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Summary
Beta distributions are commonly used tomodel proportion valued response variables, commonly
encountered in longitudinal studies. In this article, we develop semi-parametric Beta regression
models for proportion valued responses, where the aggregate covariate effect is summarized and
flexibly modeled, using a interpretable monotone time-varying single index transform of a linear
combination of the potential covariates.We utilize the potential of single indexmodels, which are
effective dimension reduction tools and accommodate link function misspecification in general-
ized linearmixedmodels.OurBayesianmethodology incorporates themissing-at-random feature
of the proportion response, and utilize Hamiltonian Monte Carlo sampling to conduct inference.
We explore finite-sample frequentist properties of our estimates, and assess the robustness via
detailed simulation studies. Finally, we illustrate our methodology via application to a motivating
longitudinal dataset on obesity research recording proportion body fat.
KEYWORDS:
Beta regression; Body fat; Proportion data; Single-index model; Monotone; Hamiltonian Monte
Carlo

1 INTRODUCTION
Research in various biomedical disciplines and public health generates data, where the primary response variables are constrained in a compact
interval, say in (0, 1), rather than thewhole real line. For example, consider ourmotivating Fels longitudinal study (Roche 1992, FLS) recording pro-
portion body fat (pbf), a popular clinical biomarker in obesity research, for study subjects at longitudinal time-points, along with various important
covariates, such as gender, age, body mass index, etc. Figure 1a presents the raw density histogram of the response ‘pbf’ ∈ (0, 1), packed across
all subjects and time-points. For conducting regression, one can potentially transform the response variable to the real line, and use conventional
approaches (Qiu, Song, & Tan 2008). However, such vanilla approaches pose both modeling and computational issues, given that inference can be
sensitive to the transformations used, and parameters in the transformed scale rarely carry similar interpretation as in the originalmodel. In a quest
to conduct direct modeling of such responses, the Beta density (Gupta &Nadarajah 2004), a continuous log-concave density, is often the density of
choice due to its versatility in accommodating a variety of unimodal shapes on a compact interval, and thereby address non-Gaussianity, and data
skewness(Smithson&Verkuilen 2006). Under a generalized linearmixedmodel (GLMM) framework, a reparametrized beta density (and associated
regression) assists us to conveniently connect themodel covariates to theproportion response (Ferrari&Cribari-Neto2004),with a subject-specific
randomeffects in clustered/longitudinal studies (Hunger, Döring, &Holle 2012; Petterle, Bonat, & Scarpin 2019). Other popular distributionsmod-
eling proportion responses include the beta rectangular (Bayes, Bazán, &García 2012; Hahn 2008), simplex (Barndorff-Nielsen& Jørgensen 1991),
logistic normal (Aitchison 1986), and the Bessel (Barreto-Souza, Mayrink, & Simas 2020).
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Although linear regression (LR) are simple and commonly used procedures for evaluating covariate-response relationships, they are inadequate
for inference and prediction under violations of the LR assumptions. In biomedical (obesity) research, indexmeasures, such as the Charlson comor-
bidity index (Afolabi et al. 2020), combines information from an array of observed characteristics into a single value, thereby providing important
unobserved traits of a subject (Wu& Tu 2016). However, a majority of these indices were developed on empirical grounds, and lacks sound statisti-
cal justification. On the other hand, a single-index model (Stoker 1986, SIM) provides a simple, interpretable framework for quantifying a complex,
possibly non-linear relationship between a response Yi and the p > 1 dimensional covariate vector Xi = (Xi1, . . . ,Xip), where the conditional
expectation ofYi|Xi can be expressed as an unknown, univariate function g(.) of the scalar index Zi = XT

