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Abstract:

We assessed the pan-cancer predictability of multi-omic biomarkers from haematoxylin and eosin

(H&E)-stained whole slide image (WSI) using deep learning and standard evaluation measures

throughout a systematic study. A total of 13,443 deep learning (DL) models predicting 4,481

multi-omic biomarkers across 32 cancer types were trained and validated. The investigated

biomarkers included genetic mutations, transcriptomic (mRNA) and proteomic under- and

over-expression status, metabolomic pathways, established markers relevant for prognosis, including

gene expression signatures, molecular subtypes, clinical outcomes and response to treatment.

Overall, we established the general feasibility of predicting multi-omic markers across solid cancer

types, where 50% of the models could predict biomarkers with the area under the curve (AUC) of

more than 0.633 (with 25% of the models having AUC larger than 0.711). Aggregating across the

omic types, our deep learning models achieved the following performance: mean AUC of 0.634

±0.117 in predicting driver SNV mutations; 0.637 ±0.108 for over-/under-expression of transcriptomic

genes; 0.666 ±0.108 for over-/under-expression of proteomes; 0.564 ±0.081 for metabolomic

pathways; 0.653 ±0.097 for gene signatures and molecular subtypes; 0.742 ±0.120 for standard of

care biomarkers; and 0.671 ±0.120 for clinical outcomes and treatment responses. The biomarkers

were shown to be detectable from routine histology images across all investigated cancer types, with

aggregate mean AUC exceeding 0.62 in almost all cancers. In addition, we observed that

predictability is reproducible within-marker and less dependent on sample size and positivity ratio,

indicating a degree of true predictability inherent to the biomarker itself.
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Introduction

With the advancements in computational pathology and ever-growing digitised datasets of tissue

samples accompanied with genomic, epigenomic, transcriptomic, and proteomic data, there is an

increasing interest in studying the alterations at different levels of the molecular landscape, with the

aim of better understanding oncogenesis and cancer progression [1]–[3]. In-depth analysis of the

associations between the molecular aberrations and the tumour microenvironment has enabled the

development of targeted therapies that changed the course of treatment in various cancer types,

such as breast cancer [4], lung cancer [5] and melanoma [6]. From a cancer prevention and screening

perspective, genetic profiling is now considered an important tool [7], especially for those who

possess a higher risk of developing cancer due to genetic factors. For instance, carriers of an altered

BRCA1/2 gene can benefit from preventative treatments, which in turn, is likely to reduce their risk of

breast cancer development [8].

Standard molecular and genomic profiling methods such as immunohistochemistry (IHC),

next-generation sequencing (NGS), and in situ hybridization (ISH) can accurately characterize the

molecular profile of a patient but may account for a large proportion of the laboratory delays in

routine clinical workflow as they take time to prepare, process, and analyse [9], [10]. Moreover, ISH

and NGS are expensive tests that may not be routinely accessible. In addition, test results and

accuracy of outcome may depend on the efficacy of equipment and training of biomedical scientists,

for which inter-expert variability constitutes another challenge. Reproducibility may also be a limiting

factor, given that there still exists a lack of consensus on the interpretation of test results for some

biomarkers, such as Human Epidermal Growth Factor Receptor 2 (HER2) using

immunohistochemistry [11]. As biomarker discovery continues to advance, the number of additional

tests is increasing, yielding even greater complexity and cost in histopathology workflows.

Meanwhile, there has been accumulating evidence suggesting that routinely available histology

images stained with hematoxylin and eosin (H&E) may contain information that can be used to infer

molecular profiles directly from tissue biopsies [12], [13]. Deep learning (DL), a newly emerging

image analysis tool, can effectively reveal differences in morphological phenotypes in malignancies

which are often too subtle to be determined visually. DL offers a means to gain more insight into the

underlying biological events associated with molecular changes, which in turn, enables the

prediction of molecular profiles directly from H&E-stained whole slide images [12]–[16]. DL-based

methods have been used to infer molecular alterations in various cancer types, including breast [10],

[17]–[19], colorectal [14], [16], [20], [21], lung [13], [22], prostate [23], liver [24], skin [25], and

thyroid [26]. In addition, several studies have shown the potential of DL systems to predict survival

outcome and therapy response [19], [27]–[31]. A review by Echle et al. provided an extensive review

of the clinically-relevant biomarkers predictable from routinely available histology images [32] .

Recent pan-cancer studies have explored the links between genetic/molecular alterations and

histomorphological features in H&E images and showed that in almost all malignancies deep learning

(DL) methods can be used to infer a plethora of biomarkers directly from routine histology, including

genetic mutations, transcriptomic profiles, tumour types, molecular signatures and subtypes and

conventional pathology biomarkers [12], [15], [16], [33], [34]. Expanding upon previous studies, we

conducted a large-scale, systematic study to test the predictability of biomarkers across the central
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dogma of molecular biology from genomic, transcriptomic, proteomic, metabolomic to various

clinically-relevant downstream biomarkers (e.g. standard of care biomarkers, molecular subtypes,

clinical outcomes, response to treatment) from routine diagnostic slides using publicly available data

from the The Cancer Genome Atlas (TCGA) project and standard evaluation measures throughout a

structured pipeline (Figure 1). Our study aims to show the general feasibility of profiling biomarkers

directly from H&E-stained whole-slide images (WSI) with deep learning across 32 cancer types,

including breast cancer, lung adenocarcinoma, colorectal cancer, gastric carcinoma, prostate cancer,

endometrial carcinoma and other major malignancies which have been studied comprehensively as

part of the TCGA project. The specifics of the pre-processing and prediction methods are available in

Extended Methods. In total, 13,443 models were trained across 4,481 distinct biomarkers, with the

following breakdown: 1,950 mutation driver single nucleotide polymorphism (SNV) markers, 1,030

transcriptome expression level markers, 576 proteomic expression level markers, 450 metabolomic

pathway markers, 270 gene signature and molecular subtype markers, 160 markers related to clinical

outcomes and treatment responses and 45 standard-of-care markers.

Overall, we found that multi-omic biomarkers and clinically-relevant features can be predicted

directly from histo-morphology. Detecting mutations from histology was mostly feasible for the

majority of genes tested and frequently mutated genes like TP53 were predictable across multiple

cancer types. To some degree, it was possible to predict the under-/over-expression status of many

genes at the transcriptome level. Similarly, detecting histomorphological changes that might be

associated with molecular alterations affecting the expression of proteins was feasible to a certain

extent. Overall, metabolomic biomarkers were somewhat less predictable compared to those of the

other omic types, but certain pathways were still detectable from routine histology images. We

observed that the differences in the tumour microenvironment can visually be determined with deep

learning, enabling the prediction of molecular subtypes directly from H&E-stained whole slide

images. From a clinical management perspective, our findings indicated that deep learning could

detect the footprints of well-established clinical biomarkers in histopathological images. Finally, we

showed that predicting certain markers with prognostic importance and response to treatment was

possible to some degree. The overview of each biomarker type’s feasibility can be seen in Results

while individual discussions of relevant markers and cancer types are available in Discussion.
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Figure 1: A: Graphical summary of the proposed study. We assess the general feasibility of predicting a plethora of biomarkers from

genomic, transcriptomic, proteomic, metabolomic to various clinically-relevant biomarkers (e.g. standard of care features, molecular

subtypes, clinical outcomes, response to treatment) using H&E-stained whole slide images and deep learning. B: Overview of the

pre-processing and training pipeline. A proprietary convolutional neural network (CNN) was used for predicting molecular profiles

from H&E images (see Extended Methods: Pre-processing pipeline and training details). A single CNN was end-to-end trained from

scratch for each biomarker. Each slide was parcellated into a set of 256x256 tiles and those that did not contain any tissue were

discarded. The remaining tiles were assigned with a ground-truth molecular profile (see Extended Methods: Biomarker acquisition).

C: The number of biomarkers per cancer type shown in a heatmap. Each row corresponds to a single biomarker type, namely from

top to bottom, driver SNV mutations, under/over-expression of transcriptomic genes, protein under/over-expression status,

metabolomic pathways, gene signatures and molecular subtypes, clinical outcomes and treatment responses, and finally, standard

clinical biomarkers.

