblers
are comparable, we set the k parameter in a way so that the set of unitigs constructed are as close
as possible. The ideal way is to set k such that the underlying k-mer sets K used for all assemblers
are same. However, there was a practical limitation for that. We note that both SPAdes and
MEGAHIT are a multi-k assemblers, so the k parameter is just the maximum allowed k-mer size.
When we pass the value k to the assemblers, both SPAdes and MEGAHIT use k-mer set and
(k + 1)-mer set to construct unitigs, whereas bcalm, ABySS, and minia uses a node-centric de
Bruijn graph with only k-mer sets as vertices. As such, we found that the output unitigs of SPAdes
and MEGAHIT with a value of k are more similar to unitigs of bcalm and ABySS created with
k+ 1. We also note that SPAdes and MEGAHIT only allow odd k, which is why we needed to use
an even k for Gdbl.

In Table 2, we therefore passed k = 74 to bcalm and k = 73 to SPAdes and MEGAHIT.
Since Theorem 1 is valid for all k, this was not an issue for Table 2. We used the default parameter
for minimum k-mer coverage for both assemblers.

For Table 4, we passed k = 31 to all assemblers, since Theorem 2 only applies when the vertex
lengths are of odd k. Since SPAdes and MEGAHIT by default use both k-mer and (k+ 1)-mer set
to construct unitigs, the number of palindromic unitigs (433) differs from the number in minia and
ABySS (440). However, this is not a problem because we are not comparing the numbers between
assemblers but only within assemblers.

27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

Detection of palindrome splitting artifact In this section, we use the notation S[i : j] to
denote substring of string S starting at index i and ending at index j. Let w = (x0, . . . , xn) be
a palindromic unitig in Dpal and let p be its spelling. We say a unitig in Dpal is fully-covered if
there exists some contig that aligns to an interval which contains p’s interval in the reference. Let
k′ , (k − 1)/2. We say w is split if there exists at least one contig c such that either

1. c aligns to an interval that starts before p’s interval and ends exactly at position |p|/2 + k′ of
p’s interval and there are no other contigs with alignments intersecting p[|p|/2 + k′ + 1 : |p|],
or

2. c aligns to an interval that ends after p’s interval and starts exactly at location |p|/2− k′ + 1
of p’s interval and there are no other contigs with alignments intersection p[1 : |p|/2 + k′].

We say w is ambiguous if it does not fall into either category.
To motivate these cases, observe that the length of p is n + k and, because p is a palindrome

and k is odd, n must be odd. Let w′ = (x0, . . . , xn−1
2

) be the first half of the walk w and let

p′ be its spelling. By Theorem 2, head(w) ∈ Blast-loop and rev(head(w)) ∈ Bfirst-loop. Then,
p′ = p[1 : n−1

2 + k] = p[1 : |p|/2 + k′]. Then,

1. spell(head(w)) = spell(FW (w′)) = spell(w′) = p[1 : |p|/2 + k′], and

2. spell(rev(head(w))) = spell(rev(FW (w′))) = spell(FW (w′)) = p[p/2− k′ + 1 : |p|].

The cases we describe therefore correspond to observing the alignments of head(w) and
rev(head(w)) to the corresponding places of p and not observing any other bidirected unitigs
aligning across the middle boundaries.

28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477068doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.20.477068
http://creativecommons.org/licenses/by/4.0/

