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Abstract 

Phenotypic heterogeneity is a hallmark of aggressive cancer behaviour and a clinical challenge. 
Despite much characterisation of this heterogeneity at a multi-omics level in many cancers, we 
have a limited understanding of how this heterogeneity emerges spontaneously in an isogenic cell 
population. Some longitudinal observations of dynamics in epithelial-mesenchymal heterogeneity, 
a canonical example of phenotypic heterogeneity, have offered us opportunities to quantify the 
rates of phenotypic switching that may drive such heterogeneity. Here, we offer a mathematical 
modeling framework that explains the salient features of population dynamics noted in PMC42-LA 
cells: a) predominance of EpCAMhigh subpopulation, b) re-establishment of parental distributions 
from the EpCAMhigh and EpCAMlow subpopulations, and c) enhanced heterogeneity in clonal 
populations established from individual cells. Our framework proposes that fluctuations or noise in 
content duplication and partitioning of SNAIL – an EMT-inducing transcription factor – during cell 
division can explain spontaneous phenotypic switching and consequent dynamic heterogeneity in 
PMC42-LA cells observed experimentally at both single-cell and bulk level analysis. Together, we 
propose that asymmetric cell division can be a potential mechanism for phenotypic heterogeneity. 
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Introduction 

Intra-tumor heterogeneity is a major roadblock that thwarts multiple therapeutic approaches in the 
clinic [1]. It has earlier been largely thought of as existing at a genomic level, i.e. co-existence of 
many sub-clonal populations. Single-cell genomic analysis has helped construct the lineage trees 
mirroring clonal evolution [2]. However, recent preclinical (in silico, in vitro, in vivo) and clinical 
observations have emphasized that besides genetic heterogeneity, tumors exhibit substantial non-
genetic heterogeneity as well, often referred to as phenotypic heterogeneity [3–5].  Non-genetic 
heterogeneity can facilitate ‘bet hedging’ in a cancer cell population, thus enhancing its fitness 
under stressed conditions (immune attack, targeted therapy etc.) and enabling survival of 
subpopulations that can eventually drive tumor relapse and/or metastasis [6,7]. Therefore, 
identifying the mechanisms underlying non-genetic heterogeneity are of fundamental importance. 

A canonical example of intra-tumor phenotypic heterogeneity is along the epithelial-mesenchymal 
axis. Epithelial-Mesenchymal Transition (EMT) and its reverse Mesenchymal-Epithelial Transition 
(MET) were initially considered as binary processes, but recent investigations across carcinomas, 
especially those at a single-cell level, have demonstrated that cancer cells can display many hybrid 
epithelial/mesenchymal (E/M) phenotypes in vitro and in vivo, as well as in patient samples [8–16]. 
Depending upon the combination of markers used in a specific study, cancer cells can be classified 
into two or more phenotypes – Epithelial (E), Mesenchymal (M) and the hybrid E/M one(s) [17]. 
However, most studies focus on a static snapshot of E-M heterogeneity, with little longitudinal data 
that can help unravel the set of underlying mechanisms initiating and sustaining this heterogeneity.  

A few investigations into the population dynamics of E-M heterogeneity has revealed that when 
these phenotypically diverse subpopulations of cells are sorted by FACS (Fluorescent activated 
cell sorting) and cultured independently, over time, they can often give rise to other phenotypes in 
the parental population. These observations are reminiscent of stochastic cell-state transitions 
seen among cancer stem cells (CSCs) and non-CSCs [18]. For instance, any of the three (E, M, 
hybrid E/M) subpopulations isolated and cultured from prostate tumor cells (PKV cell line) could 
gave rise to other subpopulations in different proportions within two weeks in vitro [8]. Similarly, in 
vivo, subcutaneous transplantation of different SCC tumor subpopulations with varied EMT status 
led to a sustained co-existence of diverse phenotypes in the corresponding tumors [9]. These 
trends indicated the role of bidirectional phenotypic plasticity in promoting the emergence of E-M 
heterogeneity. 

The phenotypic distribution of a cell population can vary across cell lines and single-cell clones 
generated from a cell line. For example, in a study across six different breast cancer cell lines, 
while four of them were largely homogenous in terms of relative levels of EpCAM (Epithelial Cell 
Adhesion Molecule – a common epithelial marker), two of them - HCC38 and HCC1143 - had a 
90:10 and 99:1 ratio of EpCAMhigh to EpCAMlow cells respectively [19]. Similarly, the PMC42-LA 
cell line comprised 80% EpCAMhigh cells and 20% EpCAMlow [20], with the latter showing canonical 
mesenchymal morphological (spindle-shaped) and molecular (higher levels of EMT-transcription 
factors SNAIL, SLUG, ZEB1 and mesenchymal markers VIM and FN1) traits. When these two 
subpopulations were segregated and cultured separately, they returned to a 80:20 parental 
population distribution within 8 weeks. However, the single-cell clones established from PMC42-
LA showed a more diverse phenotypic distribution in terms of ratios of EpCAMhigh to EpCAMlow 
cells. Importantly, these different clones had varied migratory, invasive, tumor-initiating and drug 
resistance features, indicating that the ratio of cells in different phenotypes can influence the overall 
‘fitness’ of the population for invasion-metastasis cascade. Similar molecular and functional 
diversity for single-cell clones was reported in another breast cancer cell line SUM149PT [21]. 
However, how these different subpopulation ratios are achieved and maintained remains elusive. 
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Here, we show, using a mathematical modelling approach, that in a cell population carrying the 
EMT regulatory network (miR-200/ZEB/SNAIL) [22], noise or fluctuations in processes of content 
duplication and partitioning of biomolecules can drive asymmetric cell division and can explain the 
observations for PMC42-LA system. We consider the influence of these fluctuations on the 
inherited levels of EMT-transcription factor SNAIL by the two daughter cells; The extent of these 
fluctuations has been assumed to be proportional to SNAIL levels of the dividing parent cell. As 
SNAIL regulates the levels of ZEB and miR-200 in a cell – that collectively define its EMT status 
[22,23] – we can recapitulate the spontaneous phenotypic switching among subpopulations with 
varied EMT status. Our model simulations can explain the observations in PMC42-LA cells – a) 
the dominance of EpCAMhigh subpopulation over EpCAMlow subpopulation, and b) heterogeneity 
in EpCAM profile in single-cell clones. Thus, our results propose a possible mechanism that may 
underlie how non-genetic heterogeneity is generated in an isogenic cancer population. 