i β, where β = (β1, . . . , βp) is an unknown
index vector (more details in Section 2). This SIM specification accommodates both non-linear main effects, and higher order interactions (deter-
mined by the function g(.)), and thus offer a pragmatic compromise between a fully parametric LR, and other nonparametric formulation (Dhara,
Lipsitz, Pati, & Sinha 2020). However, (clinical) interpretation can be compromised(Foster, Taylor, &Nan 2013), if the shape of g(.) is left completely
unspecified. Hence, monotone single-index models (Balabdaoui, Durot, & Jankowski 2019; Groeneboom&Hendrickx 2019) have evolved, leading
to straightforward clinical interpretation, and ease of inference. In this paper, wemodel the longitudinal proportion response using a BR, where the
logit transform of its mean is flexibly modeled via a monotone single index transform of a linear combination of time-varying covariates. The justi-
fication behind enforcing monotonicity of the index function appears in the next section. Under a Bayesian paradigm powered by the Hamiltonian
Monte Carlo (MMC) sampling (Betancourt, Byrne, Livingstone, &Girolami 2017), a missing-at-random (MAR) assumption accommodates seamless
handling of themissing responses within the Bayesian updating scheme.
The rest of the article proceeds as follows: After a brief introduction to BR and the challenges associated with a SIM, Section 2 presents the

monotone SIM specification via Bernstein polynomials (BP), and the consequent adaptation to handle MAR missingness. In Section 3, we develop
the Bayesian estimation scheme, with prior specifications, posterior inference via HMC, and associated Bayesianmodel selection tools. Application
to the motivating FELS data, with relevant posterior summaries and prediction accuracy appear in Section 4. In Section 5, we use synthetic data to
evaluate the finite sample properties, and robustness of our proposal, in light of existing alternatives. Finally, some concluding comments and future
developments appear in Section 6.

2 STATISTICALMODEL
2.1 Single-index Beta Regression
Let yit is the observed proportion response ∈ (0, 1), and Xit ∈ Rp the corresponding predictors at tth (t = 1, . . . ,Ti) time point for the ith (i =

1, . . . , n) subject.Wemodel yit, conditional on the covariates as
fBR(yit | µit, ψi) =

Γ(ψi)

Γ(µitψi)Γ((1− µit)ψi)
y
µitψi−1
it (1− yit)(1−µit)ψi−1, 0 < µit < 1, ψi > 0. (1)

where, µit = E(yit) is themean parameter, with individual specific precision parameterψi. This is denoted as yit ∼ Beta(µitψi, (1− µit)ψi). Now, to
propose thebeta regression, the covariates are connected to themeanµit as logit(µit) = XT

it β, whereβ ∈ Rp is the vector of regression coefficients.
The variance component ψit is left unspecified (to be estimated using some priors as in our case), or estimated via assigning a link function, such as
log, to the covariates.
Over the years, there has been considerable effort in constructing more flexible mean functions of multivariate covariates. In this context, the

SIMs(Hardle, Hall, & Ichimura 1993), where logit(µit) is expressed as g(XT
it β), is typically viewed as a bridge between a multiple linear regres-

sion, and a non-parametric regression problem. The SIM do not suffer from the curse of dimensionality due to the reduction to an univariate index
variable from the multidimensional predictor set (Yu & Ruppert 2002). This dimension reduction property enhances computational scalability, and
preserves theflexibility of themodel throughutilization of non-linear functions. They are also advantageous in the context ofmisspecification of the
non-linear link function onXT

it β. The function g(·) is called a link function, and the p-variate coefficient vector β is called the index vector. The linear
combinationXT

it β is referred as the index for the predictorXit. In a SIM, one aims to estimate both the link function g and the index vector β simul-
taneously. The problem of estimating g is the same as a non-parametric univariate regression problem. An advantage of using a SIM over a usual
multiple linear regression problem is that once can achieve a higher predictive power aswe are considering a function of a linear combination of the
covariates (Carroll, Fan, Gijbels, &Wand 1997). SIM is also a special case of projection pursuit regression (PPR) (Friedman & Stuetzle 1981) with a
single component, thereby providing simpler interpretation over themulti-component PPR. Thus, in addition to better prediction performance, the
SIM provides appealing interpretation of the covariate effects on the response.
Despite its popularity, the SIM brings in certain challenges for statistical inference. The parameters (g, β) are not jointly identified. Constraints

on (g, β), such asmonotonicity on g (Foster et al. 2013), and a unit norm constraint onβ facilitate identifiability and the interpretation of the covari-
ate effect on the response. With g(.) assumed monotone, there are additional advantages in interpretation and usefulness of the index Zit = XT

