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Abstract

Characterizing the effect of mutations is key to understand the evolution of protein sequences
and to separate neutral amino-acid changes from deleterious ones. Epistatic interactions between
residues can lead to a context dependence of mutation effect. Context dependence constrains
the amino-acid changes that can contribute to polymorphism in the short term, and the ones
that can accumulate between species in the long term. We use computational approaches to
accurately predict the polymorphisms segregating in a panel of 61,157 Escherichia coli genomes
from the analysis of distant homologues. By comparing a context-aware Direct-Coupling Anal-
ysis modelling to a non-epistatic approach, we show that the genetic context strongly constrains
the tolerable amino acids in 30% to 50% of amino-acid sites. The study of more distant species
suggests the gradual build-up of genetic context over long evolutionary timescales by the accu-
mulation of small epistatic contributions.

Introduction

Understanding how biological diversity emerges and evolves is at the heart of molecular evolutionary
biology. The long-standing confrontation between adaptationists [1] and neutralists [2] has oriented
the scientific debate towards comparing the relative contributions of natural selection and drift in
the process. While the first ones consider most of the differences between organisms to result from
adaptation to different environments, the second ones support that polymorphisms reflect random
occurrences of equally fit variants.

In recent years, the increasing interest in the role played by historical contingency has revived
this old neutral-versus-selective debate [3]. Evolutionary contingency arises when mutations that
fix depend on permissive mutations that occurred before. Once fixed, they influence the fate
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of upcoming mutations and become increasingly deleterious to remove — a phenomena called
entrenchment [4]. The concept of contingency puts epistasis at the forefront of molecular evolution:
an amino acid that is neutral or beneficial in a genetic context can be deleterious in another due to
epistatic interactions between residues [5]. Characterizing these epistatic interactions is thus key to
uncover the context dependence of mutation effects and understand the extent to which contingency
shapes molecular evolution. Moreover, predicting which non-synonymous mutations are likely or not
to affect a protein is essential in molecular genetics. Though genetic analyses from quantitative trait
locus (QTL) analyses to genome-wide association studies (GWAS) successfully identify genomic
regions associated to a disease or to a trait of interest, these regions usually encompass multiple
neutral mutations in addition to the causative one. An accurate characterization of non-synonymous
mutation effects would definitely help identifying the causative mutations.

Deep mutational scans and small adaptive landscape reconstructions allow to experimentally
study the effect of mutations or combinations of mutations in a genetic background [3] [6]. They
highlight the short-term evolutionary constraints the protein faces and a more general pattern of
negative epistasis in which deleterious mutations become more deleterious in combination. However,
purifying selection removes these mutations from the population. Consequently, their epistatic
interactions may not contribute to long-term protein evolution. Some experiments have unveiled a
strong role of positive epistasis over long evolutionary times, by measuring the effect of the same
mutation in distant homologues from diverged or ancestral species [7] [8]. For instance, the same
amino-acid change can be deleterious in distant backgrounds while being neutral or beneficial in
its native background.

Computational approaches can help to bridge the gap between short-term and long-term evo-
lution. On the one hand, simulations can mimick the fixation of amino-acid changes across many
generations [4] [9] [10]. Yet, their results rely on the validity of the assumptions made to model
protein evolution and the effects of epistasis. On the other hand, data-driven approaches to study
protein evolution become possible thanks to the revolution of high-throughput sequencing. The ac-
cumulation of closely related and more diverged genome sequences enable us to track the apparition
and the fixation of amino-acid changes over different timescales. Instead of simulating evolution, we
can analyse the patterns of diversity observed in nature on both short term (polymorphisms within
a species) and longer term (fixed differences between diverged species). The computational study
of epistasis requires models of amino-acid sequences that account for epistatic interactions between
residues. A current tool to model epistasis is Direct-Coupling Analysis (DCA) [11]. DCA aims
at modelling epistatic patterns of co-evolution between residues from the analysis of diverged but
homologous protein sequence alignments. It successfully identified residue contacts in the three-
dimensional protein fold [11], generated new and functional artificial enzymes [12], predicted deep
mutational scanning outcomes [13] [14] and was used to investigate amino-acid changes between
two closely related genomes [15]. Importantly, DCA epistatic models constantly outperform simpler
non-epistatic modelling approaches (independent models, IND).

Here, we intend to use IND and DCA models in a large-scale study of the Escherichia coli core
genome in order to understand to what extent epistasis constrains the emergence of non-synonymous
polymorphisms within a species and how these epistatic constraints are building-up through time.
To this end, we gathered a collection of >60,000 E. coli genomes and a sample of diverged species
ranging from Escherichia coli to Yersinia pestis to study both polymorphisms arising within a
species and fixed differences accumulating with divergence. With that genome scale approach
we intend to: (i) test how mutation effect prediction can identify the sites where polymorphisms
segregate; (ii) quantify how the genetic background contributes to these predictions; (iii) study the
type of epistatic interactions responsible for the background specific effect of mutations and how
they build up over evolutionary timescales.
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Figure 1: Schematic representation of the sequence landscape and its relation to se-
quence data. The landscape is defined via a real-valued function of any aligned sequence, with low
values indicating “good” functional sequences (green area), and high values “bad” non-functional
sequences (red area). Natural sequences can be seen as samples of low values: close orthologs (light
blue) of a reference sequence (in white) form a sample which is localized in sequence space and
surrounded by closely diverged species (mid-blue). Distantly diverged homologs (dark blue) form a
global sample. All sequence data are aligned relative to the reference sequence. Within our work,
the global sample will be used to infer data-driven landscape models for all proteins families present
in the E. coli core genome, and the variability of the local sample and the closely diverged species
will be analyzed for signatures of selection, epistasis and context dependence of natural amino-acid
polymorphisms.