 

Results 

Dominance of epithelial cells in the population over time irrespective of initial distribution 

Here, we have developed a population dynamics framework to explain the emergence of epithelial-
mesenchymal heterogeneity in a given population, and contribution of spontaneous state switching 
in enabling this heterogeneity (Fig 1A). Specifically, we consider phenotypic switching to occur 
during cell division (Fig 1B), where two factors can contribute to a daughter cell having a phenotype 
different than its parent cell: noise or fluctuations in i) content duplication and that in ii) partitioning 
of biomolecules, particularly in SNAIL (depicted by 𝑓(𝑆𝑁𝐴𝐼𝐿!"# , 𝜂$% , 𝜂&% )) (Fig 1C). (For more 
information on formalism used to include content duplication and partitioning noise, please refer to 
Methods section 1). Each cell contains the ZEB1/miR-200 feedback loop driven by SNAIL, and the 
levels of these molecules define the state of each cell. Depending on the levels of SNAIL, cells 
may acquire a phenotype among all the stable ones, as shown in the bifurcation diagram (Fig 1D) 
[22]. At SNAIL = 150K molecules, all cells can adopt only an epithelial state (lower blue curve in 
Fig 1D); at SNAIL = 200K molecules, a cell can acquire any of the three states – epithelial (E; lower 
blue curve), mesenchymal (M; top blue curve) or hybrid E/M (middle blue curve), while at SNAIL = 
250K molecules, all cells adopt a mesenchymal state (top blue curve in Fig 1D). Thus, asymmetry 
in content duplication and/or partitioning of SNAIL levels can alter the SNAIL values sufficiently 
enough so as to allow a phenotypic switch. For instance, if one daughter cell has SNAIL = 250K 
for a parent cell with SNAIL = 200K, then the daughter cell will be mesenchymal in nature 
irrespective of the phenotype of the parent cell (E, hybrid E/M or M). We have also implemented 
in silico passaging to mimic the experimental protocol for conducting these experiments, where 
10% of the cell population is passaged maintaining the distribution of cells in different phenotypes, 
when the entire population reaches 80% of its carrying capacity (Fig 1E). Further, the division rate 
of each subpopulation of cells is considered to follow logistic growth rate, whereas the death rate 
is directly proportional to subpopulation size. Together, these factors are incorporated (Fig 1F) in 
a population dynamics model including cell division which may be accompanied with a phenotypic 
switch (please see Methods sections 2, 3 for more details about population dynamics model). 

Using this framework, we investigated how the population distribution emerged over time as we 
started with different initial fractions, and whether we can recapitulate the dominance of epithelial 
(EpCAMhigh) subpopulation over a mesenchymal (EpCAMlow) one as seen experimentally (Fig 2A) 
[20]. We first experimentally quantified doubling time of PMC42-LA cells to be 22.67 +/- 2.77 hours 
(Fig 2A). We started our simulations with four distinct initial conditions: 1) Epithelial dominated 
(initial fraction E : E/M : M = 0.7 : 0.1 : 0.2), 2) Mesenchymal dominated (initial fraction E : E/M : M 
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= 0.2 : 0.1 : 0.7), Hybrid dominated (initial fraction E : E/M : M = 0.1 : 0.7 : 0.2), and mixed fractions 
(initial fraction E : E/M : M = 0.4 : 0.2 : 0.4). In these simulations, we considered an average 
doubling time of the population to be 20 hours, η1 (scaling factor for noise due to SNAIL molecules’ 
duplication) = 0.2 and η2 (scaling factor for noise due to SNAIL molecules’ partitioning) = 0.1, and 
tracked the population distribution as a function of time. This choice of values represents typical 
noise in protein levels reported over a cell division [24]. 
   

 
Fig 1. Model description for population growth accompanying E-M heterogeneity. A) Schematic 
showing existing E-M heterogeneity among cancer cells and their spontaneous phenotypic switching. 
B) Schematic for asymmetric distribution of biomolecules among daughter cells as a potential cause of 
spontaneous phenotypic switching. C) Each cell in the population is assigned with a core EMT network. 
It can divide or die in a given time step depending upon doubling and death rates. When it divides, each 
daughter cell inherits parent SNAIL levels taking consideration of fluctuations in its content duplication 
and partitioning during cell division. D) Different stable (blue curves) ZEB mRNA levels based on SNAIL 
levels. Low, medium, and high ZEB mRNA levels corresponds to Epithelial (E), Hybrid (E/M), and 
Mesenchymal (M) phenotypes respectively. This bifurcation diagram is for the miR-200/ZEB feedback 
loop driven by SNAIL, as adapted from Lu et al. PNAS 2013 [22]. E) Schematic for in-silico passaging; 
; adapted from https://freesvg.org/image-of-cell-culture-dish. F) Formalism for cell doubling and death 
rates for all three phenotypes (E, E/M, and M) of cells 
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We observed that all the initial fractions converged to an epithelial dominant population over a 
period of 16 weeks (Fig 2B), i.e. greater than or equal to 80% population being E (EpCAMhigh).  
Particularly, for mixed initial fraction (E: E/M: M = 0.4: 0.2: 0.4), most of the hybrid E/M cells switch 
phenotype either to E or M within 2 weeks of time, after which population is mostly comprised of E 
and M cells, which eventually converges to an epithelial dominant one. Concomitantly, there is 
also a shift in the distribution of SNAIL levels, such that the range of SNAIL values observed tend 
to correspond to an epithelial phenotype as well by week 16 and 32, as compared to week 0 (Fig 
2C), thereby explaining a gain in epithelial-dominated subpopulation as seen experimentally, i.e. 
EpCAMhigh subpopulation constituting the majority of PMC42-LA cell line [20]. Further experiments 
revealed that this population distribution can be reproduced by the FACS-sorted EpCAMhigh and 
EpCAMlow subpopulations when cultured individually, thus reminiscent of our simulations showing 
the asymptotic dominance of epithelial subpopulation irrespective of initial phenotypic distributions.  