it β

for subject i. Without loss of generality, if g is monotone non-decreasing, the expected value of the response will increase or remain the same with
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increase in Zit, and a prespecified threshold on g(XT
i β) enjoys a one-on-one correspondence to an equivalent threshold on XT

i β, allowing elegant
interpretation. Moreover, if the coefficient/parameter corresponding to a specificXit is positive, then increasing the value ofXit (with other covari-
ates remaining fixed) will result in a higher value of the index, thus increasing the expected value of the response. Based on these interpretations,
cliniciansmayaim to lower theexpectedadverse responseby taking appropriate steps to lower the index,Zit, by implementing aplan todecrease/in-
crease a particularXit. These physical interpretations of g and β are not always available when the link function g is unconstrained. In the following,
we present the details of our monotone SIM for longitudinal proportion data, and the adjustments to handle missingness.

2.2 Monotone SIM
Classicalmethods (Ayer, Brunk, Ewing, Reid, & Silverman1955; Brunk 1955) of imposingmonotonicity requires constrained optimization to ensure
the monotonicity and smoothness of the link function. Isotonic regression i.e, fitting a monotone function g to data points (yi, xi) involves finding a
weighted least-squares fit p ∈ Rn to the vector y ∈ Rn, with weights vector w ∈ Rn subject to a set of constraints of the kind pi ≤ pi+1. Then,
the isotonic regression problem corresponds to the following quadratic program:min

∑n
i=1 wi(pi − yi)

2 subject to pi ≤ pi+1. This can be solved
using a simple iterative algorithm called the pool adjacent violators algorithm (De Leeuw,Hornik, &Mair 2010). In presence of the single index, such
optimization routines can be problematic.
To circumvent this issue, we use a smooth BP basis (Farouki 2012) to model the link function. In the following, we describe how using a BP

basis reduces the problem of estimating amonotone link function to a constrained linear regression problem. In a Bayesian context, optimization is
avoidedbyplacing suitable prior distributionson the constrained space, and then sampling from theposterior distribution toproduceestimates that
satisfy the constraints. The SIM connects the linear predictors with a non-linear function tomodel the logit linkedmean of the response variable as

logit(µit | zi) = g(XT
itβ) + zi, zi ∼ N(0, σ2

z). (2)
where g(.) is a unknown monotone link function on R → R, and zi denote subject-specific random effects. We impose a standard restriction on
β i.e. || β ||= 1, to ensure identifiability of the model. Detailed discussion appears in Subsection 2.3. This assumption helps to provide a better
interpretation of the response variable i.e., pbf, wrt. the time component. Wemodel the monotone link function g(·)with BP and the monotonicity
is ensured through imposing necessary restriction on the coefficients of the polynomial. The BP of degreeM is defined as

BM (v) =

M∑
j=0

θjBM,j(v), BM,j(v) =
(M
j

)
vj(1− v)M−j , j = 0, . . . ,M, v ∈ [0, 1]. (3)

where, BM(v) is non-decreasing if the coefficients of the polynomial are non-decreasing i.e. θ0 < θ2 < · · · < θM (Chak, Madras, & Smith 2005).
Following Souris, Bhattacharya, and Pati (2018), we scale the input variable XT

it β because the domain of BP is defined on [0, 1] interval. Using
Cauchy-Schwarz inequality and identifiability constraints, we have | XT

it β |≤|| Xit || || β ||=|| Xit ||where || β ||= 1. We consider c = max || Xit ||,
and transform X̃it = Xit/ci, leading to the identity | X̃T

itα |≤ 1. Another transformation is required on the BPBM,j(v) = pj(u)/(M + 1), v ∈ [0, 1] to
provide support on [−1, 1], where, pj(v) is a Beta(j + 1,M − j + 1) density. We take the transformationW = 2V − 1, where pj(v) is the density of
the variableV and the density ofW is qj(w) = pj{(w + 1)/2}/2 forw ∈ [−1, 1]. The transformed BP basis for j = 0, . . . ,M is then defined as

B̃M,j(w) = qj(w)/(M + 1) w ∈ [−1, 1].