Results

Multi-omic biomarkers and clinically-relevant features can be predicted directly from

histo-morphology: We showed the general feasibility of profiling multi-omic biomarkers, including

clinically-relevant prognostic markers using histo-morphological characteristics of standard

hematoxylin and eosin (H&E) whole-slide imaging (WSI). Overall, our deep learning models

performed significantly better than random based on a t-test with a p-value of 9.602e-1596

(practically 0). More than half of the models were validated at an Area Under the Curve (AUC) of

3

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.21.477189doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.21.477189
http://creativecommons.org/licenses/by-nc/4.0/


0.633 (Figure 2A-left). The observed AUC was greater than or equal to 0.711 for 25% of the models

and above 0.829 for 5%. The top 1% models (n=135) returned an AUC of at least 0.904. Since we

trained three models for each biomarker in a cross-validation configuration (see Extended Methods:

Experimental setup), it was possible to assess the intra-marker variability of model performance

(Figure 2A-middle, orange histogram). For the majority of the biomarkers, the predictability was

highly significant with the standard deviation being less than 0.1 AUC, and the difference between

the minimum and maximum performance being less than 0.2 AUC (Figure 2A-left, blue histogram).

These indicate the general feasibility of predicting most of the biomarkers to a good extent from

whole slide images with deep learning.

Most of the biomarkers showed better-than-random performance across all omics/biomarker types

(Figure 2B, Table 1). The lowest average performance was seen in the prediction of metabolic

pathways (AUC 0.564 ±0.081), and the highest performing models were from the standard clinical

features (AUC 0.742 ±0.120). These two biomarker types also demonstrated the lowest and the most

significant deviation, respectively. Performance reproducibility across different models of the same

biomarker type showed similar trends compared to the overall distribution (Figure 2D), with the

standard deviation for all omics being around 20% and a significant increase in variance considering

the minimum-maximum performance (Figure 2E). We observed highly significant performance

differences across almost all omics pairs, with pairwise t-tests returning p values of < 0.05 (Figure

2C).
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Figure 2: A - (Left) Histogram distribution and kernel density estimation of AUC values for all biomarkers. (Middle)

Cumulative AUC distribution shows the proportion of models that have AUC less than the shown markers at 0.5, 0.6, 0.7,

and 0.8. (Right): Standard deviation and min-max range distribution of model performance in AUC. B - Violin plots

showing the AUC distribution of each biomarker type. C - Statistical significance of performance differences across all

omics pairs, obtained via pairwise t-tests (no star: non-significance, *: p < 0.05, **: p < 0.01, ***: p < 1e-05). D - Histogram

distribution and kernel density estimation of AUC values for all biomarkers in each omic type. E - Standard deviation

(orange histogram) and min-max range distribution (blue histogram) of model performance in AUC.
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Biomarker type / omic Description Mean AUC (± std.)

Driver SNV mutations SNV mutations in driver genes associated with FDA-approved therapies
or known-relevancy for specific treatments.

0.634 ±0.117

Over/under-expression of
transcriptomic genes

Under- and/or over-expression status in driver genes at the
transcriptome level.

0.637 ±0.108

Over/under-expression of
proteomes

Under- and/or over-expression status of proteins encoded by driver
genes.

0.666 ±0.108

Metabolomic pathways Metabolic pathways under-/over-representation. 0.564 ±0.081

Gene signatures and
molecular subtypes

Biomarkers that are highly relevant for prognosis and targeted
therapies, including molecular subtypes and gene expression
signatures, as compiled in a related study [12].

0.653 ±0.097

Standard clinical
biomarkers

Established biomarkers that are routinely used in clinical management,
as described in a related study [12].

0.742 ±0.120

Clinical outcomes and
treatment responses

Clinical outcomes such as overall survival and treatment responses to a
therapy or drugs.

0.671 ±0.120

Table 1: Average performance and standard deviation for all omic types, alongside their short description.

Pan-cancer predictability of multi-omic biomarkers from histology: To show the performance of

biomarker prediction per cancer type, we plotted the distribution of AUC values for all studies in

Figure 3 and provide the average performance with standard deviations in Extended Data Table 1.

Overall, all of the studies showed a significantly better performance than random (statistical

significance with respect to pairwise t-tests is indicated on top of each violin plot in Figure 3A). The

lowest general performance was obtained in uterine carcinosarcoma (UCS) with a mean AUC of 0.586

(±0.158), and the highest performing models were in mesothelioma (MESO), where an average AUC

of 0.693 (±0.137) was measured. The standard deviation within each group ranged between 0.086

and 0.164, with pheochromocytoma and paraganglioma (PCPG) and glioblastoma multiforme (GBM)

showing the lowest and largest intra-cancer variation, respectively. Variability across different folds of

each biomarker was mostly stable, with standard deviations centring around 0.05 in most of the

studies (Figure 3A-Bottom).

To assess how predictability changes for each malignancy depending on the type of biomarker, we

analysed the performance and deviation of each cancer-omic pair (Figure 3B). In general, almost all

studies showed a better-than-random average performance across all biomarker types, except for

metabolomic pathways in glioblastoma multiforme (GBM). Performance differences were mostly

significant when the AUC values in each subgroup were compared to random predictions with the

same underlying distribution (based on pairwise t-tests returning p values of at least 0.05).

Intra-group performance was highly stable with more than half of the sub-groups having a standard

deviation of less than 10%. The largest variance was observed in the prediction of driver mutations in

uterine carcinosarcoma (UCS) and clinical outcomes in kidney chromophobe (KICH), both with a

standard deviation of 0.23.
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Among the cancer studies targeting standard clinical features, kidney renal papillary cell carcinoma

(KIRP, AUC 0.805 ±0.13, p < 0.01) and stomach cancer (STAD, AUC 0.805 ±0.084, p < 1e-05) had the

top average performance, followed by kidney renal clear cell carcinoma (KIRC), breast

adenocarcinoma (BRCA), and colon cancer (COAD), each with a mean AUC over 0.7. For genomic,

transcriptomic, and proteomic biomarkers, the performances within individual cancer types were

primarily consistent with their corresponding general trend. The highest performances were

observed in thyroid carcinoma (THCA) and sarcoma (SARC) for the prediction of proteomic

expression status with average AUCs around 0.78; in lower-grade glioma (LGG) and testicular germ

cell tumours (TGCT) for the predictability of transcriptomic biomarkers with AUCs slightly above 0.7;

and in kidney renal clear cell carcinoma (KIRC), pheochromocytoma/paraganglioma (PCPG), and

thyroid carcinoma (THCA) for the detection of genetic alterations in driver genes with average AUCs

ranging from 0.705 to 0.779. Multiple cancer types showed a relatively good performance with AUCs

above 0.7 especially when considering the predictability of the clinical outcomes and treatment

responses, where the performances of such predictions were among the highest across studies.

Among them, the most notable studies were kidney renal papillary cell carcinoma (KIRP),

adrenocortical carcinoma (ACC), glioblastoma multiforme (GBM), and kidney chromophobe (KICH)

with average AUCs reaching as high as 0.777. Cancer-specific performance for the prediction of

metabolomic pathways was on par with its overall low-performance, with none of them yielding an

average AUC above 0.6.
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Figure 3: A - (Top) Violin plots showing the AUC distribution per cancer type. Plots are sorted by average intra-study AUC.

DLBC, UVM, and THYM were excluded from this analysis due to only constituting one to seven valid targets across all

biomarker types. (Bottom) Violin plots showing the standard deviation distribution of model performance across different

folds of each biomarker (in the same order as in A). B - Average performance (AUC) across all cancer studies, confounded by

biomarker type. More red colours indicate higher AUC. Asterixis atop each violin plot and within heatmap cells indicate the

statistical significance of the performance difference between AUC values of a subgroup against randomly sampled values of

the same underlying distribution (no asterix: not significant (n.s.), *: p < 0.05, **: p < 0.01, *** p < 1e-05). The coding

introduced in Figure 2 is used to shorten the names of biomarker types.

Feasibility of predicting genetic alterations from histology: Various research studies, including the

recent pan-cancer studies, have shown that mutations can be detected from histomorphological

features with deep learning [12], [15]. In our study, we extend the previous work on detecting

mutations to a total of 1,950 genes across all tested cancer types. We focused on driver genes that

are associated with disease-specific therapies approved by the FDA or are known to be relevant for

specific treatments based on evidence from clinical guidelines or well-powered studies with

consensus from experts in the field [35]. In our experiments, we used the genomic profiles available
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from the TCGA project (Extended Methods: Biomarker acquisition). A case was considered

“mutated” if it contained at least one SNV mutation; otherwise, it was considered “wild-type”.