Over longer simulation times in our model, the dominance of epithelial fraction grew even stronger 
(Fig S1A). Thus, while our model encapsulates the dominance of EpCAMhigh subpopulation in 
PMC42-LA cells, it cannot accurately reproduce the experimentally observed 80:20 EpCAMhigh: 
EpCAMlow ratio. This lacuna indicates the role of various important factors (both cell-autonomous 
and non-cell-autonomous: chromatin status and cellular communication, for instance, respectively) 
which can influence stochastic fluctuations during cell division induced spontaneous switching, 
thus altering this ratio. Nonetheless, our simple phenomenological model can reproduce salient 
features of population dynamics reported in the PMC42-LA cell line [20]. 

 

 

 

Fig 2. Dominance of epithelial (EpCAMhigh) phenotype in the population over time for multiple 
initial distributions. A) Phenotypic distribution of EpCAMhigh and EpCAMlow subpopulations in PMC42-
LA cells (left – adapted from Bhatia et al. [20]), and their observed doubling time distribution (right). B) 
Changes in phenotypic fraction over time starting with different fractions of E, E/M, and M cells in the 
population. C) Change in distribution range of SNAIL levels over 32 weeks for two different initial 
conditions. Average doubling time (DT) of each phenotype is set to 20 hrs and scaling factors η1 and η2 
to 0.2 and 0.1. The initial population size was 200 cells. Mean and standard deviation calculated from 
16 independent runs. 
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To assess how fluctuations in other players of EMT network (miR-200, ZEB) influence population 
dynamics, we introduced stochasticity in their content duplication and partitioning during cell 
division, rather than just in SNAIL levels. The population dynamics for this scenario, using the 
parameters and initial fractions described above, gave qualitatively similar results of epithelial 
dominance over mesenchymal, though the time taken to gain this dominance was shorter in this 
case (Fig S1B-C), indicating that additional noise can accelerate the system dynamics. These 
results suggest that accounting for asymmetry in the levels of SNAIL is sufficient to capture the 
qualitative population dynamics for PMC42-LA cells. 

The dominance of epithelial phenotype in a population over time irrespective of initial fractions of 
phenotypes points towards the possibility that hybrid E/M and mesenchymal cells switch more 
frequently to epithelial as compared to epithelial states switching to hybrid E/M and mesenchymal. 
This one-sided higher switching rate can be explained by multiplicative nature of noise considered 
(lower levels of SNAIL in epithelial cells invoke further less fluctuations during division) and have 
been quantified later (Fig 3).  

 

Time to attain epithelial dominance depends on initial fractions, doubling times of 
phenotypes and the extent of stochastic fluctuations during cell division 

Upon simulating the population dynamics starting with purely E and purely M phenotypes, we 
noticed differences in mean epithelial (E) fraction at week 16 (Fig 3A). When starting with purely 
M phenotype, it took 16 weeks to arrive at an epithelial-dominant population as compared to 
starting with hybrid E/M (8-12 weeks) or fully E ones. This trend raised the possibility that while 
initial phenotypic distribution may not alter the steady state itself, it can change the time taken to 
arrive at it. For the scenario starting with purely hybrid E/M cells, within 4 weeks the population 
structure had approximately 60-70% epithelial cells, thus its dynamics post the 4 week timepoint 
is understandably similar to that seen for E: E/M: M = 0.7: 0.1:0.2 scenario (compare middle panel 
in Fig 3A with the top left panel in Fig 2B). 

Besides initial phenotypic distribution, another factor that can impact the population dynamics is 
average doubling time (DT). So far, we considered the same DT for E, E/M, and M phenotypes. 
But experimental evidence suggests slowing down of proliferation rate of cells on undergoing EMT 
[20,25]. Thus, we considered the case of increased DT during EMT, by keeping the average DT of 
E/M and M phenotypes as 1.5, 2, and 2.5 times more than that of E phenotype. We observed that 
the population maintained its epithelial dominance, and converged to a stable phenotypic 
distribution faster than the case of when all cells doubled at the same rate (Fig 3B), irrespective of 
the initial condition. This trend can be explained by a higher resilience of E cells to switch to a 
hybrid E/M or M phenotype during cell division, now coupled with their higher proliferation rate, 
thereby offering the epithelial subpopulation an additional advantage to amplify their population 
fraction. Importantly, this trend was already seen at the DT of hybrid E/M and M cells being 1.5 
times than that of the E cells, hence indicating that a 50% increase in doubling time for cells 
undergoing EMT may be sufficient in influencing the population structure. The slight initial decrease 
in epithelial fraction noticed for the purely E case (Fig 3A, B) can be explained by appreciating that 
SNAIL levels for the initial cell population were sampled from log-normal distribution, whose 
median was centred on the SNAIL level where all phenotypes were stable (tristable region in Fig 
1D) and therefore, the cells were highly susceptible to undergo phenotypic switching within the first 
few cell divisions. Despite this initial dip, an epithelial dominant population emerged eventually. 
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Fig 3. Time to attain dominance of E cells depends on initial fraction and average doubling times 
of phenotypes, and the extent of molecular fluctuations. A) Temporal changes in phenotypic 
distribution for purely E, E/M, and M initial population. B) Temporal changes in phenotypic distribution 
when there is heterogeneity in avg. doubling time (DT) among phenotypes. DT(E/M, M) = DT ratio * 
DT(E). η1 = 0.2, and η2 = 0.1. C) Temporal changes in phenotypic distribution for fixed η1 and varying 
η2 values. Here, DT(E, E/M, M) = 20 hrs. D) Same as Fig3C but with varying η1 and fixed η2 values. In 
all, except (A), initial fractions of 1) Mix of E/M and M, and 2) pure E phenotypes are considered. The 
initial population size was 200 cells. Mean and standard deviation calculated from 16 independent runs. 

 

Next, we investigated how the extent of stochastic fluctuations in SNAIL molecules being doubled 
and partitioned (η1 and η2 respectively) influenced phenotypic distribution over time. When we 
varied η2, while maintaining the values of η1 = 0.2 and average population DT = 20 hours, we 
noticed that for the mesenchymal dominated initial fraction (E : E/M : M = 0 : 0.2 : 0.8),  the fraction 
of epithelial cells was higher for a higher η2 value for the same time point (Fig 3C, left). However, 
not much observable effect on this fraction was noticed when starting with an epithelial dominated 
population (Fig 3C, right). Similar observations were made when we varied η1 instead of varying 
η2 (Fig 3D). Thus, amplifying fluctuations in either duplication or partitioning of SNAIL molecules 
seemed to enhance the chance of phenotypic switching for a M cell much more than for an E cell. 
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When we accounted for heterogeneity in average DT along with increasing fluctuations in SNAIL 
levels during cell division, the fast proliferating and relatively stable E cells grew much faster than 
the slow proliferating and more plastic E/M and M cells, enriching for epithelial cells (Fig S2A-D). 