Themonotone SIMwith transformed BP basis is given as
g(X̃T

itβ) = B̃M (X̃T
itβ) =

M∑
j=0

θjB̃M,j(X̃
T
itβ), | X̃T

itα |≤ 1 (4)

where X̃it = Xit/max || Xit ||, B̃M,j(w) = qj(w)/(M + 1) and qj(w) is a transformed beta density with | w |< 1. Now, B̃M(.) is non-decreasing
because of the order-restriction on the basis coefficients {θj}M

j=0.We define an equivalent transformation on {θj}M
j=1 and setφ0 = θ0, φ1 = θ1−θ0,

. . . , φM = θM − θM−1, such that φk ≥ 0 for k = 1, . . . ,M. We write AΦ = θ where θ = [θ0, θ1, . . . , θM], Φ = [φ0, φ1, . . . , φM] and A is a
(M + 1)× (M + 1) dimensional matrix with all the lower triangle and diagonal entries are 1. Thus, (2) can be rewritten as

logit(µ) = Bαθ + z = BαAΦ + z (5)
whereBα = [B̃11

M , . . . , B̃
nTn
M ]T is a nT× (M + 1)matrix withT =

∑n
i=1 Ti and B̃it

M = [B̃M,0(X̃T
it β), . . . , B̃M,M(X̃T

it β)]T.

2.3 Identifiability of parameters
Lin and Kulasekera (2007) proved the identifiability constraints for the SIM, under the assumption of non-constant and continuous g, ‖β‖ = 1,
with the first non-zero element being positive. In our case, themonotonicity property of the function g assists in relaxing the assumption of the first
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non-zero element of β to be positive (Balabdaoui et al. 2019). The proof of the identifiability constraint is also extended to left or right continuous
functions instead of continuous functions (Balabdaoui et al. 2019) under i.i.d. setup. Observe that due to the presence of random effects, the well-
studied iid setup has been violated. However, this does not pose a significant problem to show identifiability as we shall see below.
To define the model (2), we need at least one observation from a subject at one time point. We define the support of g as Cβ = {xTβ, x ∈ Rp}.

We assume that mean of the response variable exists and (2) holds true for some γ = (g, β) such that β ∈ Sp−1 (a unit sphere of dimension p)
and g ∈ M, the class of monotone functions on R. We enforce identifiability of the parameters through imposing the following constraints: (a)
g(.) is a monotone non-decreasing function i.e., g ∈ M, and (b) || β ||= 1 i.e. β ∈ Sp−1. To demonstrate identifiability, we assume that there
exists parameters γ1 = (g1, β1) and γ2 = (g2, β2), gi ∈ Mp−1, βi ∈ Sp−1, such that f(y11, x11 | γ1) = f(y11, x11 | γ2). Taking expectation
of (2) and applying the inverse logit transformation, we have g1(xTβ1) = g2(xTβ2). To uniquely identify the parameters, it is sufficient to show
g1(xTβ1) = g2(xTβ2), which only holds if β1 = β2, g1 ≡ g2. Our final claim holds true by Proposition 5.1 fromBalabdaoui et al. (2019).

2.4 HandlingMissingness
Missing data or incomplete information is a common issue inmedical studies. Several techniques to handlemissing data have been studied over last
few decades using approaches such as data imputation (Harel & Zhou 2007; Rubin 2004; Zhang 2003) and fully Bayes (Daniels & Hogan 2008;
Ibrahim, Chen, Lipsitz, &Herring 2005). In absence of a proper clinical justification formissing-not-at-random assumption, we assume the response
pbf to bemissing at random (MAR), also referred to as ignorable missingness (Little & Rubin 2019). This implies that the missing data mechanism is
not dependent on themissing response values.
It is an established fact that unbiased estimates can be obtained from the observed likelihood instead of the joint likelihood of observed and

missing data (Seaman, Galati, Jackson, & Carlin 2013). We denote Rit as the indicator for the missing response variables at tth time point for the
ith individual i.e. Rit = 1 if Yit is observed, 0 otherwise. The conditional distribution of missing data mechanism f(R | Y, λ) is identified through
the parameter vector λwhich is independent from our parameter of interestΘ. In case of MAR, the conditional distribution is independent of the
choice of missing response values. Following the definition fromRubin (1976), MAR holds if

f(R = r | Yobs, Ymis, λ,Θ) = f(R = r | Yobs, λ,Θ)

whereYobs andYmis are observed and missing set of responses, along with λ, the parameter vector of the missingness mechanism. The conditional
distribution of (Yobs,X,R | λ,Θ) is

f(Yobs,X,R | λ,Θ) =

∫
f(Yobs,Ymis,X,R|λ,Θ)dYmis

=
∏

i,t|Rit=1

f(Yobs,it,Xit,Rit = 1|λ,Θ)