Genetic alterations were significantly predictable across most of the investigated cancer types (Figure

3), with a mean AUC of 0.636 (±0.117). Scatter plots showing the performance of all models trained

to predict genetic alterations in all cancer types are provided in Extended Data Figure 1. The

performance of models across a selected set of malignancies can be seen in Figure 4. More than 40%

of the mutations were detectable with an AUC of at least 0.65, and considering the highest

performing mutations in each cancer type, almost all major malignancies had at least 10 mutations

that were predictable with an AUC of 0.70 or above. Among them, endometrial carcinoma had the

highest number of predictable mutations (112 genes). It was followed by colon cancer (62 genes),

gastric adenocarcinoma (58 genes), skin melanoma (29 genes), lung adenocarcinoma (28 genes), and

breast cancer (26 genes). The performance for the top 10 mutations ranged from 0.800-0.896 in

endometrial carcinoma, 0.793-0.847 in gastric adenocarcinoma, 0.802-0.916 in renal clear cell

carcinoma, 0.786-0.840 in colon adenocarcinoma, 0.784-0.858 in melanoma, 0.758-0.898 in lung

adenocarcinoma, 0.761-852 in bladder urothelial carcinoma, and 0.754-0.891 in breast cancer.

Among all the tested mutations, the top-performing ones were NUMA1 and JAK1 in kidney renal

clear cell carcinoma, PDGFRB and BCL6 in lung cancer, IRS2 in endometrial carcinoma, and GNAS in

breast cancer, each with an AUC of at least 0.89. A large number of genes were highly predictable

across multiple cancer types. There were 117 genes with identifiable mutation status in at least two

malignancies with a minimum AUC of 0.7. Notable ones that were predictable in multiple cancers are

shown in Figure 10. Alterations in TP53 were detectable in almost all cancer types, with 7 of them

having an AUC of at least 0.7 and 14 of them showing AUCs greater than 0.65, reaching up to 0.841

for brain lower grade glioma, up to 0.785 for breast cancer and up to 0.771 for endometrial cancer.

Other genes with a cross-cancer AUC of at least 0.7 were BAP1 (mutations predictable in eight

cancers), PRDM16 and JAK1 (mutations predictable seven cancers), and CDH1 (mutation predictable

five cancers). CDK12, RB1, MTOR, NOTCH2, UBR5, and KMT2A, are also worth mentioning with their

mutations being detectable in at least ten different cancers with a mean AUC of 0.65 (Figure 5).
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Figure 4: Scatter plots showing the performance of each model trained to predict biomarkers of different types/omics across

selected cancer types. Each row corresponds to a single biomarker type, namely from top to bottom, driver SNV mutations,

under/over-expression of transcriptomic genes, protein under/over-expression status, metabolomic pathways, standard

clinical biomarkers, gene signatures and subtypes, and finally, clinical outcomes and treatment responses. Whilst only 4

malignancies per biomarker type were shown here, Extended Data Figures 1-7 show scatter plots showing the individual

model performance across all cancer types for each biomarker type/omic. A two-sided t-test was applied to the prediction

scores of each model to assess the statistical significance, and the corresponding p-values were corrected for false discovery

rate (FDR). The p values (y-axis) of each plot were inverted log-transformed for visualisation purposes. P values smaller than

1e-05 were set to 1e-05 to avoid numerical errors during transformation. The statistical significance threshold of 0.05 is

marked with a dashed line. The x and y axes are scaled to the same range in all plots. Marker shading indicates the

intra-biomarker standard deviation, where lighter colours correspond to a deviation close to 0.

Figure 5: Top: Scatter plot showing the AUC values of predicted genetic alterations that appear in at least two cancer types.

Areas outlined with blue and green lines mark the zones with high predictability and frequency of appearance. The green

zone corresponds to the biomarkers with an AUC of at least 0.65 and a frequency of 6 and above. For blue, AUC and

frequency are limited at 0.6 and 4, respectively. Bottom: List of most predictable targets that appear in at least 3 and 7 studies

with an average inter-study AUC of 0.7 or 0.65, respectively. Whiskers show the variability of AUC across studies. The size of a

marker represents the frequency of a biomarker (independent of its AUC). The exact number of appearances of a biomarker

across studies is further provided in the secondary x-axis.
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Feasibility of inferring over/under-expression of transcriptomes from diagnostic histology slides:

Over or under-expression of a driver gene can cause altered phenotypes, which is likely to affect

cancer development in multiple ways. Analysis of gene expressions is a key to better understanding

the underlying cancer mechanisms and potentially help with improving cancer diagnosis and drug

discovery [36]. While it is already known that genomic alterations could potentially be detected from

histomorphology with deep learning, studies to understand the extent of predictability at

transcriptome and proteome levels have been rather limited. Recently, Schmauch et al. showed that

RNA-Seq profiles are correlated with histo-morphological features detected via deep learning in an

annotation-free setup [16]. Our study took a more direct and comprehensive approach and trained

deep learning models to predict the under- and/or over-expression status in driver genes, using the

transcriptomic profiles available from the TCGA project (see Extended Methods: Biomarker

acquisition for details).

A total of 1030 genes had enough samples to study the predictability of under and over-expression at

the transcriptomic level. 97 and 933 of the genes had either under or over-expression status

available, respectively. The gene expression status was predictable across most of the investigated

cancer types (Figure 3) with a mean AUC of 0.637 (±0.108). The average performance was slightly

lower for the under-expressed genes (mean AUC 0.633 ±0.115). Scatter plots showing the

performance of all models trained to predict the over/under-expression of transcriptomic genes in all

cancer types are provided in Extended Data Figure 2 and the performance of models across a

selected set of malignancies can be seen in Figure 4. Expression status in at least 40% of the genes

was detectable with an AUC of 0.65 or above. Esophageal carcinoma and testis cancer were the

malignancies with the highest number of genes with a predictable expression status (a total of 28 for

both) considering an AUC level of 0.7. It was followed by ovarian cancer (18 genes) and

adrenocortical carcinoma (16 genes). Several cancer types had at least ten genes with transcriptome

expression status predictable at an AUC level of 0.7. The average AUC for the top-performing genes

ranged from 0.812 to 0.911 in testicular germ cell tumours, 0.766-0.846 in esophageal carcinoma,

0.741-0.908 in adrenocortical carcinoma, 0.729-0.788 in ovarian cancer, 0.709-0.808 in melanoma,

and 0.707-0.802 in kidney renal papillary cell carcinoma.

Almost all of the top-performing markers were gene over-expressions, with PMS2 in thymoma;

CARD11, LASP1, STIL, POLE, KMT2C, and CLIP1 in testis cancer; ERC1, WRN, OLIG2, FANCC, and ACSL6

in adrenocortical carcinoma; and SOX2 and NDRG1 in esophageal carcinoma leading in performance

with AUCs ranging from 0.832 to 0.911. Considering the predictability of under-expressed genes, the

most notable ones were RHOA in thymoma (AUC 0.908 ±0.05), LSM14A, THRAP3, and MTOR in the

brain lower-grade glioma (AUCs ranging from 0.785 to 0.818) and BAP1 in mesothelioma (AUC 0.818

±0.084). The expression status of certain genes was highly predictable across multiple cancer types.

There were 41 genes with the expression status being detectable in at least two cancers with an AUC

of 0.7 or above. Among them, over-expression of KMT2C had a consistently high prediction rate with

AUCs ranging from 0.733-0.837 in kidney renal papillary cell carcinoma, ovarian serous

cystadenocarcinoma, and testis cancer. Other notable genes that were detectable across multiple

cancer types at over-expression levels were ERC1, CRTC3, LASP1, CDK4, SOX2, ERCC5, BCL6 and the

under-expression status of RABEP1, each being predicted in three or more different cancers with

AUCs reaching up to 0.908.
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Feasibility of predicting proteome expression level status with deep learning: As the next step in

our multi-omics pan-cancer study, we assessed the ability of deep learning for detecting

histomorphological changes that might be associated with the alterations in the expression of

proteins. Towards this end, we used the proteomic profiles available from the TCGA project (see

Extended Methods: Biomarker acquisition) and trained models to predict the protein over and/or

under-expression status associated with driver genes. It is worth noting that association with a gene

in this context refers to the encoding of a protein by that gene and we use “associated with/encoded

by” interchangeably throughout the paper.

A total of 576 genes were qualified to evaluate the predictability of their corresponding proteomic

expression status. In contrast to its transcriptomics counterpart, the distributions of the under and

over-expressed proteomes were more balanced, with 309 and 267 of the genes being associated

with either over or under expression of proteomes, respectively. We achieved an average AUC of

0.666 (±0.107), with the under-expression status being slightly less predictable on average (mean

AUC 0.662, ±0.105) compared to its over-expressed counterpart (mean AUC 0.669 ±0.109). All the

investigated cancer types had a statistically significant performance (Figure 3). Scatter plots showing

the performance of all models trained to predict the over/under-expression status of proteomes

encoded by driver genes in all cancer types are provided in Extended Data Figure 3 and the

performance of models across a selected set of malignancies can be seen in Figure 4.