Finally, we analysed how the population dynamics was altered when average DT was increased 
for all phenotypes, given the experimentally observed average DT can often depend on confluency 
of cells in a petri dish. Thus, for this, we simulated population dynamics keeping average DT of all 
three phenotypes as 30 hrs, which led to overall slower dynamics (Fig S2E). Instead of plotting 
against absolute time units, we also took number of cell cycles as the x-axis, whose one unit is the 
population’s average DT. This helped to compare the overall changes in phenotypic fractions 
between DT of 20 and 30 hrs scenarios. We found that given an equal number of cell cycles, the 
changes in E fractions were similar (Fig S2F). These observations help us to conclude that even 
if all cells, on an average, divided slower, the population growth and phenotypic switching trajectory 
would be similar to when cells divided faster, when normalized with average DT.  

 

Phenotypic switching probability and rate in cell division events depends on the cells' 
location on E-M axis 

After characterizing the population dynamics at various time points as a function of different model 
parameters, we wanted to better understand it from a cell division perspective. In our framework, 
a cell can undergo one of the three division types: 1) symmetric division – when both daughter 
cells have same phenotype as the parent cell, 2) asymmetric division – when one daughter has 
phenotype different than parent, and 3) divergent division – when both daughters have phenotype 
different than parent (Fig 4A). To quantify the probability of cells undergoing one of the three 
division types, we analysed certain cells occupying possible stable phenotypes spread across the 
SNAIL ranges (Fig 4B). Iterating cell division events at a given SNAIL value, we tracked the 
phenotypes of daughter cells, at specific η1 and η2 values, thus calculating different division 
probabilities over an ensemble of iterations. At η1 = 0.2, η2 = 0.1, in SNAIL levels regions where 
either E or M phenotypes were the only stable state (monostable regions in bifurcation diagram – 
Fig 4B; SNAIL = 100K, 300K), more than 90% events were of symmetric division. However, as the 
SNAIL levels corresponded to multi-stable region (SNAIL values =150K, 250K), there was an 
increasing tendency to undergo asymmetric division, which was higher for M than for E cells. In 
different bi-stable regions (SNAIL = 189K for {E, M} and SNAIL = 219K for {E/M, M}), with further 
increasing probability of asymmetric division, divergent division also became more prominent and 
was the most dominant division for hybrid E/M cells (Fig 4C). This trend explains the sudden drop 
in hybrid E/M fraction of population to very low levels within two weeks, when starting from a hybrid 
dominant population (Fig 3A). Further, in the tri-stable region (SNAIL = 206K for {E, E/M, M}), the 
probabilities for both divergent and asymmetric division were increased (Fig 4C). Put together, the 
probability of phenotypic switching at cell division is the highest in tri-stable region (intermediate 
SNAIL levels ~200K) and decreases for cells as their corresponding SNAIL levels either increase 
or decrease. 

Next, we quantified these probabilities for varying η1 and η2 values. While η1 = 0 resulted in either 
asymmetric or symmetric division of E and M cells across SNAIL levels (i.e. preventing divergent 
division), η2 = 0 leads to only symmetric and divergent divisions for these two phenotypes (i.e. 
preventing asymmetric division) (Fig S3A,B). Also, higher values of η1 and η2 amplify the chances 
of divergent and asymmetric division, respectively, across SNAIL ranges (increasing η1 in Fig 
S3A,C,E and increasing η2 in Fig S3B,D,F). Thus, η1 and η2 - the factors that represent noise 
during cell division - can alter the probabilities of undergoing symmetric, asymmetric and divergent 
division types for a cell with a SNAIL level (Fig S3). 
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We observed that cells with SNAIL levels well away from the multi-stable phenotypic regions have 
mostly undergone symmetric division. However, when we started with such a homogenous or 
largely homogeneous population and tracked the phenotypes of daughter cells over multiple cell 
cycles, we noted phenotypic switching in which at least one daughter cell took a different 
phenotype (Fig 3). Thus, we quantified how many cell divisions it took for a cell to give rise to one 
of the cells in its progeny with a different phenotype than its own. We observed the progeny up to 
12 generations/cell cycles. We saw that the cells with SNAIL levels in a multi-stable region switch 
phenotype within one or two cell cycles (Fig 4D). We also noticed a skew between the resilience 
of E and M cells to phenotypic switching in their mono-stable regions, i.e. E cells required more 
cell cycles to give rise to a non-similar progeny cell than the M cells did (compare the behavior 
seen at S=300K and S=250K with that at S=100K and S=150K in Fig 4D). This difference may 
underlie the phenomenon of E cells dominating over E/M and M cells in the population over time. 
However, this skew vanished in bi-stable and tri-stable regions, where all three phenotypes 
became equally susceptible to undergo asymmetric switching within few generations/cell cycles 
(S=189K, 206K, 219K in Fig 4D).  

 

 

Fig 4. Phenotypic switching probability and its rate at cell division depends on the location of a 
cell on E-M axis. A) Schematic of different possible cell division types. B) Different ranges of SNAIL 
where E, E/M, and M phenotypes are stable. C) Probabilities of an E, E/M or M cell to undergo one 
among the three division types (Fig 4A) when its SNAIL levels lie in different regions in bifurcation 
diagram (Fig 4B). D) Number of cell cycles (generations) required to make first asymmetric or divergent 
division when a parent E, E/M or M cells' SNAIL level lied in different regions in bifurcation diagram (Fig 
4B) (schematic given in inset). Mean and standard deviation were calculated from 10 and 16 
independent runs in (C) and (D), respectively. In C), each run includes 100 iterations. η1 = 0.2, η2 = 0.1. 
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We also examined how η1 and η2 values varied the number of cell cycles over which progeny 
diversification was observed. Increase in either η1 and η2 caused faster switching for all phenotypes 
of cells, i.e. less number of cell divisions was required, on average, for a cell to give rise to a 
different phenotype (increasing η1 in Fig S4A-C and increasing η2 in Fig S4D-F). However, η2 
contributed more as compared to η1 (compare Fig S4A-C with Fig S4D-F; quantified in Fig S5,S6). 