∫ ∏
i,t|Rit=0

f(Ymis, it,Xit,Rit = 0|λ,Θ)dYmis

=
∏

i,t|Rit=1

f(Yobs,it,Xit,Rit = 1|λ,Θ)
∏

i,t|Rit=0

f(Xit)

∫
f(Rit = 0|Xit, λ)f(Ymis, it | Xit,Θ)dYmis

=
∏

i,t|Rit=1

f(Yobs,it,Xit,Rit = 1|λ,Θ)
∏

i,t|Rit=0

f(Xit)f(Rit = 0|Xit, λ).

(6)

Under MAR assumptions, equation (6) holds, clearly indicating that the inference on Θ (parameter of interest) does not depend on the missing
data mechanism. A Bayesian approach can naturally incorporate the uncertainty due to the presence of missing data (Erler et al. 2016). Bayesian
methods onmissing data can generate posterior samples of the parameters andmissing variables from their posterior predictive distribution. In the
next section, we outline our hierarchical Bayesian estimation framework that incorporates themissing datamodel.

3 BAYESIAN INFERENCE
3.1 Prior specification
Our Bayesian estimation scheme is initiated via specifying the prior distributions on the model parameters. First, we denote α = β/ || β || and
place a Gaussian prior on β. Next, we posit a standard Gaussian prior on the first coordinate ofΦ, while the remaining coordinates together gets a
multivariateGaussian priorN(0, cIM) truncated to a positive real line. Anon-informative prior is imposedon the variance of the subject-specific ran-
dom effects, i.e. σ2

z in (2). Following the recommendations from Bandyopadhyay, Galvis, and Lachos (2017), we use a Gamma prior on the precision
parameterψ for the BRmodel in (1).
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3.2 Posterior Inference
Under the assumptions of independence between the subject-specific random effects andMAR, the observed likelihood ofΘ = (β,Φ, ψ, σz) is

L(Θ,Z | y,X) =

n∏
i

[ Ti∏
t=1

fBR(yit | µit, ψi)

]Rit=1

p(zi)

=

n∏
i

[ Ti∏
t=1

Γ(µit)

Γ(µitψi)Γ((1− µit)ψi)
y
µitψi−1
it (1− yit)

(1−µit)ψi−1

]Rit=1

p(zi),

(7)

where p(zi) denotes the distribution of subject-specific random effects, andµit is presented in (2). The joint posterior distribution can bewritten as
π(Θ,Z | y,X) ∝ L(Θ,Z | y,X)× π(β,Φ, ψ, σz). (8)

A standard technique to obtain posterior samples is via the implementation of the Markov chain Monte Carlo (MCMC) algorithm, which cycles
through the full conditionals of a parameter given the rest. Instead of using standardMCMCalgorithm,we obtain posterior samples by usingHamil-
tonian Monte Carlo, or HMC (Duane, Kennedy, Pendleton, & Roweth 1987; Neal 1994) and the No-U-turn sampler (NUTS) (Hoffman & Gelman
2014). A probabilistic programming language Stan (Carpenter et al. 2017; Stan Development Team 2019) has been developed for Bayesian infer-
ence by combining the HMC and NUTS sampler. Stan is scalable for large datasets, and often achieves faster convergence compared to other
available software, such as WinBUGS (Lunn, Spiegelhalter, Thomas, & Best 2009), JAGS (Plummer 2003), and others. We fit our BR model (1) with
Stan by specifying the observed likelihood (7) and prior distributions (3.1).