The expression status prediction of almost all genes performed above random, with more than half

of them being detectable with an AUC of at least 0.65 and over 30% of them further achieving an

AUC above 0.7. Breast invasive carcinoma had the highest predictability rate, where the expression

status of 37 genes was detectable with an AUC of at least 0.7. It was followed by kidney renal clear

cell carcinoma and low-grade brain glioma (25 genes). Several cancers had at least ten genes with

proteome expression status predictable at an AUC level of 0.7. The average AUC for these genes

ranged from 0.787–0.866 in breast invasive cancers, from 0.769-0.952 in brain lower grade glioma,

from 0.733-0.800 in kidney renal clear cell carcinoma, from 0.727-0.855 in stomach adenocarcinoma,

and 0.721-0.827 in colon cancer.

The expression level status of a large number of proteins encoded by driver genes is highly

predictable, with TFRC, ATM, and PIK3CA in low-grade brain glioma; NRAS, FOXO3, MYC, and TP53 in

renal papillary cell carcinoma; CDKN1B in head and neck squamous cell carcinoma; and MYC in

sarcoma, exhibiting the top performance with AUCs ranging from 0.835 to 0.974. Multiple

under-expressed proteins were also predictable to a great extent, the top-performing ones being

CASP8, MET, BCL2, and SETD2 in breast cancer; AR and TFRC in gastric adenocarcinoma; and VHL in

lung cancer with AUCs ranging from 0.814 to 0.866. It was possible to predict the expression status of

certain genes at a consistently high performance in multiple malignancies. There were 55 genes with

the expression status being predictable in at least two cancers with a minimum AUC of 0.7. Among

them, over-expression of MYH11 was detected in 7 out of 11 cancer types with AUCs ranging from

0.705 to 0.809. Other notable genes associated with protein over-expression were TFRC, TP53,

MSH2, MSH6, ARID1A, RAF1, and NRG1, showing a high-predictability in at least 5 malignancies, with

AUCs reaching 0.942. Under-expression of proteomes encoded by MYH1, NF2, VHL, and AR were also

predictable in at least 4 cancers, with AUCs reaching 0.856.
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One gene that is worth noting is TP53, whose molecular alterations were already shown to be

detectable in almost all malignancies. TP53 is associated with the expression of p53 protein, which is

known to cause poor prognosis and is correlated with advanced stage and high-grade cancer in

kidney renal papillary [37]. We found that the p53 protein over-expression was consistently

predictable in six of the eight tested cancers, including renal cell carcinomas, lower-grade brain

glioma, and endometrial cancer, with AUCs ranging from 0.672 to 0.835. TP53 under-expression data

was only available for breast cancer and lower grade brain glioma, and we acquired AUCs of 0.739

and 0771 for those malignancies, respectively.

Overall, the predictability of the protein expression status (mean AUC 0.666) appears to be

significantly better (p-value < 1e-05) than that of transcriptome (mean AUC 0.637). However, both

omic types had a comparable number of highly-predictable genes, i.e. 204 and 198 genes have an

AUC of 0.7 or above, in the transcriptomic and proteomic cohorts, respectively. This might indicate

that the overall lower performance of transcriptome expressions may be associated with this omic

type having almost twice as many genes compared to its proteomic counterpart, and most of these

genes have a relatively low predictability performance. This trend can also be observed in the

distribution plots (Figure 2), where most of the values in both omic types are clustered around a

similar median but the distribution of the transcriptomic cohort exhibits a longer tail that stretches

well below the random performance of 0.5.

Feasibility of inferring metabolomic pathway characteristics from histology: We assessed the

capability of our deep learning method for inferring metabolic pathway under-/over-representation

directly from histopathology as our final target in the omic landscape (see Extended Methods:

Biomarker acquisition). Overall, metabolomic characteristics were less predictable than those of the

other omic types, yielding an average AUC of 0.564 (± 0.081). Despite 87% of the pathways having a

non-random performance, only 9% of them were likely to be predictable among a total of 450 tested

targets (i.e. based on an AUC > 0.65). Considering the individual performance of each metabolomic

pathway, we found that nucleotide metabolism in testicular germ cell tumours and pancreatic cancer;

nuclear transport in colon adenocarcinoma, skin cutaneous melanoma, and lung cancer;

mitochondrial transport and histidine metabolism in ovarian cancer were highly predictable, with

AUCs ranging from 0.720 to 0.847. Similarly, it was possible to predict certain pathways involved in

beta-oxidation of fatty acids directly from histomorphology to a certain degree (AUC > 0.65) for

another four cancers, including thyroid carcinoma, liver carcinoma, ovarian cancer, as well as

adenocarcinomas of pancreas and stomach. Scatter plots showing the performance of all models

trained to predict metabolomic pathways in all cancer types are provided in Extended Data Figure 4

and the performance of models across a selected set of malignancies can be seen in Figure 4.

Feasibility of predicting standard clinical biomarkers with deep learning: We tested the feasibility of

deep learning to predict the established biomarkers that are routinely used in clinical management,

as described in a related study by Kather et al. [12]. Towards this end, a set of standard of care

features was compiled by following the biomarker acquisition approach in [12], including data for

tumour grade, MSI status (in colorectal and gastric cancer), histological subtypes, hormone receptor

status (in breast cancer), and Gleason sum (refer to [12] for an extensive list of all biomarkers and see

Extended Methods: Biomarker acquisition for details).
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Among all investigated omics and features, standard pathology biomarkers showed the highest

predictability performance with an average AUC of 0.742 (±0.120). None of the biomarkers had a

performance worse than random (i.e. all AUCs > 0.5) and almost 30% of them could be inferred with

an AUC of above 0.8, a sign of very high predictability. Scatter plots showing the performance of

standard clinical biomarkers in all cancers are provided in Extended Data Figure 5 and the

performance of models across a selected set of malignancies can be seen in Figure 4. Histological

subtypes were in general highly predictable for breast cancer, renal cell carcinomas, liver cancer and

gastric cancer. Clear cell and chromophobe subtypes of renal cell carcinoma had the most

remarkable performance, reaching up to an AUC of 0.999. Two main histological types of breast

cancer, i.e. invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) were also highly

detectable from whole slide images, with AUCs ranging from 0.759 to 0.908. Our models were also

able to predict hormonal receptor status in breast cancer, with AUCs of 0.806 and 0.744, for ER and

PR, respectively. Notably, multiple clinical biomarkers important for liver cancer could also be

accurately inferred from histology, including growth patterns (AUC up to 0.862) and the status of

non-alcoholic fatty liver disease (NAFLD, AUC 0.826 ±0.054). Another highly predictable biomarker

was MSI status, which was detectable in both colon and gastric cancer with an AUC of up to 0.773.

Feasibility of inferring molecular subtypes and gene expression signatures from routine images: To

evaluate the extent of our deep learning model to detect well-established molecular subtypes and

gene expression signatures of cancer from whole slide images, we compiled a set of well-known

features that have clinical and/or biological significance, by closely following the experimental details

in [12]. This includes features that are highly relevant for prognosis and targeted therapies, including

molecular subtypes and clusters, immune-related gene expressions, homologous recombination

defects, cell proliferation, interferon-γ signalling and macrophage regulation and

hypermethylation/mutation [38]–[40] (please refer to [12] for an extensive list of all features and

(see Extended Methods: Biomarker acquisition for details).

Overall, molecular subtypes and gene signatures were more predictable than single-gene mutations

and alterations at transcriptome and metabolome levels, with an average AUC of 0.653 (± 0.097).

Almost half of the features were detectable at an AUC level greater than 0.65. Scatter plots showing

the performance of all models trained to predict molecular subtypes and gene expression signatures

in all cancer types are provided in Extended Data Figure 6 and the performance of models across a

selected set of malignancies can be seen in Figure 4. The most predictable features were observed in

breast cancer (18) and the adenocarcinomas of the stomach (16) and colon (14). Our method was

capable of inferring TCGA molecular subtypes in multiple cancer types, including kidney renal

papillary cell carcinoma (AUC up to 0.884 ±0.085), gastric cancer (AUC up to 0.875 ±0.048), lung

squamous cell carcinoma (AUC up to 0.861 ± 0.015), breast cancer (AUC up to 0.859 ± 0.028), kidney

chromophobe (AUC up to 0.852 ± 0.053), lung adenocarcinoma (AUC up to 0.836 ± 0.043), and colon

cancer (AUC up to 0.821 ± 0.084). Notably, the average predictability for PAM50 subtypes in breast

cancer (i.e. Basal, LuminalA, LuminalB, Her2, Normal) was 0.752 (± 0.080), reaching up to an AUC of

0.871 (±0.015) for the Basal subtype. Consensus molecular subtypes in colon cancer (i.e. CMS1,

CMS2, CMS3, CMS4) were also highly detectable with an inter-subtype average AUC of 0.763

(±0.068), reaching up to 0.821 (±0.083) for CMS1. Cell proliferation and hyper-methylation were also

among well-predicted features, especially in cancers of breast, stomach, colon, and lung, with AUCs

reaching up to 0.854. Immune subtypes were also consistently predictable across different
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malignancies, including liver carcinoma, breast cancer, head and neck squamous cell cancer, gastric

adenocarcinoma, colon cancer, and lung adenocarcinoma, with AUCs reaching up to 0.799.