Results

Data-driven protein sequence landscapes for the case proteome of E. coli

The central concept of our work are amino-acid sequence landscapes, constructed for each protein
or protein domain in some reference genome, here E. coli. These landscapes associate a DCA score
E to any sequence (a1, ..., aL). A DCA score is composed of constant terms reflecting amino-acid
conservation at each site and pairwise couplings modelling epistatic interactions between pairs of
residues. Low DCA scores correspond to good (i.e. fully functional) sequences whereas high values
to bad (i.e. non-functional) ones (Figure 1). We build these amino-acid sequence landscapes by
training DCA models on multiple-sequence alignments (MSAs) of distant homologs sampled in
diverged species (Methods ). These are widely variable sequences (typical sequence identities are
around 20-30%), so they may be understood as a global sample of the sequence landscape, cf. the
dark blue dots in Figure 1. To avoid biasing the results, we have removed from the MSAs any
sequence which is too close to E. coli. Therefore, it is not evident that the resulting models are
informative about the very local structure of the landscape around the E. coli reference sequence
(white, light blue and mid-blue dots in Figure 1). The latter might be dominated by idiosyncratic
constraints characterizing E. coli as a species, while the MSAs of homologs contains the conserved
evolutionary constraints of the entire protein family. Thus, we want to investigate whether amino-
acid sequence landscapes can unify the study of epistasis on short and long timescales.
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(a) (b)

(c)

Figure 2: Predicted effects of observed amino acids using an IND model that neglects
epistasis or a DCA model that incorporates pairwise epistasis. (a) Rank of native amino
acid in the reference strain as compared to all 20 possible amino acids. DCA model (red) outper-
forms IND (yellow) by predicting twice as many native amino acids to be the best possible. (b)
DCA rank of major and minor allele for all sites that are polymorphic at a >5%-threshold, among
all 20 possible amino acids. Major alleles (alleles at frequencies >50%) have better ranks than
minor alleles (alleles at frequencies between 5% and 50%). The distribution of consensus alleles
peaks at the first rank (46.8% of polymorphic sites have major allele ranking first and 17.6% have
second best rank) while the distribution of minor alleles peaks at the second rank (13.2% have best
rank against 18.1% that are second-best). (c) Distribution of DCA scores of non-synonymous poly-
morphisms observed at frequencies >5% across the >60,000 strains (blue) compared to mutations
sampled from an IND model (yellow) or to random mutations (grey). A large number of possible
mutations are predicted to be highly deleterious (positive scores) compared to naturally-occurring
polymorphisms that tend to be neutral (blue distribution centered on zero). Polymorphisms pre-
dicted from IND are slightly deleterious once epistasis is taken into account (yellow distribution
shifted towards positive values).
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Strong signature of selection at the amino-acid level

We first test how accurately DCA can model E. coli amino-acid sequences. To work at a genome
scale, we focus on 2,087 Pfam domains [16] spanning 284,529 residues among 1,462 core genes
(Methods ). We also perform the same analysis on 1,029 entire core gene sequences in order
to increase site coverage. Results presented in the following sections are those obtained on Pfam
domains, results on full core genes are presented in Supplementary Figures 1, 2, 3, 4, 5. The results
for full sequences are mostly consistent but of lower quality than those obtained for Pfam domains,
since the MSAs used for model training contain less and less diverse sequences.

DCA models provide a score for each amino acid in each position, which depends on the sequence
context in E. coli. On the contrary, the score of each amino acid in IND models is context-
agnostic as it directly derives from its frequency across distant homologs (Methods ). To compare
model predictions to reality, we gather a database of >60,000 E. coli strains where we record all
polymorphisms occuring at frequencies >5%. We use a ST131 strain as reference strain, this clonal
complex is a public health concern because of its virulence and resistance to antibiotics [17] and
has thousands of isolates sequenced in the database.

Amino acids observed in E. coli are well predicted by DCA, and to a lesser extent by IND. 78%
of amino acids observed in the reference strain rank first with a DCA model while this figure drops
to 47% with IND (Figure 2a), in agreement with previous study [15]. Approximately half of the
time an amino-acid site is polymorphic the major allele is ranked first by DCA while minor alleles
are more likely to rank second (Figure 2b). The DCA score distribution of E. coli polymorphisms
centers on 0, meaning that DCA predicts them to be close to neutral (blue distribution, Figure 2c).
In comparison, DCA predicts that amino acids sampled from distant homologues and inserted in E.
coli sequences will be deleterious (yellow distribution, Figure 2c), a prediction IND cannot make.
These results are consistent with the idea that polymorphisms that fix in a population are close to
neutral at the time they occur but can be deleterious in another background. Figure 2c compares
these scores with random mutations (grey histogram), predicting them to be more deleterious, since
they include never observed mutations that are presumably highly counter-selected.

DCA and IND models predict mutation effects of amino-acid changes. However, the likelihood
of observing an amino-acid change also depends on mutational biases. Among the 20 possible
amino acids, we cannot obtain more than nine by mutating a given codon only once. On short
evolutionary timescales, polymorphisms that require more than one single nucleotide polymorphism
(SNP) should rarely occur. If we set the probability of observing them to zero, the power to predict
E. coli polymorphisms slightly increases for both models (by 5.2% for DCA and 10.5% for IND,
Supplementary Figure 6).

These results validate that even though DCA models are trained on distant homologs, they can
capture the effect of natural selection at different timescales. Their ability to predict amino acids
in the reference strain reflects the action of natural selection in fixing amino acids when E. coli
diverged from other species. When it comes to predicting polymorphisms, it emphasizes the action
of purifying selection on a shorter term. The better performances of DCA over IND highlight the
major role played by epistasis in shaping mutation effect and the strong contingency of amino acids
observed in E. coli. It thus comforts us in using DCA throughout the rest of this work.

The context constrains the predicted site variability in E. coli

Focusing on individual amino acids, we have seen that native amino acids fixed in E. coli and
polymorphisms observed in a wide collection of strains are strongly contingent on the genetic
background. Going to an amino-acid site perspective, this raises the question of how much epistasis
shapes site variability. When comparing protein sequences from distant species, we observe that
some sites are conserved while others vary. However, if mutation effect depends on context, the level
of variability observed at an amino-acid site across distant species may not reflect how polymorphic
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(a)

(b)

(c)

Figure 3: Predicting the variability of amino-acid sites. (a) Entropy quantifies the level of
variability of an amino-acid site from conserved (entropy ∼ 0) to highly variable (entropy ∼ 4).
It can be computed from a non-epistatic model (Context-Independent Entropy (CIE), yellow) i.e.
from the frequencies of amino acids observed across distant species, or from an epistatic model
(Context-Dependent Entropy (CDE), red) i.e. from the conditional probabilities of observing each
amino acid in E. coli background. Residues that have strong epistatic interactions with others will
be lowly polymorphic once the genetic context is fixed (low CDE) but can vary between species
(high CIE) by co-evolving with their partners (cf. hatched residues). (b) Bivariate histogram
of CDE and CIE for all sites in the dataset. Two populations of sites are clearly recognizable,
in particular separated by their CDE values. (c) Marginal distributions of CDE and CIE for all
sites in the dataset. CDE divides amino-acid sites into two populations of similar sizes: conserved
(CDE<1) and variable (CDE≥1). On the contrary, most of the amino-acid sites have a high CIE,
i.e. IND predicts them to be highly variable.
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this site can be within any specific species.
We use Shannon entropy as an information-theoretic measure quantifying the diversity of amino

acids observed at a given site (Figure 3a). It measures the logarithm (in base 2) of the effective
number of admissible amino acids at a position, if these were equiprobable. A site with an entropy of
zero should only tolerate one amino acid: it is conserved. A value of one can for instance correspond
to two amino acids at 50% frequency each. Entropy reaches its maximal value of log2(20) = 4.32,
if all 20 possible amino acids are equally likely. Based on this concept, we can define a Context-
Independent Entropy (CIE) from an IND model and an E. coli specific Context-Dependent Entropy
(CDE) from a DCA model (Methods ).