3.3 Bayesianmodel selection and influence diagnostics
To assess model goodness of fit, we compared prediction accuracy through several diagnostic measures (Hoeting, Madigan, Raftery, & Volinsky
1999; Vehtari & Ojanen 2012). Such measures can be either information based, or cross-validatory. The Bayesian information criteria (Schwarz
1978, BIC) penalizes the log-likelihood with number of fitted parameters and sample size. WAIC (Gelman, Hwang, & Vehtari 2014) is also another
popular fully Bayes information criteria. Computationally efficientWAIC estimates are obtained from out-of-sample prediction with pointwise log
posterior predictive density along with an adjustment of number of effective parameters. Following Gelman et al. (2014), the effective number of
parameters is computed as

pWAIC = 2

n∑
i=1

Ti∑
t=1

(
log

(
1

S

S∑
s=1

π(yit | Θs)
)
−

1

S

S∑
s=1

log π(yit | Θs)
)

Finally,WAIC is evaluated as
WAIC = −2(lppd− pWAIC) (9)

where, lppd is log of pointwise predictive density.
Cross-validation (CV) based criteria are another parallel strategies to capture out-of-sample prediction errors. The diagnostic measures based

on CV do not suffer from the problem of over-fitting but theymay not be computationally scalable. The conditional predictive ordinate (Dey, Chen,
& Chang 1997, CPO) criterion is calculated for an observed point given all other data points. The CPO for the i-th subject at the t-th time point is
defined as CPOit = π(yit | y(it)) =

∫
π(yit | Θ)π(Θ | y(it))dΘ, where y(it) denotes the dataset without the observation yit. Following Dey et al.

(1997), CPOit is numerically computed as

CPOit =

(
1

S

S∑
s=1

1

π(yit | y(it),Θs)

)−1

(10)
where, S denotes the number of posterior Monte Carlo samples, post-convergence. A higher value of CPOit for a model indicates a better support
for the (i, t) th datum. A summarymeasure is the log pseudo-marginal likelihood (Geisser & Eddy 1979, LPML), defined as

LPML =

n∑
i=1

Ti∑
t=1

log(CPOit) (11)

Similar to CPO, a higher value of LPML suggests a better model fit to the data. Under the MAR assumption, we evaluated the model diagnostic
measures based only on observed responses (Daniels &Hogan 2008; Ma&Chen 2018).

4 APPLICATION: FLS DATA
In this section, we illustrate our BR monotone SIM (BR-MSIM) via application to the motivating FLS data. The FLS (Sun et al. 2007 2008) is the
world’s longest and largest longitudinal human growth study that collected the lifetime of repeated measurements on growth, health and body
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composition of 2,567 European-American participants, as early as 1929. Although participants were enrolled at birth (examined semi-annually
until 18 years of age, and biennially thereafter), our current analytical data subset consists of 777 subjects (373 male and 404 females), followed
longitudinally since 1976 (year when pbf measurements were included in the study protocol) till 2010. Study subjects exhibit irregular number of
time points, with a maximum number of 15 visits. In addition to the response variable (pbf) ∈ (0, 1) collected at each time-point, various subject-
level covariates, such as gender (Gender, M/F), date of visits (Visit), age (Age, range = 8–83), body mass index (BMI), waist size (Waist), diastolic
blood pressure (Dias BP), systolic blood pressure (Sys BP), bicep size(Bicep, in mm), and bio-electrical impedance (BCimped), were also available.
Approximately, 17.8% of observations weremissing, which we consideredMAR. The study was approved by the Institutional Review Boards of the
Wright State University and the Virginia Commonwealth University.
We compared the fit of the BR-MSIM to the BRmodel with linear predictors (BR-Lin), where both models vary with respect to having a subject-

specific precision parameter (ψi), or an overall precision parameter (ψ). The competingmodels are listed below:
Model 1: yit ∼ BR-MSIM(µit, ψi),
Model 2: yit ∼ BR-Lin(µit, ψi),
Model 3: yit ∼ BR-Lin(µit, ψ),
Model 4: yit ∼ BR-MSIM(µit, ψ).