Feasibility of inferring clinical outcomes and treatment response from diagnostic histology slides:

Prognostic information refers to the information related to patient survival and outcome. It is highly

vital for day-to-day patient management operations. Previous work has focused on developing

prognostic models from routine clinical data, the standard of care features, histopathological

assessment, molecular profiling, and more recently, morphological features acquired via deep

learning [30], [31], [41]–[43]. In our study, we explored the end-to-end predictability of clinical

outcomes directly from whole slide images across multiple cancer types by treating the clinical

outcome endpoints such as overall survival (OS), disease-specific-survival (DSS), disease-free-interval

(DFI), and progression-free interval (PFI) as potential prognostic biomarkers. We further expanded

our analysis towards detecting treatment responses directly from H&E images to assess whether

deep learning models can identify histo-morphological fingerprints that are correlated with the

outcome of a therapy or drug. Each target of interest was systematically binarised into actionable

biomarkers by taking multiple clinical and prognostic features into account [44] (see Extended

Methods: Biomarker acquisition for details).

Overall, the predictive performance of clinical outcomes and treatment responses was relatively high

compared to other biomarker types and omics, with a mean AUC of 0.671 (±0.120). Almost 40% of

the tested targets were predictable at an AUC level of 0.7 or above. The majority of the investigated

cancer types had a statistically significant performance (Figure 3). We acquired the best overall

performance in glioblastoma multiforme, adrenocortical carcinoma, and kidney chromophobe with

mean AUCs of 0.77. They were followed by renal papillary cell carcinoma, mesothelioma, thyroid

carcinoma, prostate cancer, renal clear cell carcinoma, and esophageal carcinoma, with overall AUCs

ranging from 0.731 to 0.76. Residual tumour status was the most consistently predicted biomarker,

with AUCs reaching up to 0.821 in endometrial carcinoma and 0.795 in colon cancer. DSS was

another highly predictable clinical outcome, which was detected in 12 different cancers with an AUC

of at least 0.7. DFI and OS were the other notable biomarkers that were predictable across 7 to 10

diverse cancers, respectively.

Scatter plots showing the test of the performance of all models trained to predict clinical outcomes

and treatment responses in all cancer studies are provided in Extended Data Figure 7 and the

performance of models across a selected set of malignancies can be seen in Figure 4. OS in kidney

chromophobe, glioblastoma multiforme, thyroid carcinoma, and adrenocortical carcinoma; DFI in

esophageal carcinoma and renal clear cell carcinoma; DSS in glioblastoma multiforme; residual

tumour status in endometrial carcinoma, and treatment response in renal papillary cell carcinoma

were among the top-performing targets with AUCs ranging from 0.815 to 0.924. Despite drug

responses being somewhat less predictable compared to clinical outcomes, cisplatin in cervical, testis

and gastric cancers; temozolomide in lower-grade glioma; and paclitaxel in breast cancer had

relatively high performance of AUCs greater than 0.75.

16

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.21.477189doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.21.477189
http://creativecommons.org/licenses/by-nc/4.0/


Discussion

This paper assessed the general feasibility of predicting a plethora of biomarkers from a pan-cancer

multi-omic perspective, using deep learning and histo-morphological features extracted from H&E

stained routine diagnostic slides. The histo-morphological characteristics were shown to be

predictable in inferring the biomarkers across the omics spectrum from genomics (genetic

alteration), transcriptomics (mRNA over- and under-expression), proteomics (protein over- and

under-expression), metabolomics (pathway over- and underrepresentation), as well as

clinically-relevant outcomes including prognostic, standard of care and phenotype markers, and

response to treatment (Results: Multi-omic biomarkers and clinically-relevant features can be

predicted directly from histo-morphology). In addition, we observed varying predictability

depending on the biomarker type.

Specific to genomic and standard clinical/prognostic markers (e.g. TP53 and molecular subtyping), we

observed high predictability across multiple cancer types (Discussion: Feasibility of predicting

genetic alterations from histology and Results: Feasibility of inferring molecular subtypes and gene

expression signatures from routine images). The histo-morphological characteristics were shown to

be predictable in inferring the multi-omic biomarkers across major cancer types (Results: Pan-cancer

predictability of multi-omic biomarkers from histology). We observed varying predictability

depending on the cancer type. The prediction of a biomarker appeared to be reproducible, with the

predictor performing comparable (as indicated by AUC) (Results: Multi-omic biomarkers and

clinically-relevant features can be predicted directly from histo-morphology and Figure 2A).

The performance of a biomarker did not seem to depend on the putative confounders, such as the

size of the dataset and the ratio of positive-to-negative samples (Extended Data Figure 8). On the

other hand, they still seemed to be rather important for predictability, but not as high as the

combined impact of the biomarker types (Extended Data Figure 9). Based on the results of the same

experiment, the predictability was also somewhat influenced by the cancer types. Comparing various

factors: biomarker type, cancer type and the biomarker in question seem to be the strongest factors

contributing to the predictability of the biomarker.

Clinically-relevant genomic markers that are significantly predictable and widespread: Identifying

patients with certain mutations are highly important for clinical management and developing

targeted therapies [12]. In our studies, we found that detecting alterations from histology was mostly

feasible for the majority of genes tested. Among others, TP53 mutations are known to be one of the

most commonly identified alterations in multiple cancer types ranging from 10% in haematological

malignancies to almost close to 100% in high grade serous ovarian carcinomas [45]. Its germline

variant can cause Li-Fraumeni syndrome, which is associated with a wide range of cancers, including

soft tissue sarcoma, breast cancer and melanoma [35]. Tumours with TP53 mutations are likely to be

poorly differentiated and can be linked to higher grade cell changes [15]. Alterations in EP300, while

can be seen in diverse cancers including colon, lung, breast, stomach, are associated with increased

tumour burden and antitumour immune activity and could potentially be a predictive biomarker for

immunotherapy response in certain cancers [46]. BAP1 is a known tumour suppressor and is

associated with improved prognosis in certain cancers, such as mesothelioma [47]. Recent studies

show that detection of BAP1 mutation can potentially be useful for the development of targeted
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treatment strategies in clear-cell renal cell carcinoma [48]. MTOR is involved in the mechanistic

target of rapamycin (mTOR), a protein kinase that promotes tumour growth and metastasis when

activated [49]. MTOR mutations can serve as biomarkers for predicting tumour responses to mTOR

inhibitors, which are already being used to treat human cancer [50]. One of the highly predicted

genes, GNAS, is known to promote cell proliferation and migration in breast cancer when expressed

at high levels, and thus, can potentially be used as a therapeutic target [51].

Clinically-relevant metabolomic pathways that are significantly predictable: Upstream alterations

affecting the expression of metabolic enzymes or their regulatory proteins can lead to cell

metabolism changes that promote oncogenic activities including malignant cell growth and

proliferation [52]. There is growing evidence indicating that the genetic aberrations in signalling

pathways lead to metabolic dysregulation that promotes oncogenesis and disease progression [53]

(also see [52] for an extensive list of transcriptomic and metabolomic studies conducted in various

cancer tumours for this endeavour). Identification of metabolic changes in tumours and how they

differentiate from normal cells can help uncover the complex mechanisms that control the

anticancer drug response and potentially yield better prediction of therapeutic outcomes [52],

[54]–[56]. Despite many studies targeting tumour metabolism, the detectability of metabolic

activities from WSIs has been highly limited. One recent study used a deep-learning model to predict

the activities of ten canonical biological pathways in breast cancer and found that the p53, PI3K, and

cell cycle pathways are predictable to a certain degree (AUC > 0.65). In our study, metabolomic

biomarkers were overall less predictable than the other omics of the molecular landscape. We found

that the nuclear transport pathway can be detected in the adenocarcinomas of the lung and colon

and in skin melanoma. This pathway is a critical part of normal cell activity, and abnormalities in this

mechanism have been identified in a variety of tumours [57]. Another highly predictable pathway

was nucleotide metabolism, which is known to support the uncontrolled growth of tumours when

increased [58]. Fatty acid beta-oxidation is a well-known metabolic pathway that is dysregulated in

tumours [59]. We found that in several different cancer types, it was possible to predict this pathway

directly from histology.