We compute CIE at locus i from the amino-acid frequencies fi(a) in the column i of the MSA
of distant homologs as:

CIEi = −Σafi(a) log2 fi(a)

To compute CDE, we first need to determine the probability of observing a certain amino acid ai in
position i, given that the other positions take amino acids a0\i = (a1, ..., ai−1, ai+1, ..., aL) present in
the E. coli reference sequence. Within our DCA-based modelling framework, this quantity reads:

P (ai|a0\i) = exp {hi(ai) + Σj 6=iJij(ai, aj)} /zi,

with the normalization zi chosen such that P becomes a probability distribution over the values of
ai, i.e. over the 20 theoretically possible amino acids in position i (gaps are not considered, since
we study the effects of amino-acid substitutions and not deletions). CDE is now given by:

CDEi = −ΣaiPi(ai|a0\i) log2 Pi(ai|a0\i),

with a0\i being the sequence context of the E. coli reference strain.
CIE and CDE are both model-predicted quantities, that do not use any E. coli polymorphism

data to predict variability within this species. CIE corresponds to the level of variability observed
across distant species. CDE takes the amino-acid context and the local epistatic couplings of
the reference strain into account to predict the level of variability within the E. coli sequence
background. If epistasis is negligible, CIE and CDE values should be comparable.

Figure 3b shows a bivariate histogram of CIE and CDE over all sites in our dataset. Two
distinct communities clearly emerge:

• top-right peak of sites with high CDE and CIE. These sites display very little context-
dependence (both entropies have comparable values). They reach entropy values near 4,
i.e. close to the upper limit of log2(20) = 4.32. These sites are variable across distant species
and predicted to be highly polymorphic in E. coli.

• left peak of sites with low CDE and low to high CIE. We predict them to be conserved in E.
coli (CDE close to 0) but they can vary across distant species (CIE ranging from 0 to more
than 3). We expect these sites to display a low level of polymorphism across E. coli strains.

CIE and CDE distributions over all sites greatly differ (Figure 3c). While only 10% of sites are
conserved across distant species (CIE < 1, corresponding to an effective number of amino acids
below 2), we predict 45% of sites to be conserved in E. coli (CDE < 1) largely due to local epistatic
couplings.
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(a) (b)

(c) (d)

Figure 4: Predicting amino-acid sites that are conserved or polymorphic in E. coli.
Comparison of the performances of IND and DCA models. (a) Bivariate histogram of
CDE and CIE for sites that are conserved across >60,000 strains of E. coli. Most of them cluster on
the left peak of low CDE. (b) Bivariate histogram of CDE and CIE for sites that are polymorphic
at a 5% threshold across >60,000 strains of E. coli. Most of them cluster on the right peak of
high CDE. (c) Distribution of CIE for conserved (green) and polymorphic (blue) sites in E. coli.
A non-epistatic model fails at distinguishing between both populations. Most of the sites are
predicted to have a high entropy so to be highly variable, including those that display no mutation
in >60,000 strains of E. coli (green distribution). (d) Distribution of CDE for conserved (green)
and polymorphic (blue) sites in E. coli. A model that incorporates pairwise epistasis predicts a low
entropy for conserved sites (the green distribution peaks near 0) and a high entropy for variable
sites (the blue distribution peaks near 4).
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Context-Dependent Entropy accurately predicts polymorphic and constrained
sites in E. coli

We can now confront these model-based predictions to the observed variability in our dataset of
>60,000 E. coli strains. To do so, we categorize E. coli sites into:

• conserved: no polymorphism observed in any of the strains.
• variable: at least 5% of the strains harbor a mutation with respect to the consensus sequence.

Lowly polymorphic sites (<5%-frequency polymorphisms) can correspond to variable sites but
also to conserved sites with sequencing errors or deleterious mutations segregating at low frequen-
cies, so we choose to exclude them from the analysis.

Most of the conserved sites cluster on the left peak of low CDE (Figure 4a) whereas variable
sites tend to cluster on the top-right peak of high entropies (Figure 4b). CDE appears more relevant
than CIE to discriminate conserved from variable sites. Indeed, only 14.9% of conserved sites have
CIE<1 (Figure 4c) while 56.6% have CDE<1 (Figure 4d). If we integrate mutational biases into our
analysis, by restricting the computation of entropy to 1-SNP amino-acid mutations (Methods ), we
find that 70.3% of conserved sites have CDE<1 whereas only 28.2% have CIE<1 (Supplementary
Figure 7). Using simulations (Supplementary Methods), we show that the remaining 29.7% of
conserved sites that are predicted to be polymorphic (CDE>1) may correspond to random drift
limiting the amount of neutral diversity that segregates within a population (Supplementary Figure
8). In other words, polymorphisms may arise on these sites but have not been observed in nature
yet.

These results show that CDE accurately predicts the level of variability of an amino-acid site
by integrating constraints linked to its function, common to all genetic backgrounds, and local
epistatic couplings that are specific to a given genetic context. CIE misses most of the conserved
sites, demonstrating how strongly the context reduces the variability, which is possible at an amino-
acid site.

Quantifying the level of contingency

We now want to investigate how much the genetic context reduces the diversity of amino acids
tolerated at a site. In other words, how contingent on the genetic background the effect of an amino-
acid change is. Comparing CIE to CDE allows to quantify contingency, as they both measure site
variability with CIE being context-agnostic and CDE being context-aware. We can split amino-acid
sites into three categories (Figure 5a):

• 10.0% are conserved across all species as well as in E. coli (CIE < 1). They are likely to be
functionally essential. Mutating away from the observed amino acid will always be deleterious
so the context has no real influence on their level of conservation.

• 54.6% are variable across all species as well as in E. coli (CIE ≥ 1, CDE ≥ 1). They are
often constrained (CDE < log2(20)), but allow for a considerable amino-acid variability both
in the family and in the specific E. coli context: at these positions, we observe both fixed
differences between species and polymorphisms within the E. coli population.
• 35.4% are conserved in E. coli context but variable across species (CIE ≥ 1, CDE < 1). Amino

acids observed in distant species will not be tolerated in this specific context: evolution is
contingent on the genetic background.