We choose the optimal value of M ∈ {5, . . . , 30} for models 1 and 4 based on BIC values. More details about the selection M is deferred to
the section S2 of the Supplementary Material. Using the optimal value ofM = 22, we compare the four models via WAIC and LPML values (Table
1), calculated using observed data (Ma & Chen 2018). We observe that Model 4 (BR-MSIM, with constant precision parameter ψ) has the highest
LPML and the lowest WAIC values among the 4 competing models. The BR-MSIM with subject-specific precision ψi is performing poorly because
of over-parametrization.
Next we report findings from our best-fitted Model 4, i.e., BR-MSIM(µit, ψ). The estimated posterior mean of regression coefficients with cor-

responding 95% credible intervals (CI) are presented in Figure 2a. The covariates BMI, Waist, Bicep, and BCimped exhibit significantly higher
estimates, compared to the others. All covariates (except Age and Sys BP) have positive regression coefficients. This implies an increase in the esti-
mated single index with an increase in the numerical value for the continuous covariates, or change in category (say, from 0 to 1) for the discrete
covariates. However, the covariates Age and Sys BP negatively impact the single index.
Figure 2b plots the estimated single index, with the corresponding 95% CI, denoted by the grey area. To illustrate the monotonicity property of

the nonparametric function g(), consider the single indexwit for the i-th subject at the t-th time point given bywit = XT
it β, and sit = g(wit). Due to

this property, we have sit1
> sit2

whenwit1
> wit2

, where t1 and t2 are time points of two arbitrary visits of the ith subjects. For an illustration using
the FLS data, consider the subject with id = 8 in the FLS data, who is amalewith t = 1, . . . , 7. For this subject, the values of the single indexw at the
6th and 7th time-points arew86 = 0.18 andw87 = 0.30, with the corresponding s86 = 0.66 and s87 = 0.85, respectively.
Other thanWAIC and LPML values, we also used exploratory graphs to assess the goodness of fit. We generate multiple samples from the pre-

dictive distribution using the posterior samples.We average over multiple samples to obtain the predicted values of the response variables. Figure
1c represents the association between the predicted values of response variable on the y-axis and observed response variable on the x-axis. The
linear trend in the Figure 1c suggests an adequate for the BR-MSIM(µit, ψ)model. Next, we calculate prediction accuracy metrics, such as sum of
squared errors (SSE), sumof absolute error (SAE), mean absolute percentage error (MAPE), andmean arctangent absolute percentage error (Kim&
Kim2016,MAAPE) to compare the four competingmodels. These prediction accuracymeasures are summarized in Table 1.Weobserve thatModel
4, i.e., the BR-MSIM(µit, ψ), has the lowest values corresponding to all metrics, implying superior prediction accuracy compared to the rest three
models.

5 SIMULATION STUDIES
In this section, we use synthetic data to (a) assess the frequentist finite sample properties (Simulation 1), and (b) assess robustness (Simulation 2),
of our proposedmonotone SIM.

5.1 Simulation 1: Checking frequentist finite sample properties
Here, we investigate the consistency of single index parameters for increasing values of n ∈ {100, 200, 300, 400, 500}, while setting the percentage
of missingness at 20%. To mimic a realistic setting as observed in the FLS electronic health records, varying number of observed (longitudinal)
time points are generated via random sampling (with replacement) from {1, . . . , 10}, with the maximum set to 10. We consider the dimension of
regression and basis coefficient to be p = 4 andM = 22 respectively, and fix the true values of the regression coefficients β = {2.75, 0.85, 2, 1.25},
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normalized to have unit norm.We setψ = 3, and the basis coefficients φ are sampled from a vector (0, 0.05, 0.1, 0.2, 0.3, 0.4), with first entry fixed
at 0.15. Posterior estimates were summarized over 50 replicates.
In Figure 3a, we plot the estimated single index function i.e. g(single index) and the associated 95% CIs for n = 100, with the truth overlayed.

Under the same setting, we provide the plot for n = 500 in Figure 3b. Furthermore, we split the interval [0, 1] with an increment of 0.01, and
measured the quantiles of observed and estimated mean (µit) at those probabilities. Figures 3c and 3d plot the observed vs estimated quantiles
from themean. To check the consistency of the single index function [g(single index)] parameters, we define ameasure of discrepancy as ds(a, b) =
1
N
|| a − b ||2, where a, b ∈ RN. Figure S3a (Supplementary material) presents the boxplots of 100 × ds between true and estimated single index

function for increasing values of n ∈ {100, 200, 300, 400, 500} across the 50 replicates. In Figure S3a, the decreasing trend (of Euclidean distances)
in the boxplotswith increasing n implies consistency of the posterior estimates of single index function parameters.We also report the average bias,
MSE and 95%CIs of the regression coefficients β in Table 2. All three metrics decreases with increase in the sample size. To ensure convergence of
the posterior samples, we also provide several trace plots in figure S1 of the SupplementaryMaterial.