Predictability of standard of care markers and comparison to the relevant studies: Our findings

indicated that deep learning can potentially detect the footprints of well-established standard of care

clinical biomarkers in histopathological images. This marks another important step in pursuit of

achieving end-to-end detection systems from the histology in the current standard practice, which

can potentially accelerate clinicians in patient management and accelerate diagnosis. Our results

mostly agree with those obtained in the recent pan-cancer study by Kather and colleagues [12] and

we observed a performance improvement in 71% of the biomarkers investigated in both studies

(considering average AUCs for each feature-cancer pair).

Predictability of molecular subtypes and gene expression signature; and comparison to the

relevant studies: We found that the differences in the tumour microenvironment and regional

architecture can visually be determined with deep learning, enabling the prediction of standard

molecular subtypes directly from H&E-stained whole slide images. Considering the importance of

these features in cancer treatment, accurate predictability from histology can help develop more

patient-centric treatments. Similar findings have been reported in the recent pan-cancer study

performed by Kather and colleagues [12], where they observed that high-level molecular features
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are more detectable than genetic alterations, with breast cancer, lung adenocarcinomas, gastric

cancer, and colon cancer exhibiting the highest predictability. The molecular changes associated with

these features can potentially have a much greater impact on the cellular morphology as compared

to the alterations at the gene level, which in turn can be associated with the improved detection

using deep learning [12]. Given the similarities between the two studies, our results can confirm

their findings and provide more comprehensive evidence for the feasibility of detecting molecular

subtypes from histology. In addition, our models overall showed much greater predictability for 72%

of the biological processes investigated in both studies, notable ones being TCGA molecular

subtypes, immune subtypes, macrophage regulation, dendritic cell activation, PAM50 subtypes of

breast cancer, consensus colorectal subtypes of colon cancer, and proliferation.

Clinical outcomes and treatment responses that are significantly predictable: Classification of

residual tumours is a critical stage for the course of treatment and is considered an important

prognostic biomarker [60]. In our analysis, we cast this classification task as the binary prediction of

the existence of residual tumour (positive class). We found that deep learning could detect the

(no-)occurrence of residual tumours in multiple cancers. This predictability might indicate that some

visual clues correlated with complete remission after treatment are already present in

histomorphology at the time of diagnosis. Other clinical outcomes, such as overall survival (OS) and

disease-specific survival (DSS), were also predictable to a certain extent. However, it is worth noting

that the accurate definition of clinical outcomes is based on multiple events known at different times

during treatment. As a result, their usability should be carefully assessed, especially for the cancer

types that need longer follow-up times, have a small cohort size or have a limited number of events

[44]. We also found that responses to some drugs such as cisplatin, temozolomide and paclitaxel

were highly detectable from histology. Overall, our findings show the potential of deep learning to

predict specific prognostic outcomes and treatment responses at diagnosis, which opens up many

opportunities for investigating the correlation between disease outcome and histomorphological

features.

Conclusion

The histo-morphological characteristics were shown to be informative for inferring the biomarkers

across the omics spectrum from genomics (genetic alteration), transcriptomics (mRNA over- and

under-expression), proteomics (protein over- and under-expression), metabolomics (pathway over-

and underrepresentation), as well as well-established clinically-relevant biomarkers including

prognostic, standard of care and phenotype markers, and response to treatment. The multi-omic

biomarkers were predictable across all cancer types with varying degrees of performance. The

predictability was also repeatable within-marker. Confounding factors such as positivity ratio and

sample size surprisingly did not influence the predictability a lot, indicating that there may exist

inherent detectability associated with histomorphology. Comparing various factors, biomarker type,

cancer type, and the biomarker itself in question seem to be the most substantial factors

contributing to the predictability.

Going forward, the questions around the specific mechanism of biomarker detectability, such as the

predictive pattern and how it is conserved across the population(s), merit further research. While
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this study has elucidated early observations on the factors determining a biomarker’s predictability,

further understanding would be necessary before the mainstream adoption of such a technique in

day-to-day clinical settings.

Having explained the mechanism as well as the risk and the opportunity associated with multi-omic

biomarker profiling from standard tissue imaging, the potential of applying such approaches in

clinical management is enormous.

Extended Methods

Dataset: We conducted our experiments on the data provided from The Cancer Genome Atlas

(TCGA) project, which was retrieved via the Genomic Data Commons (GDC) Portal

(https://portal.gdc.cancer.gov/). The TCGA dataset consisted of 10,954 hematoxylin and eosin

(H&E)-stained, formalin-fixed, and paraffin-embedded (FFPE) whole slides images of 8,890 patients,

acquired from the following studies: breast invasive carcinoma (BRCA), cervical squamous cell

carcinoma (CESC), kidney renal papillary cell carcinoma (KIRP), kidney renal clear cell carcinoma

(KIRC), kidney chromophobe (KICH), skin cutaneous melanoma (SKCM), sarcoma (SARC), pancreatic

adenocarcinoma (PAAD), ovarian serous cystadenocarcinoma (OV), prostate adenocarcinoma (PRAD),

bladder urothelial carcinoma (BLCA), esophageal carcinoma (ESCA), thyroid carcinoma (THCA),

lymphoid neoplasm diffuse large B-cell Lymphoma (DLBC), brain lower grade glioma (LGG), thymoma

(THYM), head and neck squamous cell carcinoma (HNSC), uterine corpus endometrial carcinoma

(UCEC), glioblastoma multiforme (GBM), cholangiocarcinoma (CHOL), liver hepatocellular carcinoma

(LIHC), stomach adenocarcinoma (STAD), lung adenocarcinoma (LUAD), and lung squamous cell

carcinoma (LUSC), colon adenocarcinoma (COAD), rectum adenocarcinoma (READ), adrenocortical

carcinoma (ACC), mesothelioma (MESO), pheochromocytoma and paraganglioma (PCPG), testicular

germ cell tumours (TGCT), uterine carcinosarcoma (UCS) and uveal melanoma (UVM). Only images

scanned at 0.5 microns per pixel (MPP) (corresponding to a magnification of 20X) were kept and

images with no MPP information were automatically discarded. The number of the images and

patients included in the TCGA cohort are provided in Extended Data Table 2. DLBC, UVM, and THYM

were excluded from certain results due to having less than 7 valid targets considering all biomarker

types (see Extended Methods: Molecular biomarker acquisition for more details on the biomarker

inclusion criteria for each omic/biomarker type).

Biomarker acquisition:

Acquisition of actionable driver genes: Clinically-relevant driver genes were retrieved from

https://cancervariants.org [61]. We only considered driver genes that are known to be associated

with 1) FDA-approved disease-specific therapies and 2) response or resistance to therapies as shown

in professional guidelines and/or based on well-powered studies with consensus from experts in the

field based on evidence provided in [35]. Driver mutation and drug-associated data were

downloaded from

https://drive.google.com/drive/folders/1ZY6o3uaLOZSjOQPpXSMsnMbXmFWpb58d with the

following sources being taken into account: BRCA exchange, the Cancer Genome Interpreter Cancer

Biomarkers Database (CGI), Clinical Interpretation of Variants in Cancer (CIViC), Jackson Laboratory
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Clinical Knowledgebase (JAX-CKB), the Precision Medicine Knowledgebase (PMKB). The source files

were parsed into an intermedia format and the associations between SNP mutations and phenotypes

were created. An expert pathologist mapped these phenotypes to TCGA studies. Finally using this

mapping and driver mutation data per phenotype, we created a set of driver genes per TCGA study

and subsequently used them to filter actionable biomarkers for transcriptomic, proteomic and

genomic data.

Genomic biomarker profiles: Genomic biomarker data was collected using the cBioPortal web API

(https://docs.cbioportal.org/6.-web-api-and-clients/api-and-api-clients) and the GDC API

(https://gdc.cancer.gov/developers/gdc-application-programming-interface-api). For each TCGA

study, we retrieved all samples with associated diagnostic slides. The samples that did not have

whole-genome or whole-exome sequencing data were excluded from further consideration, allowing

us to assume that all genes of interest were profiled across the remaining ones. While there existed

samples without WGS or WXS data with mutations, it was not possible to assume that genes with no

mutations were present in their wildtype, as they might simply have not been sequenced. As a next

step, for all TCGA studies listed on the cBio portal, we acquired molecular profiles with the

MUTATION_EXTENDED alteration type and all mutations belonging to these molecular profiles within

the collected samples were retrieved and stored in an intermediate format. Finally, we created

molecular profiles for all driver genes using this mutation data. A sample was considered positive for

a driver gene if it contained at least one SNV mutation for that gene. The resulting profiles were

filtered to exclude driver genes that had less than 10 positive samples in a given cancer.