We define the information gain provided by the sequence context as the difference between CIE
and CDE (Methods ). If both are equal, no information is contained in the context. The lower
CDE is compared to CIE, the greater the information gain and the level of contingency. We observe
that the majority of sites have a positive gain in information when the sequence context is known
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(a)
(b)

Figure 5: Quantifying the effect of the context in reducing amino-acid site variability.
(a) The genetic background is expected to differentially impact amino-acid sites. It has a low
influence on sites that have the same level of variability in E. coli and across distant species
(blue and light green). On the contrary, it strongly impacts sites that are variable across distant
species but are conserved in E. coli due to local epistatic couplings (dark green). (b) Information
gain quantifies the difference between an amino-acid site variability across distant species and its
potential variability in E. coli. Sites that are variable across distant species (CIE ≥ 1) but conserved
in E. coli (CDE < 1) are the ones with the highest information gains (dark green distribution).
Note that the information gain is given in bits, 1 bit corresponds to an effective reduction of the
available amino acids by a factor 2, 2 bits by a factor 4, and 3 bits by a factor 8.

(Figure 5b). In 47.1% of sites, the effective number of acceptable amino acids in the E. coli context
is at least a factor two smaller than what a context-independent analysis of distant homologs would
predict (information gain > 1 bit). We conclude that roughly 30% to 50% of amino-acid sites show
some consistent signal of context dependence.

Epistasis is a diffuse pattern involving a sum of many small couplings

The higher accuracy of DCA over IND in predicting site variability and amino acids observed in
E. coli proves that epistasis strongly shapes the effect of mutations. Following this observation, we
want to use DCA as a tool to study epistasis in natural isolates. First, we look at epistasis between
polymorphisms arising jointly in E. coli. To do so, we gather all gene sequences with exactly two
amino-acid substitutions (other than gaps, i.e. deletions or insertions) compared to the reference
strain. For each pair of mutations, we compare the DCA-predicted effect of the double mutation
to the sum of the effects of each single mutation introduced individually in the reference sequence
(Methods ). We observe no clear difference between these two quantities (Figure 6a), indicating an
absence of strongly-coupled polymorphisms. Two main factors may explain the absence of strong
epistatic couplings between polymorphisms in E. coli. First, polymorphisms arise on highly variable
sites: these sites are poorly constrained by epistasis (high CDE). Second, previous works claim that
epistasis is often weak compared to the typical effect size of mutations [18]. This second point does
not contradict the strong context dependence of mutations. It suggests that context might be a
collective effect arising from the accumulation of many small epistatic couplings. Importantly, these
couplings may involve sites that are conserved in E. coli but vary across distant species. We use
inverse participation ratio (IPR) to estimate the proportion of sites effectively coupled to a locus
in amino-acid sequences modelled with DCA (Figure 6b, Methods ). We find that each amino-acid
site is coupled to about one fourth of the rest of the protein. Taken altogether, these results lead us

10

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.21.477185doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.21.477185
http://creativecommons.org/licenses/by-nc/4.0/


(a) (b)

Figure 6: Epistasis observed in E. coli. (a) Mutational effect ∆Eij of observed double muta-
tions with respect to the reference, plotted against the sum ∆Ei + ∆Ej of the individual mutation
scores. The absence of clear deviations from the diagonal reveals the lack of strong epistatic cou-
plings between pairs of mutations in our strain dataset. (b) Histogram of the effective proportion
of sites coupled with a given amino acid. It is computed from the inverse participation ratio:
1/(IPR×protein length). The median of the distribution is 24%, meaning that amino-acid sites
are generally coupled to about one fourth of the other residues in the protein according to DCA
modelling of epistasis.

to consider that context dependence of mutations does not rely on a few strong epistatic couplings
but on an aggregation of many small couplings accumulated with divergence.

Gradual construction of the context with divergence

So far, we have gathered evidence that many small couplings accumulate to build a genetic context.
This translates into an absence of strong epistatic signature of polymorphisms co-occuring in E.
coli. However, we expect epistasis patterns to emerge gradually when the number of substitutions
increases. To study how the genetic background is building up with divergence, we gather 853
Pfam domains spanning 516 core genes shared by diverged species from E. coli to Yersinia pestis
(Figure 7a, Methods ).

We start by comparing pairs of homologous sequences. For each pair, we compute the DCA
epistatic cost as being the difference between the DCA score of the fixed differences altogether and
the sum of their DCA effects when inserted individually in one of the two genetic backgrounds
(Methods ). It is worth noting that a negative DCA epistatic cost corresponds to positive epistasis:
fixed differences are more beneficial, i.e. have a lower DCA score, taken altogether than expected
by the sum of their individual effects. As gaps can artificially create a pattern of positive epistasis,
we only keep pairs of sequences that have no more than one gap difference. We observe a strong
pattern of positive epistasis that increases with divergence (Figure 7b). This is consistent with a
model where fixed differences are contingent on previous mutations and entrenched by subsequent
ones. Individual couplings are biased towards positive epistasis (pronounced left tail of negative
DCA couplings between pairs of fixed differences in Figure 7c). However, their values rarely fall
below -1 (note the log scale of the vertical axis), a rather low effect size compared to the most
extreme epistatic costs that can be measured between entire sequences in Figure 7b. This is
consistent with epistatic patterns emerging gradually by an addition of small couplings accumulated
with divergence. The more diverged the sequences, the stronger the epistatic signal because each
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(a)

(b) (c)

Figure 7: Epistasis between fixed differences in a panel of diverged species. (a) Phyloge-
netic tree of studied strains. Tree built from an amino-acid sequence alignment of 878 core genes.
(b) DCA epistatic cost decreases with divergence. It is defined as the difference between the total
change in statistical energy between pairs of sequences and the sum of single-mutant effects. Nega-
tive values correspond to positive epistasis: mutations are more beneficial (lower DCA score) taken
altogether than the sum of their individual effects. (c) Distribution of epistatic couplings between
pairs of fixed differences between E. coli and Y. pestis. The distribution is shifted towards nega-
tive values corresponding to positive epistatic couplings between fixed differences: they are better
together than the sum of their individual effects. The relative small values of these couplings as
compared to overall epistatic scores measured between entire sequences (Figure 7b) indicates that
epistatic patterns build up gradually by an accumulation of many small couplings.
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additional fixed difference modifies many couplings. These sequences have evolved naturally since
their corresponding species diverged: the over-representation of positive epistatic couplings that we
detect is consistent with evolution under long-term purifying selection [4].

rplK: a gene displaying a strong epistatic signal

rplK codes for the L11 protein of 50S subunit of the ribosome. It exhibits a strong signal of positive
epistasis among the 14 differences fixed between E. coli and Y. pestis. This relatively small number
of fixed differences offers a good opportunity to investigate how epistasis emerges at an individual
protein level.