 

Heterogeneity in E fraction at initial time points among single cell clones 

So far, we have focused on population dynamics when starting with an initial cell population; 
however, heterogeneity has also been observed experimentally in single-cell clones established 
from cell lines [20,21]. For instance, in distinct single-cell clones established from PMC42-LA, 
varying distributions of EpCAMhigh: EpCAMlow subpopulations were seen after initial two passages 
(Fig 5A) [20]. We interrogated whether our model can reproduce this heterogeneous behavior. 

We performed population dynamics simulation starting will single E, E/M and M cell, maintaining 
η1 = 0.2, η2 = 0.1, and average DT as 20 hours.  We observed heterogeneity in E fraction at week 
4 when multiple such single cell simulation runs were performed (Fig 5B). Thus, as a proof of 
principle, our model could recapitulate the experimentally observed heterogeneity in EpCAMlow 
fraction. In these simulations for single-cell clones, at week 4 time point, the heterogeneity in 
fraction of E cells was the highest when the seeding cell was mesenchymal (M). Among the M 
clones, the highest E fraction noticed was close to the highest E fraction noticed for single-cell 
clones established from E or E/M initial phenotype. However, in M clones, we observed instances 
where the E fraction was as low as 27% (Fig 5B).  

To examine this heterogeneous behaviour of individual clones more closely, we probed the levels 
of SNAIL in the seeding (individual) cell for each of these clones. This led us to identify the range 
of SNAIL levels in the individual cells that were all ‘cultured’ in silico to develop a clone (Fig 5C). 
From this range, we identified representative SNAIL values and independently established single-
cell clones from them. Interestingly, the single-cell clones showed heterogeneity in E fraction at 4 
weeks, despite being seeded with the same SNAIL level (Fig 5D), reminiscent of stochastic effects 
at lower (cell) numbers. Also, as expected, the average E fraction decreases as seeding SNAIL 
levels are increased (compare the average E fraction at SNAIL= 600K vs. that at SNAIL= 50K in 
Fig 5D). Another feature we noticed is that the clones established from cells with the same initial 
phenotype (M) but different initial SNAIL levels had varying E fractions at week 4 (compare the 
average E fraction at SNAIL = 206K vs. that at SNAIL = 600K in Fig 5D). This extent of diversity is 
less when the initial cell belongs to an epithelial or a hybrid E/M phenotype. This difference 
between the extent of variability noticed can possibly explain why we see more heterogeneity in E 
fraction when starting from initially mesenchymal cell as compared to an initially epithelial or hybrid 
E/M one (Fig 5B-D). 

Finally, when we continued the single-cell (clonal) simulations for longer duration, we observed a 
decrease in heterogeneity in the E fractions with time (Fig 5E). Further, the E fraction for all single 
cell clones increased overall. This difference in short-term vs. long-term behavior can be possibly 
rationalized by our population dynamics simulations earlier showing predominance of epithelial 
phenotypes irrespective of initial phenotypic distributions (Fig 2B, 3A), if we consider the clonal 
distribution noticed at week 4 as the initial condition for simulations being continued until week 16 
or later. 
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Fig 5. Heterogeneity in E fraction among single cell clones at initial stages of culture. (A) 
Experimentally observed heterogeneity in EpCAM profiling of single cell clones from PMC42-LA cells 
(adapted from Bhatia et al. [20]). (B) Variability in E fraction observed on simulating population dynamics 
starting with single E, E/M and M cell. Each dot represents E fraction at 4th week in an independent 
single cell simulation run. (C) E fraction in a single cell clone at 4th week plotted against the seeding 
(parent) cells' SNAIL level. (D) Spread of E fraction at 4th week of single cells clones when the seeding 
cells were initialised with certain SNAIL levels spanning mono-, bi-, and tri-stable regions of bifurcation 
diagram (Fig 4B). Mean and standard deviation calculated from 20 independent runs (E) Temporal 
dynamics extension of single cell simulation runs in Fig 5B. All results are with η1 = 0.2 and η2 = 0.1, 
and DT(E, E/M, M) = 20 hrs. 
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Discussion 

Understanding the molecular mechanisms underlying epithelial-mesenchymal plasticity and 
heterogeneity can contribute to better therapeutic strategies [26]. These mechanisms can be 
context-specific with varying degrees of contribution to genetic and/or non-genetic heterogeneity. 
Epigenetic alterations, for instance, can govern the rate of bidirectional switching among the 
phenotypes, enabling reversible or irreversible EMT, as well as driving resistance to undergo EMT 
[27–29]. Cell-cell communication through autocrine and/or paracrine signaling with other tumor 
cells as well as stromal cells can also shape the E-M phenotypic heterogeneity patterns in a 
population [19,30–32]. Another contributing factor can be differential activation of many signaling 
pathways implicated in EMT, thus generating a varied phenotypic repertoire of states in the multi-
dimensional EMT landscape [33–37]. Here, we highlight one other possible reason driving E-M 
heterogeneity – phenotypic switching due to asymmetric cell division driven by noise in the 
processes of content duplication and in partitioning of biomolecules. We investigate the influence 
of such fluctuations on levels of SNAIL – a driver of miR-200/ZEB feedback loop – during cell 
division in determining the phenotypic distribution of population, but our framework is applicable to 
investigate the population dynamics emerging from stochastic partitioning of molecules involved 
in other multi-stable EMT networks [38,39] as well. 