Transcriptomic and proteomic profiles: Transcriptomic and proteomic data for TCGA datasets were

retrieved from the cBioPortal API (http://www.cbioportal.org/api). FPKM files containing raw counts

of gene expression and the corresponding z-scores were acquired for each coding gene and each

sample with an associated tissue slide in the TCGA studies. The transcriptomic z-scores were

obtained among samples in which the tumour comprised diploid cells, whereas the proteomic

z-scores were calculated among all available samples. The z-scores were binarised for each gene and

sample based on thresholds chosen as follows: For each sample, genes with a z-score of less than or

equal to t_under were considered underexpressed and those with a z-score of larger than or equal to

t_over were considered overexpressed. We empirically set {t_under, t_over} to {-2, 2} and {-1.5, 1.5},

for transcriptomic and proteomic data, respectively. These thresholds were then used to generate

two under/over-expression profiles for proteomic and transcriptomic genes. In an

“under-expression” profile all samples that were considered underexpressed were labelled as

positive whereas all other samples were labelled as negative. Similarly, overexpressed samples in an

“over-expression” profile were assigned a positive label, while the remaining samples were

considered negative. Finally, to reduce the number of target biomarkers, we limited the over-and

under-expression profiles to only include the driver genes (see Acquisition of actionable driver

genes) for each study. Furthermore, profiles that did not contain enough positive samples were

excluded. The minimum number of positive samples for proteomic genes was set to 20. For the

transcriptomic profiles, only the ones with at least a positive ratio of 10% and having a minimum of

10 positive samples were kept.

Metabolomic pathways: Metabolic data was downloaded from

https://www.ebi.ac.uk/biomodels/pdgsmm/index. It contained personalized genome-scale metabolic
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models (GMMMs) stored in XML format for 21 of the TCGA studies. We used the pathology atlas of

the human cancer transcriptome data [62] to acquire the generalised base network used to create

the GSMMs. For each pathway in these networks, we derived a biomarker by comparing the genes

present in the pathway for a sample, to all genes present in the generalised underlying network for

the given pathway. We created sets of genes present for each pair of pathways/samples and

performed t-tests comparing them to the set of genes for the same pathways in the generalised

network. The resulting p-values were adjusted for multiple testing using the Benjamini-Hochberg

procedure [63] with an FDR rate of 0.05. All samples with an adjusted p-value of less than 0.05 were

considered significantly associated with the pathway. We limited ourselves to a set of “pathways of

interest” which contained 32 pathways selected based on the entropy of their positive/negative

distributions over all studies, as well as a few hand-picked pathways with known connections to

cancer phenotypes. We created biomarker profiles for the 21 TCGA projects, by considering each

pathway as a biomarker, where a sample was labelled as positive if it was significantly associated

with a pathway. Pathways constituting less than 20 positive samples in each study were excluded

from the resulting profiles.

Standard of care features, gene expression signatures and molecular subtypes: A publicly available

dataset provided as part of a recent pan-cancer study on detecting clinically actionable molecular

alterations was used to acquire the biomarker profiles for gene expression signatures, molecular

subtypes and standard clinical biomarkers [12]. The dataset was originally curated from the results of

systematic studies using the TCGA data (https://portal.gdc.cancer.gov/) [38]–[40] and contained

profiles for 17 TCGA datasets (please refer to [12] for the description of biomarkers and other details

regarding the acquisition protocol). For certain biomarkers, we used the consensus opinion to map

the molecular status to binary labels. For instance, considering microsatellite instability (MSI), all

patients defined as MSI-H were included in the positive class, while microsatellite stable (MSS) and

MSI-L patients were labelled as negative. Profiles with multiple categorical values were binarised

with one-hot-encoding, where a profile was created for each category with only the samples of that

category being set to positive. Non-categorical profiles with continuous values were binarised at

mean after eliminating NaN values.

Clinical outcomes and treatment responses: Survival data was acquired from the TCGA Pan-Cancer

Clinical Data Resource (TCGA-CDR), a publicly available dataset that provides four major clinical

outcome endpoints [44], namely overall survival (OS), disease-specific-survival (DSS),

disease-free-interval (DFI) and progression-free interval (PFI). These endpoints were systematically

binarized into actionable events by considering multiple clinical and prognostic features acquired

from TCGA’s routinely-collected clinical data (https://portal.gdc.cancer.gov/) such as vital status,

tumour status, cause of death, new tumour events, local recurrence and distract metastasis. The

details of the integration of the clinical data into actionable survival outcomes are given in [44].

Additionally, we added the residual tumour status acquired from the TCGA clinical files as another

prognostic target. Patients with microscopic or macroscopic residual tumours (R1 or R2) were

classified as positive whereas those with no residual tumour (R0) were included in the negative class

[60]. Since TCGA-BRCA did not have residual tumour information, we used margin status as per the

guidance in [55]. Similarly, `treatment_outcome_first_course` was used to create binary targets

representing the treatment response. Towards this end, any patient with “Complete

Remission/Response” was included in the positive class whereas “Stable Disease”, “Partial Response”
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and “Progressive Disease” were considered negative. Finally, clinical drug files in the TCGA datasets

were used to identify drug responses. This was achieved by first unifying drug names based on the

data provided in [64] and then identifying drug-study pairs with enough samples. Finally, the

`  treatment_best_response` attribute was used to map the drug responses into binary categories,

with “  Complete Response” constituting the positive class and the others being negative.

Experimental setup: We assessed the predictive performance of each biomarker in a 3-fold

cross-validation setting, where the cases with a valid biomarker status in each dataset were split into

three random partitions (folds), each having approximately the same proportion of positive samples.

We trained and tested three models per biomarker, each time keeping aside a different fold for

validation and using the remaining ones for training. This setting ensured that a test prediction could

be acquired for each patient in a biomarker cohort and allowed us to assess the variability of model

performance. The images were partitioned at the patient level and a biomarker profile with less than

10 positive patients was discarded from the study.

Pre-processing pipeline and training details: A proprietary convolutional neural network (CNN) was

used for predicting molecular profiles from H&E images as illustrated in Figure 1. A single CNN was

end-to-end trained from scratch for each biomarker and fold, yielding a total of 13,443 unique

models that were used to obtain the results presented in this study. Each model was trained on a set

of 256x256 tiles acquired from whole slide images (WSI) stained with H&E. A standard deviation filter

was used to eliminate the tiles which do not contain any relevant information, allowing us to extract

the tissue from the rest of the image. A slide was discarded from analysis if it contained fewer than

10 tiles after the filtering process. Macenko colour and brightness normalization [65] was applied to

the remaining tiles before they were assigned with a ground-truth molecular profile (see Biomarker

acquisition).   

A CNN consisted of a feature extractor (encoder), a decoder and a classification module. The encoder

can capture the tissue properties within tiles throughout a set of convolutional filters applied to tiles

at various layers of depth, effectively encoding the high-level visual features into a d-dimensional

feature vector, where d depends on the architecture of the CNN. These vectors are regarded as the

fingerprints of the tiles and are submitted to both the decoder and the classification module. The

decoder module takes a d-dimensional embedding as input and returns an output of the same shape

as the original tile that the embedding represents. It consists of a series of transposed convolutional

and upsampling layers, which resembles an inverted copy of the CNN used for feature extraction,

known as the encoder. Its purpose is to reconstruct the original tile from the latent vector to achieve

better representations of each tile that do not contain irrelevant features. In parallel to the decoder,

the feature vector representative of each tile is also submitted to the classification module, which

consists of a fully connected layer. The output classification score is then compared to the label of

the tile's parent WSI. All modules are trained end-to-end and each tile is given a score, i.e.

confidence of it being positive. Finally, the scores of all the sampled tiles from each WSI are

aggregated via mean pooling to produce the final slide-level scores.

Model hyperparameters and the CNN architecture were determined based on a relevant benchmark

analysis from the clinical validation study of a deep learning model developed for molecular profiling
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of breast cancer [self-ref]. We adopted the best-performing model’s feature extractor network

(based on a “resnet34” architecture [66]) and hyper-parameters to configure a CNN for each

biomarker in the current pan-cancer study. Each model was trained for 10 epochs using the Adam

optimiser with a learning rate of 0.0001. 200 tiles were randomly sampled from each of the training

slides and oversampling was applied to the tiles from the underrepresented class to tackle the class

in-balance problem. During validation, predictions across all tiles were averaged to determine a

slide-level prediction. Validation AUC was monitored as the target metric to select the final model

during training.