The range of epistatic couplings between fixed differences (Figure 8a) is consistent with Figure
7c: no very strong couplings but a clear tendency towards negative DCA values (i.e. positive
epistasis). The strongest epistatic couplings correspond to pairs of residues that are in close vicinity
in the 3D folding of the protein (distances <10Å in Figure 8b). We also observe a clear over-
representation of couplings near -0.2 — as compared to the number of couplings near 0.2 — the
majority of which correspond to more distant pairs of sites. Even if these residues are not necessarily
in contact with one another, almost all of them cluster in the same protein domain (red dots in
Figure 8c). This suggests that epistasis does not solely arise from direct contacts between few
neighboring residues but also from more distant interactions between amino acids that contribute
to the stability of the same protein domain. We previously found that DCA predicts about one
fourth of amino-acid sites to be effectively coupled to a given residue. This figure clearly exceeds
the number of residues that are in physical contact with an amino-acid site but could be explained
by the hypothesis that sites belonging to the same protein domain are epistatically coupled with
one another even if not in direct contact. These domains of correlated residues that co-evolve over
long evolutionary times are reminiscent of protein sectors [19].

Discussion

The adaptationist and neutralist interpretations of biological diversity have long neglected epistasis.
The complexity of modelling epistasis certainly contributes to explain why independent site models
remain common in molecular evolution. Breen et al. first raised the possibility of epistasis being
the primary factor in protein evolution [5]. If their methodology based on dN/dS computations
underwent criticism [20], it clearly called for a deeper and more systematic study of epistasis across
the genome. Experimental studies of mutations in different genetic backgrounds have confirmed an
important role of epistasis in long-term evolution [7] [8]. However, they remain constrained to the
analysis of single proteins. As abundant genetic data for both E. coli strains and diverged species
have become available, data-driven approaches offer new opportunities. Through the concept of
DCA-informed amino-acid landscapes, this allows for a large-scale data-driven study of epistasis
on both short- and long-term evolution. The systematic analysis of wide genome portions has the
potential to unveil much more widespread mechanisms than the potentially idiosyncratic studies
led on specific proteins.

We find that DCA overperforms IND in predicting native amino acids as well as observed
mutations and amino-acid site variability within E. coli species. Native amino acids arise from
long-term evolution whereas observed polymorphisms and site variability within E. coli strains
reflect short-term evolution. Thus, amino-acid landscapes appear relevant to study both short-
and long-term evolution even though they are inferred from highly diverged species and can only
capture evolutionary forces that are conserved for the entire family. Interestingly, it suggests
that local adaptation of some specific strain to some specific ecological niche might add on top
of these general constraints but does not dominate evolution. Our data analysis also emphasizes
the importance of mutational biases on short evolutionary timescales. Neutral polymorphisms that
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(a)

(b)

(c)

Figure 8: Epistatic couplings between amino-acid differences that have fixed between
E. coli and Y. pestis in rplK gene. (a) Distribution of epistatic couplings between pairs of
fixed differences. The left tail of negative DCA scores signals an over-representation of positive
epistatic couplings. (b) Joint distribution of epistatic couplings values between pairs of residues
harbouring a fixed difference and their physical distance in the 3D structure of the protein. The
strongest couplings corresponds to residues that are in contact (<10Å). However, most of the
couplings involve residues that are more distant than 10Å. (c) Representation of the 3D structure
of rplK protein: the entire protein is coloured in orange, residues that differ between E. coli and
Y. pestis are highlighted with red dots. Most of the fixed differences cluster together in the same
domain, explaining why we observe a strong epistatic signal even though most of the pairs of fixed
differences are not in physical contact.
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require more than one SNP are virtually absent.
The better performances of DCA as compared to IND demonstrate the importance of taking

epistasis into account to understand the effect of amino-acid changes. Recent achievements in
synthetic biology prove that DCA captures enough of protein constraints to predict functional
variants having less than 65% identity with amino-acid sequences used to train the DCA model [12].
They also experimentally demonstrate that an IND model fails at generating functional variants.
This leads us to question the widespread use of softwares based on independent-site models such as
SIFT [21] or Polyphen [22] to predict mutation effects. Here, we use DCA to characterize E. coli
evolutive history. However, it paves the way to a far broader range of applications such as predicting
adaptation or understanding molecular mechanisms underlying genetic diseases. In the latter case,
DCA may prove useful at investigating cases of Dobzhansky–Muller incompatibilities [23] where
amino-acid changes that have been fixed in distant species would be pathogenic to humans. For
more applied purposes, DCA could be used to single out causative mutations associated to diseases
in human genetics.

In agreement with Breen et al. [5], we find that context dependence dramatically reduces
the variability observed at a given amino-acid site. Epistasis therefore plays an important role in
evolution. However, we show that epistatic couplings between pairs of sites remain small compared
to the typical effect of a mutation. Our data suggests that the strong context dependence of
mutation effect comes from an accumulation of many small couplings. Consequently, most of the
polymorphisms that arise within a species should have the same effect in all strains: the amino-
acid landscape near a reference strain is locally smooth. On the contrary, the global landscape is
rougher, with about one third of amino-acid sites where the effect of mutations drastically varies
between distant species. Analysing a panel of closely diverged species through DCA modelling, we
are able to show how these epistatic patterns gradually emerge with divergence.

Deep mutational scans have shown that positive epistasis between pairs of amino acids is less
common than negative epistasis [3]. However, we show that positive epistatic couplings between
residues dominate long-term evolution. Simulating the evolution of argT protein, Shah et al.
have already noticed that, under purifying selection, mutations that fix are enriched in positive
epistatic couplings with the rest of the background [4]. This is because purifying selection favors
both mutations that are beneficial in all backgrounds and mutations that are beneficial in a given
background due to epistatic couplings with the rest of the sequence. Here, we observe the same
phenomena with real data and across hundreds of genes. Quantifying these effects experimentally
would require performing deep mutational scans on several homologs at different distances with
extremely accurate fitness estimates to detect small effects.

According to our findings, polymorphisms currently occurring in E. coli are close to neutral. On
the contrary, fixed differences with Y. pestis tend to be deleterious in E. coli background. These
observations perfectly fit a scenario of contingency and entrenchment: mutations are neutral at the
time when they appear while being contingent on previous mutations and entrenched by subsequent
mutations [4]. However, our approach to analysing context dependence is necessarily limited by
the accuracy of DCA at modelling epistatic interactions. We have gathered evidence that DCA
correctly captures the local neighborhood near E. coli sequences. These results combined with
other assessments of DCA predictive power [11] [12] lead us to believe that it should be informative
on how context dependence evolves with divergence. We cannot, though, reject the hypothesis that
some of our observations are not a true biological signal but more artefacts of DCA modelling.