Asymmetric cell division is an evolutionarily conserved mechanism used by prokaryotes as well as 
eukaryotes to generate cell-to-cell heterogeneity, and mediate cell-fate decisions [40,41]. Not only 
biomolecules (RNAs, proteins), but also entire organelles such as mitochondria and endoplasmic 
reticulum can be asymmetrically partitioned, with implications in cancer cell proliferation rates [42]. 
This phenomenon has been observed in multiple cancers [43–45], but its functional consequences 
remain largely unexplored. Although our modeling framework does not yet specifically incorporate 
molecular mechanisms regulating this phenomenon [40], our results suggest that one possible 
consequence of fluctuations during cell division can be phenotypic switching and heterogeneity 
among subpopulations. Recent reports in glioblastoma have demonstrated that asymmetric 
enrichment of EGFR and p75NTR in a daughter cell during cell division conferred enhanced 
resistance to the standard-of-care therapies such as radiation and temozolomide [46]. While we 
do not yet know about differences, if any, in the drug resistance features of EpCAMhigh and 
EpCAMlow sub-populations in PMC42-LA cells, the varied drug-resistance features seen in single-
cell clones established from PMC42-LA [20] can be a putative outcome of underlying asymmetric 
cell division. Approximately 10-30% of cells undergoing TGFβ-driven EMT were seen to exhibit 
asymmetric cell division, as traced by NUMB distribution in daughter cells [47], but whether this 
asymmetry led to phenotypic switching was not tracked per se. Therefore, our model suggests that 
blocking cell division can be a possible way to restrict phenotypic plasticity and/or heterogeneity. 
Preliminary experimental observations made recently support this prediction by our model [47].  

Our model can recapitulate the observations for PMC42-LA system, an epithelial-dominant subline. 
However, what mechanisms may explain phenotypic heterogeneity in a mesenchymal-dominant 
population, such as EM3 or M clone from SUM149 cell line [21], remains to be investigated further. 
One factor that can alter the model outcomes is the way noise during cell division is incorporated. 
We have considered multiplicative noise (fluctuations in SNAIL proportional to its levels); however, 
our previous effort encapsulating additive noise (constant magnitude of fluctuations in SNAIL, 
irrespective of its levels) could explain spontaneous phenotypic switching observations in prostate 
cancer PKV cell line [48]. Whether cancer cells exhibit additive or multiplicative noise during cell 
division remains unknown experimentally. Further, this noise and/or its consequences can be 
influenced by mutually dependent factors, such as chromatin status and diffusible cytokines [49]. 
These factors have not yet been explicitly incorporated in our framework.   
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Despite the above-mentioned limitations, our model recapitulates various observations for the 
PMC42-LA system: a) stable dominance of the EpCAMhigh subpopulation, b) repopulation of 
parental distributions starting with only one subpopulation, and c) enhanced heterogeneity in 
EpCAMhigh: EpCAMlow ratio of cells in single-cell derived clones. We predict that these single-cell 
derived clones converge to EpCAMhigh dominant distribution in longer time-scales, a prediction 
which remains to be experimentally verified. Thus, we demonstrate that during cell division, 
stochasticity in content duplication and partitioning of molecules involved in EMT can lead to 
spontaneous state switching, and therefore generate non-genetic heterogeneity.   

Future efforts are directed towards integrating continuous stochastic fluctuations in EMT drivers 
with asymmetric cell division which happens at discrete time-steps [50]. Addressing these 
questions will involve mathematical models that can decode the emergent dynamics at multiple 
scales – regulatory levels (transcriptional, epigenetic), length (intracellular, non-cell-autonomous 
effects by cytokines) and time (cell division, chromatin remodelling, stochastic gene expression). 
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Methods 

1. Asymmetric distribution of molecular content on cell division 

Following the method proposed earlier [48], we consider fluctuations in the levels of cellular content 
during its inheritance by daughter cells on cell division. These fluctuations arise due to both 
imperfect duplication during cell cycle and later asymmetric partitioning to the daughter cells. We 
propose these fluctuations to be proportional to the amount of the molecular content available in 
the dividing parent cell itself. Considering 𝑆𝑁𝐴𝐼𝐿'

!"# denotes SNAIL level in a cell right after its 
division. Now, during cell cycle SNAIL content will approximately get doubled, so that right before 
next cell division we can write: 

𝑆𝑁𝐴𝐼𝐿!"# =	2	𝑆𝑁𝐴𝐼𝐿'
!"# +	𝜂$% 		𝑆𝑁𝐴𝐼𝐿'

!"#  (1) 

Where, 𝜂$%  is a stochastic scaling factor that determine the fluctuation due to imperfect molecule 
duplication. 

Next, when a parent cell partitions its molecular content to two daughter cells during cell division, 
SNAIL levels in each daughter can be specified as: 

𝑆𝑁𝐴𝐼𝐿(")*+,-#$
!"# =	

𝑆𝑁𝐴𝐼𝐿!"#

2 +	𝜂&% 	𝑆𝑁𝐴𝐼𝐿
!"# 

On substituting 𝑆𝑁𝐴𝐼𝐿!"# from (1),  

𝑆𝑁𝐴𝐼𝐿(")*+,-#$
!"# =	𝑆𝑁𝐴𝐼𝐿'

!"# +	.!
" 		01234#

$%&

&
+	𝜂&% 	(2	𝑆𝑁𝐴𝐼𝐿'

!"# +	𝜂$% 		𝑆𝑁𝐴𝐼𝐿'
!"#)         (2) 

And, for the other daughter cell 

𝑆𝑁𝐴𝐼𝐿(")*+,-#&
!"# =	

𝑆𝑁𝐴𝐼𝐿!"#

2 −	𝜂&% 	𝑆𝑁𝐴𝐼𝐿
!"# 

On substituting 𝑆𝑁𝐴𝐼𝐿!"# from (1),  

𝑆𝑁𝐴𝐼𝐿(")*+,-#&
!"# =	𝑆𝑁𝐴𝐼𝐿'

!"# +	.!
" 		01234#

$%&

&
−	𝜂&% 	(2	𝑆𝑁𝐴𝐼𝐿'

!"# +	𝜂$% 		𝑆𝑁𝐴𝐼𝐿'
!"#)         (3) 

Where, 𝜂&% 	another random scaling factor determining the fluctuation in SNAIL levels due to 
partitioning at the time of cell division. 