5.2 Simulation 2: Assessing robustness
To assess the robustness of our model, we generate the response variable from a mixture of beta and simplex distribution (Barndorff-Nielsen &
Jørgensen 1991), given as (0.8 × Beta + 0.2 × simplex), and fit our proposed BR-MSIM. We present similar plots for this misspecified case, as in
Subsection 5.1. Figures 4a and 4b plot the true and estimated single index (with 95% CIs) for n = 100 and n = 500 respectively, when the data is
generated from the misspecified data generating distribution. Contrary to Figure S3a, here, we observe an increasing trend in the boxplots of the
Euclidean distances (100×ds) with increasing n; see, Figure S3b in the SupplementaryMaterial. The quantile plot of true and estimatedmean of the
response variable is provided in Figure 4c (n=100) and 4d (n = 500). The effect ofmisspecification is clear, with the quantilesmoving away from the
y = x line.

6 CONCLUSIONS
In this paper,weprovide auniquemethodology formonotone single indexmodelingunderBRusingBernstein polynomials. Thismethodology canbe
extended for any distributionwhich is supported on the interval (0, 1), such as beta rectangular (Bayes et al. 2012; Hahn 2008), simplex (Barndorff-
Nielsen& Jørgensen1991), logistic normal (Aitchison1986).Our current setup assumesMARmissingness; certainly, this can be extended toMNAR
missingness via the popular shared random effects framework (Albert & Follmann 2003) that jointly models the response variable and the (binary)
missingness indicator.
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FIGURES

(a) (b) (c)

FIGURE 1 The left panel shows the histogram of percentage body fat (pbf). The middle panel provides empirically calculated cumulative distribution of the
response variable i.e. percentage body fat and the same after fitting beta regression combined with monotone single index (2). The right panel plots the
predicted vs observed response variables from BR-MSIM(µit, ψ)model.

(a)
(b)

FIGURE 2 The estimate of regression coefficients (left panel) and single index (right panel) with 95% credible obtained from BR-MSIM(µit, ψ).
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(a) (b)

(c) (d)

FIGURE 3 Figure 3a and Figure 3b are overlaid plots true and estimated single index with 95% credible interval for n=100 and n = 500 respectively. We
provide the quantile plot of observed vs estimated mean (µ)with n = 100 in Figure 3c and n=500 in Figure 3d.
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(a) (b)

(c) (d)

FIGURE 4 In Figure 4a and 4b, we provide the plot of single index curves for n = 100 and n = 500 respectively while the generating data distribution
(i.e. a mixture distribution of beta and simplex) is misspecified. Figure 4c and 4d show quantile plot of mean of response variable for n = 100 and n = 500

respectively in misspecified case.
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TABLES

Model 1 Model 2 Model 3 Model 4
WAIC −7262.58 −7341.75 −12978.72 −13293.56

LPML 3595.38 3639.56 6342.53 6490.95

SSE 16.85 17.06 7.25 6.57

SAE 211.21 214.19 129.87 122.74

MAPE 41.88 42.64 22.03 21.05

MAAPE 0.25 0.25 0.15 0.14

TABLE 1 Model comparison withWAIC and LPML values of the 4models.

n=100 n=500
Bias MSE 95%CI Bias MSE 95%CI

β1 0.24 0.42 (0.01, 0.69) 0.13 0.31 (0.11, 0.51)

β2 −0.27 0.34 (0.01, 0.68) 0.20 0.25 (0.16, 0.51)

β3 −0.04 0.40 (0.02, 0.69) 0.03 0.29 (0.13, 0.60)

β4 −0.16 0.38 (0.01, 0.69) −0.09 0.30 (0.10, 0.51)

TABLE 2 Bias, MSE and 95% credible intervals regression coefficients β obtained from (2). All the reported values are averaged over 50 replicates.
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