DCA model performances rely on the quality of the inter-species MSAs on which they are
trained. Pfam domains MSAs are larger and more diverse than full gene MSAs because many
different proteins across a wide range of organisms can share the same Pfam domain. As a con-
sequence, DCA models trained on Pfam domain MSAs overperform those trained on full gene
MSAs in predicting native amino acid and mutation effects (Supplementary Figures 1, 2, 3, 4, 5).
However, full gene MSAs cover a larger fraction of the genome and DCA models trained on them
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perform well at predicting site variability. The choice of the MSA reveals a trade-off between the
DCA model performances and the fraction of the genome that can be covered. Depending on the
intended applications, one might be favored over the other.

Since landscape models are inferred one by one for each protein, we can only capture intra-
protein epistasis, but not any epistatic interaction between proteins. This is not an intrinsic limi-
tation of the DCA approach, epistatic landscapes connecting two or more proteins may be inferred
from joint MSAs [24]. However the size of the model grows quadratically with the number of
amino-acid sites, making the inference of a full joint core genome landscape impractical in terms
of computational time. Even by restricting to intra-protein epistasis, we obtain amino-acid land-
scapes that are relevant to study evolution on short and long timescales. The substantial context
dependence of mutation effects that we uncover may be enhanced by accounting for inter-protein
epistasis.

Materials and Methods

Datasets — inter-strain MSAs

61,157 E. coli genomes are downloaded from Enterobase [25]. 298,781,787 coding sequences are
detected by Prokka [26]. In all analyses, the reference strain is the GA4805AA genome. For each
gene in the reference strain, homologous sequences in the other genomes are retrieved using phmmer
[27] (parameters: --popen 0.0001 --pextend 0.01) followed by a curation step where only sequences
with less than 10 gaps after being aligned on the reference and more than 90% identity with the
reference are kept. All genes with at least 60,000 homologous sequences are kept, these are referred
to as core genes. Amino-acid sequences are aligned using mafft [28] and DNA sequences are reverse-
aligned from amino-acid sequence alignments to preserve codon alignments. Two types of multiple
sequence alignments (MSAs) are generated: one with the full-length core gene sequences (full gene
MSAs, produced for genes that are present in at least 61,000 genomes) and one per Pfam domain
[16] present in a core gene (Pfam domain MSAs).

Datasets — closely diverged species MSAs

The coding sequences of nine genomes of species closely related to E. coli are downloaded from
Mage [29]: Escherichia coli K12 - chromosome ECK.1, Escherichia coli UMN026 - chromosome
ESCUM.2, Escherichia albertii TW07627 - chromosome ESCAL.1, Escherichia fergusonii ATCC
35469T - chromosome EFER.2, Salmonella enterica subsp. arizonae serovar 62:z4,z23:– RSK2980
- chromosome NC 010067.1, Klebsiella pneumoniae 1162281 - WGS AFQL.1, Atlantibacter herman-
nii 4928STDY7071316 - WGS CABGLB01.1, Pantoea ananatis AJ13355 - chromosome NC 017531.1,
Yersinia pestis Angola - chromosome NC 010159.1. Homologous sequences are retrieved using
vsearch [30] usearch global command against the reference genome (parameters: --strand plus --id
0.5 --query cov 0.8 --target cov 0.8 --maxaccepts 1). Only core genes (genes with a homologue in
all 9 genomes) are kept. Amino-acid sequences are aligned by mafft [28]. Both full gene MSAs and
Pfam domain MSAs are generated. Full genes MSAs are also concatenated to produce a unique
MSA used to generate a phylogeny with FastTree [31].

Datasets — inter-species MSAs

For each full gene inter-strain MSA and full gene closely diverged species MSA, the correspond-
ing full gene inter-species MSA is produced by querying the corresponding reference amino-acid
sequence against UniRef30 2020-03 [32] using HHblits [33] followed by a curation step where se-
quences with more than 10% gap are removed from the MSA.
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For each Pfam domain inter-strain MSA and Pfam domain closely diverged species MSA, the
corresponding Pfam domain inter-species MSA is generated by downloading the full Pfam alignment
from the Pfam 34.0 (March 2021) database [16] and aligning the reference sequence to the Pfam
HMM using hmmalign [27]. All sites corresponding to inserts in the reference sequence are removed
from the reference sequence, sites that are gapped in the reference sequence after aligning it to the
Pfam HMM are removed from the Pfam MSA.

DCA and IND models

Direct-Coupling Analysis in the pseudo-likelihood maximization framework (plmDCA) [34] is used
to train DCA models.

For each inter-strain MSA, the corresponding inter-species MSA is filtered to remove all se-
quences with >90% identity with the reference sequence. A DCA model is then trained if the
filtered inter-species MSA contains more than 200 sequences.

For each closely diverged species MSA, a tree is built with FastTree [31] from the corresponding
inter-species MSA concatenated to the closely diverged species MSA. The most recent common
ancestor to the closely diverged species is inferred from this phylogeny. Any sequence of the inter-
species MSA that descends from this most recent common ancestor is removed from the inter-species
MSA. This is done in order to limit the risk of phylogenetic couplings to interfere with true epistatic
interactions when training DCA models. A DCA model is then trained if the filtered inter-species
MSA contains more than 200 sequences.

Each time a DCA model is trained, a corresponding IND model is produced from the frequencies
of all possible amino acids or gaps at each position in the filtered inter-species MSA used to train
the DCA model.

Data analysis

When no particular software is mentioned, analyses are performed using Python3 [35] and Biopy-
thon [36]. Amino-acid sites that are gapped in more than 20% of the sequences of the inter-species
or intra-species MSAs are never considered.

Individual mutation effect prediction by DCA and IND models

A DCA model trained on an inter-species MSA of length L is composed of two matrices: h and J .
They can be used to assign a statistical energy E(a1, ..., aL) to any amino-acid sequence (a1, ..., aL):

E(a1, ..., aL) = −Σi<jJij(ai, aj)− Σihi(ai)

The hi(ai) are site-dependent biases taking into account the importance of single amino acids in
individual sequence positions; the Jij(ai, aj) are epistatic couplings connecting the amino acids in
pairs of positions. The function E is inferred to maximize the pseudolikelihood of the sequences in
the inter-species MSA.