We consider stochastic scaling factors 𝜂$%  and 𝜂&%  to be two independent normally distributed 
random variables with zero means and 𝜂$  and 𝜂& 	as standard deviations, i.e.,  

𝜂$% =	𝜂$ 𝑁$(0,1)								𝜂&% =	𝜂& 𝑁&(0,1) 

Where, 𝑁5(0,1), 𝑖 = 1, 2 represents standard normal random variable. Hereafter, 𝜂$  and 𝜂& 	are 
reffered to as scaling factors for noise in SNAIL molecules’ duplications & partitioning, respectively. 
Thus, equations (2) and (3) can be rewritten as 

𝑆𝑁𝐴𝐼𝐿(")*+,-#$
!"# =	𝑆𝑁𝐴𝐼𝐿'

!"# +	.! 1!(',$)		01234#
$%&

&
+	𝜂& 𝑁&(0,1)	(2	𝑆𝑁𝐴𝐼𝐿'

!"# +	𝜂$ 𝑁$(0,1)	𝑆𝑁𝐴𝐼𝐿'
!"#)      

(4) 

𝑆𝑁𝐴𝐼𝐿(")*+,-#&
!"# =	𝑆𝑁𝐴𝐼𝐿'

!"# +	.! 1!(',$)			01234#
$%&

&
−	𝜂& 𝑁&(0,1)	(2	𝑆𝑁𝐴𝐼𝐿'

!"# +

	𝜂$ 𝑁$(0,1)			𝑆𝑁𝐴𝐼𝐿'
!"#)     (5) 
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Equations (4) and (5) are used to assign SNAIL values to the daughter cells when a cell division 
happens. Further, same equations were used when stochastics effects were included in the other 
players of EMT network (ZEB, mZEB and miR200) at the time of cell division. 

 

2. Dynamics of core EMT regulatory network 

The dynamics of a core regulatory circuit involving interaction in canonical epithelial (miR200) and 
mesenchymal (mRNA ZEB and ZEB protein) markers was modelled to explain EMT and MET, 
based on SNAIL levels [22]. miR200 and ZEB (mRNA and protein) mutually repress each other, 
and SNAIL supress miR200 levels and activates ZEB at mRNA level. The steady state response 
of the circuit were analysed for a relevant biological parameter set, which gave bifurcation diagram 
showing distinct possible stable ranges of ZEB and miR200 based on SNAIL levels as shown in 
Fig1D. The ordinary differential equations describing the regulation dynamics and model 
parameters have been described in [22]. The system's ODEs are listed below: 

𝑑𝜇&''
𝑑𝑡 = 𝑔9'##𝐻8𝑍, 𝜆:

9'##;𝐻8𝑆, 𝜆0
9'##; − 𝑚:𝑌9(𝜇&'') − 𝑘9'##𝜇&'' 

𝑑𝑚:

𝑑𝑡 = 𝑔;(𝐻8𝑍, 𝜆:
;(;𝐻8𝑆, 𝜆0

;(; − 𝑚:𝑌;(𝜇&'') − 𝑘;(𝑚: 

𝑑𝑍
𝑑𝑡 = 𝑔:𝑚:𝐿(𝜇&'') − 𝑘:𝑍 

𝑑𝑆
𝑑𝑡 = 0 

Here, 𝜇&'' = [miR-200], 𝑚: = [ZEB1 mRNA], 𝑍 = [ZEB1], and 𝑆 = [SNAI1]. [⋅] represents the 
concentration of a molecular species within a cell. 𝐻 is the shifted Hill function. 

𝐻(𝐵, 𝜆) = 𝜆 +
1.0 − 𝜆

1.0 + B 𝐵𝐵'
C
<) 

The functions 𝑌9, 𝑌;, and 𝐿 describe the post-transcriptional regulation of mRNA activity by micro-
RNAs and have been described in [22]. 

𝐿(𝜇) =DB
𝑛
𝑖C 𝑙5𝑀<

5 (𝜇)
<

5='

 

𝑌;(𝜇) =DB
𝑛
𝑖 C 𝛾;*𝑀<

5 (𝜇)
<

5='

 

𝑌9(𝜇) =DB
𝑛
𝑖C 𝛾9*𝑀<

5 (𝜇)
<

5='

 

𝑀<
5 (𝜇) =

I 𝜇𝜇'J
5

I1.0 + 𝜇
𝜇'J

< 

Here, 𝜇 is the concentration of the micro-RNA and 𝑛 is the number of micro-RNA binding sites on 
the mRNA. For the inhibition of ZEB1 mRNA by miR-200, 𝑛 = 6 and 𝜇' =	𝜇&''' 	. The values of all 
kinetic parameters are listed in tables S1 and S2. 
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3. Simulation of population dynamics 
i. Generation of population as per initial phenotypic fraction 

Each cell in the system is represented by a set of four variables which hold the levels of 
miR200, mRNA ZEB, ZEB protein and SNAIL protein for that cell. Random SNAIL values 
are sampled from a log-normal distribution with median 200x103 and coefficient of variance 
1 and all possible stable states corresponding to that SNAIL value are used to initialize the 
cells’ variables. For example, if sampled SNAIL = 200K and as for this value all three 
phenotypes – E, E/M and M – are stable. So, three cells are initialized with steady state 
values of all variables corresponding to each phenotype. Initialization of a cell from a 
phenotypic state is stopped when its required count in the population is achieved.   

ii. Avg. birth and death rate of cells 

In the cell population, the division rate of cells of a particular phenotype follows the logistic 
equation shown below: 

𝑟!+-< = 𝑟'
!+-<	𝑁!+-<	(1 −

𝑁,>,
𝐾 ) 

And the death rate of cells of a particular phenotype is as follows: 

𝑑!+-< = 𝑑'
!+-<	𝑁!+-< 

Where, 

𝑝ℎ𝑒𝑛: E, E/M, M 

𝑟!+-<: avg. doubling rate 

𝑑!+-<: death rate 

𝑟'
!+-<: max. avg. doubling rate of an individual cell 

𝑑'
!+-<: avg. death rate of an individual cell 

𝑁!+-<: total cells of a phenotype 

𝑁,>,	: total cells in the population 

K: Carrying capacity of the system 

iii. Population growth 

The population growth is simulated using Gillespie's Stochastic Simulation (SSA) algorithm [51], 
where six events – three division and three death events for each phenotype are considered. The 
propensity of occurrence of an event is determined by its average rate as described above. The 
SSA algorithm tells what next event will be and at what time point. Now, if next event is division of 
a cell of E phenotype and will occur at t1 time, then a cell is uniformly sampled from the pool of 
cells of that phenotype, and its molecular levels are updated using ODEs for the time gap (t1-t0), 
where t0 is time point of last most recent event. Then, a new cell is initialized in the population with 
molecular levels same as that of parent E cell, but with perturbed SNAIL levels. Similarly, the 
parent cell SNAIL levels are perturbed to account for second daughter cell on division. For a cell 
death of a phenotype, a cell is uniformly sampled from the pool of cells of that phenotype, and it is 
erased from the population. Molecular levels of all the other undivided/unaffected cells are updated 
using ODEs for the time gap (t1-t0). 
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4. Cell doubling quantification 

Images for PMC42-LA cells were captured on PhaseFocus LiveCyte Image Scanner 
(Phase Focus, Sheffield, UK) with 10x magnification; individual images were captured every 
11 minutes for a span of 48 hours. Imaging selected regions of interest (ROI) were 
750×750µm. 60 individual selected cells were randomly selected and then manually tracked 
from cytokinesis of a cell to two daughter cells to next cytokinesis to determine the exact cell 
doubling time.   