Performance characteristics and statistical procedures: Performance of a model was measured with

the area under receiver operating characteristic curve (AUC), which plots the relationship between

True Positive Rate (TPR) and False Positive Rate (FPR) across different predictive thresholds. An AUC

of 0.5 denotes a random model, while a perfect model that can predict all samples correctly yields an

AUC of 1. For each biomarker, we reported the performance as the average AUC across the three

models (unless otherwise specified), accompanied with the standard deviation (denoted with ±

where appropriate).

Statistical significance of results were determined with a two-sided t-test. For group-level analysis,

the AUC values were compared against randomly sampled values of the same underlying

distribution. To determine the significance of the predictability at biomarker level, we applied the

test on the prediction scores obtained from the true negative and positive cases. The reported p

values were corrected for false discovery rate (FDR).
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Extended Data Figure 1: Scatter plots showing the average test AUC for each model trained to predict genetic alterations

across all tested cancer types. A two-sided t-test was applied to prediction scores of each model to assess the statistical
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significance and the corresponding p-values were corrected for false discovery rate (FDR). The y-axis of each plot was inverted

and the p-values were log-transformed for visualisation purposes. P values smaller than 1e-05 were set to 1e-05 to avoid

numerical errors during transformation. The statistical significance threshold of 0.05 is marked with a dashed line. Marker

shading indicates the intra-biomarker standard deviation, where lighter colors correspond to a deviation close to 0.
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Extended Data Figure 2: Scatter plots showing the average test AUC for each model trained to predict over-/under-expression

status for the transcriptomic driver genes across all investigated cancer types. A two-sided t-test was applied to prediction
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scores of each model to assess the statistical significance and the corresponding p-values were corrected for false discovery

rate (FDR). Please refer to the caption of Extended Data Figure 1 for a detailed explanation of the visualisation.

Extended Data Figure 3: Scatter plots showing the average test AUC for each model trained to predict over-/under-expression

status of proteomes associated with driver genes across all investigated cancer types. A two-sided t-test was applied to

prediction scores of each model to assess the statistical significance and the corresponding p-values were corrected for false

discovery rate (FDR). Please refer to the caption of Extended Data Figure 1 for a detailed explanation of the visualisation.
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Extended Data Figure 4: Scatter plots showing the average test AUC for each model trained to predict metabolomic

pathways across all investigated cancer types. A two-sided t-test was applied to prediction scores of each model to assess

the statistical significance and the corresponding p-values were corrected for false discovery rate (FDR). Please refer to the

caption of Extended Data Figure 1 for a detailed explanation of the visualisation.
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Extended Data Figure 5: Scatter plots showing the average test AUC for each model trained to predict standard clinical

biomarkers across all investigated cancer types. A two-sided t-test was applied to prediction scores of each model to assess

the statistical significance and the corresponding p-values were corrected for false discovery rate (FDR). Please refer to the

caption of Extended Data Figure 6 for a detailed explanation of the visualisation.
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Extended Data Figure 6: Scatter plots showing the average test AUC for each model trained to predict molecular subtypes

and gene signatures across all investigated cancer types. A two-sided t-test was applied to prediction scores of each model

to assess the statistical significance and the corresponding p-values were corrected for false discovery rate (FDR). Please

refer to the caption of Extended Data Figure 1 for a detailed explanation of the visualisation.
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Extended Data Figure 7: Scatter plots showing the average test AUC for each model trained to predict clinical outcomes

and treatment responses across all investigated cancer types. A two-sided t-test was applied to prediction scores of each

model to assess the statistical significance and the corresponding p-values were corrected for false discovery rate (FDR).

Please refer to the caption of Extended Data Figure 1 for a detailed explanation of the visualisation.

Extended Data Figure 8 | Impact of sample size and positive class ratio on the prediction performance: To assess the

impact of sample size and positive class ratio on the prediction performance, we measured their linear relationship to the

biomarker AUC values with Pearson correlation analysis. Scatter plots show the correlation of AUC values (i.e.

intra-biomarker mean AUC of the three cross-validated models for each biomarker) with sample size (i.e. number of total

samples per biomarker, left) and positive ratio (i.e. number of positive samples over the size of whole population, right) of

all biomarkers. Pearson correlation coefficient (PCC) between the sample size and the AUC values was 0.036 (p-value <

1e-05), indicating no linear relationship between the two variables. Similarly, a PCC of -0.084 (p-value < 1e-05) was

obtained for the positive ratio, showing almost no impact of prevalence on predictiability.
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Extended Data Figure 9 | Importance of variables on biomarker predictability: Considering the very low impact of

positive ratio and population size onto the model performance (Extended Data Figure 8) we performed a simple

experiment to estimate the importance of variables on the biomarker predictability. Alongside sample size and positive

ratio, we included omic type (e.g. driver mutations) and cancer type into our analysis. A random forest regression (RFR)

model was fitted on the data to predict the AUC values. During training, the RFR model assigns a weight to each feature,

which, in turn, can be used to estimate the “predictiveness” of a variable for regressing the AUC values). Overall, the

combined impact of the omic types was the largest, with metabolomic pathways being the most important feature for

model predictictibility. This was followed by positive ratio and population size, both of which were assigned more

importance than most of the omic and cancer types, when comparisons were done on an individual basis. We also

observed that prevalence influenced the predictability more than the sample size. The impact of cancer type, on the other

hand, was rather limited. On aggregate, however, the impact of cancer type outsized the impact of the prevalence and

population size.
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Abbr. Cancer Name Mean AUC Std. of AUCs

MESO Mesothelioma 0.692 0.137

LGG Brain Lower Grade Glioma 0.684 0.118

TGCT Testicular Germ Cell Tumors 0.683 0.132

ACC Adrenocortical carcinoma 0.676 0.151

KIRP Kidney renal papillary cell carcinoma 0.673 0.117

PCPG Pheochromocytoma and Paraganglioma 0.670 0.086

KIRC Kidney renal clear cell carcinoma 0.659 0.115

STAD Stomach adenocarcinoma 0.657 0.113

GBM Glioblastoma multiforme 0.653 0.164

ESCA Esophageal carcinoma 0.653 0.114

BRCA Breast invasive carcinoma 0.649 0.101

LIHC Liver hepatocellular carcinoma 0.643 0.103

UCEC Uterine Corpus Endometrial Carcinoma 0.641 0.101

SARC Sarcoma 0.640 0.108

COAD Colon adenocarcinoma 0.639 0.110

THCA Thyroid carcinoma 0.634 0.123

KICH Kidney Chromophobe 0.631 0.144

OV Ovarian serous cystadenocarcinoma 0.629 0.136

HNSC Head and Neck squamous cell carcinoma 0.628 0.101

SKCM Skin Cutaneous Melanoma 0.627 0.118

LUAD Lung adenocarcinoma 0.622 0.109

PRAD Prostate adenocarcinoma 0.621 0.091

BLCA Bladder Urothelial Carcinoma 0.620 0.104

PAAD Pancreatic adenocarcinoma 0.616 0.115

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 0.612 0.109

LUSC Lung squamous cell carcinoma 0.607 0.102

CHOL Cholangiocarcinoma 0.594 0.137

READ Rectum adenocarcinoma 0.586 0.125

UCS Uterine Carcinosarcoma 0.585 0.158

Extended Data Table 1: Average performance and standard deviation for all cancer types. DLBC, UVM, and THYM

were excluded from the table due to only constituting one to seven valid targets across all biomarker types
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Abbr. Num. images Num. patients

LUSC 453 419

PRAD 449 403

COAD 442 434

SKCM 418 377

THCA 504 492

OV 105 104

BRCA 1061 992

STAD 358 333

DLBC 38 38

BLCA 450 379

CHOL 38 38

PAAD 204 180

UCEC 509 448

KIRP 269 245

LUAD 512 449

CESC 265 255

KIRC 499 493

THYM 179 120

LIHC 369 361

SARC 582 239

HNSC 434 414

READ 158 157

ESCA 157 155

LGG 823 472

KICH 120 108

GBM 666 233

MESO 81 70

PCPG 193 174

TGCT 253 148

UCS 87 53

UVM 53 53

ACC 225 54

Total 10954 8890

Extended Data Table 2: NUmber of whole slide images and patients included in the study across all cancer types. Cancer
names corresponding to abbreviations are provided in Extended Data Table 1.
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