Two amino-acid sequences can be compared to one another by simply making the difference
between their statistical energy values. In particular, the DCA score of mutating amino acid α into
amino acid β at position i in the amino-acid background (a1, ..., ai−1, ai+1, ..., aL) is given by:

∆Ei = E(a1, ..., ai−1, β, ai+1, ..., aL)− E(a1, ..., ai−1, α, ai+1, ..., aL) =
hi(α)− hi(β) + Σj 6=iJij(α, aj)− Σj 6=iJij(β, aj)

The DCA score of the mutation α→ β at locus i in the amino-acid background (a1, ..., ai−1, ai+1, ..., aL)
can be turned into a conditional probability of observing the amino acid β at locus i, given that the
other positions take amino acids a0\i = (a1, ..., ai−1, ai+1, ..., aL). Within our DCA-based modelling
framework, this quantity reads:
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Pi(β|a0\i) = exp {hi(β) + Σi6=jJij(β, ai)} /zi,

with the normalization zi chosen such that P becomes a probability distribution over the values of
β, i.e. over the 20 theoretically possible amino acids in position i (gaps are not considered, since
we study the effects of amino-acid substitutions and not deletions).

The probability of observing amino acid β at locus i in IND is given by the frequency of amino
acid β at locus i in the inter-species MSA: fi(β).

Context-Independent and Context-Dependent Entropies

The Context-Independent Entropy (CIE) is the standard column entropy of the inter-species MSAs.
It is calculated from the position-specific amino-acid frequencies fi(a), measuring the fraction of
sequences in the inter-species MSA having amino acid a at locus i:

CIEi = −Σafi(a) log2 fi(a).

The Context-Dependent Entropy (CDE) is computed from the conditional probabilities of ob-
serving the amino acid a at locus i in the amino-acid context of the reference strain Pi(a|a0\i):

CDEi(a
0
\i) = −ΣaPi(a|a0\i) log2 Pi(a|a0\i)

The difference between CIE and CDE gives the information gain (IG) provided by the context:

IGi(a
0
\i) = CIEi − CDEi(a

0
\i)

1-SNP mutations

All codons in the reference genome are analysed in order to record all possible synonymous muta-
tions and non-synonymous mutations that can be obtained by mutating them exactly once. These
mutations are referred to as 1-SNP mutations. For non-synonymous mutations, the corresponding
amino acids encoded by the mutated codons are also recorded.

The probability of observing an amino acid can be computed from an IND model restricted to
1-SNP mutations, by setting to 0 all entries of the fi(a) vector that do not correspond to 1-SNP
mutations and re-normalizing fi(a). These new probabilities can be used to compute a CIE that is
restricted to 1-SNP mutations.

The probability of observing an amino acid can be computed from a DCA model restricted to
1-SNP mutations, by setting to 0 all entries of the Pi(a|a0\i) vector that do not correspond to 1-SNP

mutations and re-normalizing Pi(a|a0\i). These new probabilities can be used to compute a CDE
that is restricted to 1-SNP mutations.

Epistatic cost

Epistasis is defined as the deviation from additivity of mutational effects. Having two mutations
in sites i and j of a protein, the total mutational effect ∆Eij , defined as the difference in statistical
energy between the double mutant and the reference sequences, can be compared to the sum ∆Ei+
∆Ej of the effects of the two single-site mutations, individually inserted into the reference sequence.
The epistatic cost for substituting the reference residues αi, αj with βi, βj is the difference:

∆∆Eij = ∆Eij–∆Ei–∆Ej = Jij(αi, βj) + Jij(βi, αj)− Jij(βi, βj)− Jij(αi, αj)

Similarly, the epistatic cost of an arbitrary number of mutations is the difference between the
total mutational effect ∆Eij...n of the mutations altogether (i.e. the difference in statistical energy
between the mutant and the reference sequences) and the sum ∆Ei +∆Ej + ...+∆En of the effects
of the all single-site mutations, individually inserted into the reference sequence:
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∆∆Eij...n = ∆Eij...n–∆Ei–∆Ej–...–∆En

For each inter-strain MSA, sequences with exactly two mutations compared to the reference
sequence and no gap are gathered. The total mutational effect ∆Eij of each pair of mutations
in the reference sequence is computed and compared to the sum ∆Ei + ∆Ej of the effects of
the two single-site mutations, individually inserted into the reference sequence. For all pairs of
fixed differences between Y. pestis and the reference sequences, the epistatic coupling ∆Eij is also
recorded.

For closely diverged species MSAs, the epistatic cost between each pair of homologous sequences
with no more than one gap difference (but any arbitrary number of other missense mutations) is
computed as well as the proportion of fixed differences between them.

When comparing epistatic cost between pairs of fixed differences in rplK to the distance between
these residues in the 3D structure of the protein, the 4V6E PDB structure is used [37]. It is displayed
using PyMOL [38] .

Effective proportion of residues coupled to an amino-acid site

DCA models are based on a matrix J of pairwise epistatic couplings between residues in a sequence.
The Inverse Participation Ratio (IPR) quantifies how diffuse epistatic couplings involving a residue
at position i are. It is computed as follow:

IPRi = Σj 6=i(Jij(ai, aj)
2/Σk 6=iJik(ai, ak)2)2, with (a1, ..., aL) being the reference sequence

IPRi corresponds to the inverse of the effective number of sites that are epistatically coupled with
a position i. The effective proportion of residues coupled to an amino-acid site at position i in a
sequence of size L is derived from IPRi as being 1/(IPRi.L).

Code availability

Codes in Python are available at https://github.com/GiancarloCroce/DCA_polymorphism_Ecoli.

Data availability

Data is available on Zenodo (DOI 10.5281/zenodo.5774192).

Contributions

L.V., G.C., O.T. and M.W. designed the analyses and wrote the paper. L.V. and G.C. performed
the analyses. M.P. and E.R. gathered and prepared genetic sequence data.

Acknowledgements

We are thankful to Alaksh Choudhury for help with protein 3D structure visualization. We also
wish to thank Juan Rodriguez-Rivas.