 

 

Table S1 

 

Table S2 

No.	of	miRNA	
binding	sites	

1	 2	 3	 4	 5	 6	 7	

𝒍𝒊	 2.1	 1.7	 1.4	 1.2	 1.16	 1.16	 1.16	
𝜸𝒎𝒊 	(𝒉

#𝟏)	 1.1	 1.15	 1.3	 2.1	 2.1	 2.1	 2.1	
𝜸𝝁𝒊 	(𝒉

#𝟏)	 1.1	 1.116	 1.16	 1.6	 1.6	 1.6	 1.6	
 	 	 	 	 	 	 	

Here, 𝑚𝑜𝑙. ≡ 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠	/	𝑐𝑒𝑙𝑙 

 

 

 

 

 

 

Parameter Value Parameter Value 
    

𝒈𝝁𝟐𝟎𝟎 3.2 × 21&	𝑚𝑜𝑙. ℎ#' 𝒏𝒁
𝝁𝟐𝟎𝟎 4 

𝒈𝒎𝒁 22.1	𝑚𝑜𝑙. ℎ#' 𝒏𝑺
𝝁𝟐𝟎𝟎 3 

𝒈𝒁 1.2 × 21&	ℎ#' 𝒏𝒁
𝒎𝒁 3 

𝒌𝝁𝟐𝟎𝟎 1.16	ℎ#' 𝒏𝑺
𝒎𝒁 3 

𝒌𝒎𝒁 1.6	ℎ#' 𝝀𝒁
𝝁𝟐𝟎𝟎 1.2 

𝒌𝒁 1.2	ℎ#' 𝝀𝑺
𝝁𝟐𝟎𝟎 1.2 

𝒁𝟎
𝝁𝟐𝟎𝟎 331.1 × 21&	𝑚𝑜𝑙. 𝝀𝒁

𝒎𝒁 G.6 
𝑺𝟎
𝝁𝟐𝟎𝟎 2I1.1 × 21&	𝑚𝑜𝑙. 𝝀𝑺

𝒎𝒁 21.1 
𝒁𝟎
𝒎𝒁 36.1 × 21&𝑚𝑜𝑙. 𝝁𝟐𝟎𝟎𝟎  21111 
𝑺𝟎
𝒎𝒁 2I1.1 × 21&	𝑚𝑜𝑙.   
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Supplementary figures 

 
Fig S1. Longer time simulations and similarities between effects of fluctuation in SNAIL and all 
players in core EMT network during cell division. (A) Extension of simulation of results shown in 
Fig1C to 32 weeks. (B) Temporal changes in phenotypic distribution for same initial fractions as in Fig1A 
but with stochastic fluctuations considered in all players of core EMT network during cell division. (C) 
Overlap in temporal changes in E fraction when SNAIL (red), and all players of core EMT network (blue) 
had fluctuations in their levels during cell division. Avg. doubling time (DT) of each phenotype is set to 
20 hrs and scaling factors η1 and η2 to 0.2 and 0.1, respectively. The initial population size was 200 
cells. Mean and standard deviation calculated from 16 independent runs. 
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Fig S2. Temporal changes in E fraction for combinations of avg. doubling time (DT) ratio, η1, and 
η2 values; and higher cell doubling time. Temporal E fraction changes for different DT ratios when 
(A) η1 = 0.2 and η1 = 0, and (B) η1 = 0 and η1 = 0.1. Temporal E fraction changes for different η1 and η2 
values when (C) η1 = 0.2 and η2 varying, and (D) η1 varying and η2 = 0.1. Here, the DT(E, E/M, M) = 20 
hrs. E). E) Overlap in E fraction changes for DT(E, E/M, M) = 20 hrs and DT(E, E/M, M) = 30 hrs when 
plotted against time in days. F) Overlap in E fraction changes for DT(E, E/M, M) = 20 hrs and DT(E, 
E/M, M) = 30 hrs when plotted against number of cell cycles, determined by DT. In all, initial fractions 
of 1) Mix of E/M and M, and 2) pure E phenotypes are considered. The initial population size was 200 
cells. Mean and standard deviation calculated from 16 independent runs. 
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Fig S3. Phenotypic switching probability for various scaling factors (η1 and η2) values across 
SNAIL levels. Mean, and standard deviation are calculated from 10 independent runs of 100 iterations 
each. 
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Fig S4. Cell cycles/generations required for first asymmetric switching for various scaling 
factors (η1 and η2) values across SNAIL levels. Progeny up to 12 generations/cell cycles were 
observed for phenotypic switching. Mean, and standard deviation are calculated from 16 independent 
runs. 
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Fig S5. Statistical analysis of differences in minimum cell cycles required for asymmetric 
division by a cell of given phenotype and SNAIL level on varying η1 and keeping η2 fixed (0.1). 
Here, 1 represents a statistically significant difference, while 0 denotes insignificance, according to p-
value of 0.05. The blank space corresponds to nan (not-a-number) values resulted as an outcome of 
non-variability in data in and across pair of observations. 
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Fig S6. Statistical analysis of differences in minimum cell cycles required for asymmetric 
division for a cell of given phenotype and SNAIL level on keeping η1 fixed (0.2) and varying η2. 
Here, 1 represents a statistically significant difference, while 0 denotes insignificance, according to p-
value of 0.05. The blank space corresponds to nan (not-a-number) values resulted as an outcome of 
non-variability in data in and across pair of observations. 
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