Our work was partially funded by the French Agence Nationale pour la Recherche ANR GeWiEp
(ANR-18-CE35-0005-01, to L.V. and O.T.), the French Fondation pour la Recherche Médicale
(EQU201903007848, to L.V. and O.T.), the PhD program AMX of École polytechnique and Min-
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[30] Torbjørn Rognes, Tomáš Flouri, Ben Nichols, Christopher Quince, and Frédéric Mahé.
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Supplementary Information

Supplementary Figures

(a) (b)

(c)

(d)

Supplementary Figure 1: Predicted effects of observed amino acids using an IND model
that neglects epistasis or a DCA model that incorporates pairwise epistasis. Models
trained on full genes. (a) Rank of native amino acid in the reference strain as compared
to all 20 possible amino acids. (b) DCA rank of major and minor allele for all sites that are
polymorphic at a >5%-threshold, among all 20 possible amino acids. (c) Distribution of DCA
scores of non-synonymous polymorphisms observed at frequencies >5% across the >60,000 strains
(blue) compared to mutations sampled from an IND model (yellow) or to random mutations (grey).
(d) ROC curves of different models for predicting polymorphisms observed at >5% frequency in
E. coli.
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(e) (f)
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(g) (h)

Supplementary Figure 2: Predicting the variability of amino-acid sites and amino-acid
sites that are conserved or polymorphic in E. coli. Comparison of the performances of
an IND and a DCA models trained on full genes. (a) Bivariate histogram of CDE and CIE
for all sites in the dataset. (b) Marginal distributions of CDE and CIE for all sites in the dataset.
(c) Bivariate histogram of CDE and CIE for sites that are conserved across >60,000 strains of E.
coli. (d) Bivariate histogram of CDE and CIE for sites that are polymorphic at a 5% threshold
across >60,000 strains of E. coli. (e) Distribution of CIE for conserved (green) and polymorphic
(blue) sites in E. coli. (f) Distribution of CDE for conserved (green) and polymorphic (blue) sites
in E. coli. (g) CIE for 1-SNP mutations. (h) CDE for 1-SNP mutations.
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(a)

(b)

(c)
(d)

Supplementary Figure 3: Simulations of synonymous and non-synonymous diversity oc-
curing on full genes. (a) Simulation of synonymous diversity. For each λ ranging from 2 to
5 with a 0.1 step-size, 20 simulations are run. The square loss between the amount of simulated
synonymous diversity and the real amount observed in the dataset is computed. The best λ pa-
rameter is 3.1. (b) Simulation of synonymous diversity. Average results of the 20 simulations of
synonymous diversity with λ = 3.1. We have focussed on sites where there are exactly four possible
1-SNP synonymous mutations. As we can see synonymous diversity is not saturated (sites with all
four possible synonymous codons observed in the dataset are rare). Simulations achieve very good
fit of the observed reality even with a basic model like JC69 that ignores differences in mutation
rates between nucleotide pairs. (c) Simulation of non-synonymous diversity. Bivariate histogram
of CDE and CIE for sites that are conserved in the simulated dataset produced with parameter λ =
3.1. Most of the sites cluster on the left peak of low CDE. However, as observed in the real dataset,
some of the sites where no mutation occurred have a high CDE. (d) Simulation of non-synonymous
diversity. Comparison of CDE distributions of real conserved sites (sites conserved across >60,000
strains in the dataset) and simulated conserved sites (sites where no mutation was simulated).
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Supplementary Figure 4: Quantifying the effect of the context in reducing amino-acid
site variability with models trained on full genes. Information gain quantifies the difference
between an amino-acid site variability across distant species and its potential variability in E. coli.
Sites that are variable across distant species (CIE≥1) but conserved in E. coli (CDE<1) are the
ones with the highest information gains (dark green distribution).
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Supplementary Figure 5: Epistasis observed in E. coli with models trained on full genes.
Mutational effect ∆Eij of observed double mutations with respect to the reference, plotted against
the sum ∆Ei + ∆Ej of the individual mutations.
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Supplementary Figure 6: ROC curves of different models for predicting polymorphisms
observed at >5% frequency in E. coli. Models trained on Pfam domains.
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(a) (b)

Supplementary Figure 7: CIE and CDE computed for 1-SNP mutations from the reference
codon with models computed on Pfam domains. The total number of amino acids that can
be observed with no more than 1 SNP never exceeds 9, corresponding to a maximal entropy value
of about 3.2. (a) CIE for 1-SNP mutations. (b) CDE for 1-SNP mutations.
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(a)
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(d)

Supplementary Figure 8: Simulations of synonymous and non-synonymous diversity oc-
curing on Pfam domains. (a) Simulation of synonymous diversity. For each λ ranging from 2
to 5 with a 0.1 step-size, 20 simulations are run. The square loss between the amount of simulated
synonymous diversity and the real amount observed in the dataset is computed. The best λ pa-
rameter is 3.6. (b) Simulation of synonymous diversity. Average results of the 20 simulations of
synonymous diversity with λ = 3.6. We have focussed on sites where there are exactly four possible
1-SNP synonymous mutations. As we can see synonymous diversity is not saturated (sites with
all four possible synonymous codons observed in the dataset are rare). Simulations achieve good
fit of the observed reality even with a basic model like JC69 that ignores differences in mutation
rates between nucleotide pairs. (c) Simulation of non-synonymous diversity. Bivariate histogram
of CDE and CIE for sites that are conserved in the simulated dataset produced with parameter
λ = 3.6. Most of the sites cluster on the left peak of low CDE. However, as observed in the real
dataset, some of the sites where no mutation occurred have a high CDE. (d) Comparison of CDE
distributions of real conserved sites (sites conserved across >60,000 strains in the dataset) and
simulated conserved sites (sites where no mutation was simulated).
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Supplementary Methods

Simulations: The simulations are based on Jukes-Cantor 1969 model (JC69). Two sets of sim-
ulations are performed. The first one is led on synonymous mutations in order to calibrate the
mutation rate parameter. Simulations of synonymous and non-synonymous mutations under se-
lection are then performed using the previously-inferred mutation rate parameter and DCA score
as a proxy for fitness cost of non-synonymous mutations. Synonymous mutations are supposed
to be neutral (DCA score of zero). Only sites where the reference codon is the major allele are
considered.

For each codon with exactly three synonymous 1-SNP mutations, a random number N is sam-
pled from a Poisson distribution of parameter λ: it corresponds to the total number of synonymous
mutations occuring at this site. N codons are then sampled with replacement from the three syn-
onymous mutations possible at this site (with equiprobability). Each of these codons is kept with
an acceptance probability of 50%. The number of different codons that are accepted at each site is
recorded. Its minimal value is one (the reference codon alone) and the maximal value it can take
is four (the reference codon and all three others synonymous mutations). 20 simulations for each λ
ranging from two to five with a 0.1 step-size are run to select the value of λ for which the average
number of synonymous mutations per site is the closest to what is observed in the >60,0000-strain
dataset.

Synonymous and non-synonymous mutations are then simulated for all the sites of the dataset.
For each site, a total number of mutations, N , is sampled from a Poisson distribution of parameter λ
(using the λ estimated with synonymous mutations). N codons are sampled with replacement from
the nine possible codons (with equiprobability). Each of these codons is kept with an acceptance
probability p = P(observing derived amino acid at locus i|a0\i )/(P(observing derived amino acid at

locus i|a0\i ) + P(observing reference amino acid at locus i|a0\i )), where P(observing a given amino

acid at locus i|a0\i ) is the conditional probability of observing this amino acid at locus i given the
amino-acid context of the reference strain, computed with DCA.
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