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Abstract 

Xeroderma pigmentosum group D (XPD) is a DNA helicase involved in transcription initiation 

and nucleotide excision repair. Missense mutations in XPD are putative drivers in bladder cancer 

(BLCA) and are associated with a specific single base substitution mutational signature. 

However, the impact of XPD on the genome-wide distribution of somatic mutations remains 

unexplored. We analysed somatic mutation distribution in whole-genome sequenced (WGS) 

BLCA samples with (XPD mutant) and without XPD mutations (WT). XPD genotype had a 

large impact on the distribution of somatic mutations. XPD mutant samples had increased 

mutation density at open chromatin, including striking mutation hotspots at CTCF-cohesin 

binding sites (CBS). We validate these findings in additional WGS cohorts and BLCA exomes. 

Analysis of XPD occupancy and CBS hotspot mutations in other cancer types suggest that XPD 

protects CBS from DNA damage. Our study implicates XPD in genomic integrity maintenance at 

topologically-associating domain boundaries marked by CTCF-cohesin binding. 
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Introduction 

Xeroderma pigmentosum group D (XPD), encoded by ERCC2, is a 5’-3’ ATP-dependent DNA 

helicase that is a component of the Transcription Factor II H (TFIIH) protein complex. TFIIH 

plays important roles in transcription initiation through its interaction with RNA polymerase II 

(POLR2A) and nucleotide excision repair (NER) when recruited to damaged lesions [1]. 

Compound heterozygous mutations in XPD can cause the genetic disorders xeroderma 

pigmentosum and trichothiodystrophy which typically present with UV light sensitivity due to 

deficiencies in NER function [2]. Additionally, somatic missense mutations in XPD are putative 

drivers in BLCA with ~ 12% of predominantly Caucasian cohorts of BLCA samples harbouring 

these alterations [3, 4]. XPD mutant BLCA are sensitive to cisplatin therapy, indicating a 

reduced capacity for repair of cisplatin adduct DNA lesions which implies a deficiency in NER 

of these samples [3, 5].  

Somatic mutation density in cancer forms specific patterns across the genome in terms of the 

mutation profiles and regional mutation densities. The type of single nucleotide variant (SNV, 

referred to as mutation) in the trinucleotide context forms specific single base substitution (SBS) 

mutational spectra or signatures which reflect the mutational process of the sample [6, 7]. 

Genomic mutation density is highly varied across the genome, correlating strongly with various 

epigenetic marks such as chromatin accessibility [8], histone modifications [9, 10], transcription 

factor binding [11, 12]  and cytosine methylation [13]. Regions of the genome with exceptionally 

high mutation densities are considered ‘mutational hotspots’. One such hotspot is CCCTC-

binding factor (CTCF)-cohesin binding sites (CBS) of which there have been several reports of 

strongly elevated somatic mutation densities [14-19]. CTCF is a DNA binding protein that acts 

as a transcriptional repressor when bound to DNA alone and as an architectural protein when 
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CTCF proteins bound at distal sites dimerise and interact with the cohesin complex to form DNA 

loops [20]. Interestingly, CBS hotspots have previously been linked to specific mutational 

signatures cosmic SBS7 [17] and SBS17 [14, 18].  

XPD mutant BLCA has previously been associated with the enrichment of mutational signature, 

SBS5 [21], however, how mutant XPD causes this mutational signature remains unknown. To 

gain an insight into the XPD mutant driven mutational process we compared with mutation 

distribution of XPD wild-type and mutant bladder cancers across a range of genetic and 

epigenetic features. Beyond the known role of XPD in transcription coupled-NER, our findings 

point to XPD protecting open chromatin from mutations. In particular, we observed strong 

mutational hotspots at CBS in XPD mutants, suggesting a previously unknown role of XPD in 

topologically associating domain (TAD) boundary maintenance. 
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Results 

Differential Contribution of APOBEC Associated and Other Mutations in XPD Mutant and Wild 

Type Bladder Cancer 

XPD mutations have been linked to a specific mutational signature in BLCA  [21], but the 

genome-wide distribution of mutations associated with XPD mutants is unknown. To investigate 

this, we utilised the TCGA cohort of WGS BLCA and characterised samples that harboured 

putative XPD driver mutations. Out of a total of 23 samples, 4 were characterised as XPD 

mutant. Previous studies have found the presence of strong APOBEC mutational signatures in 

many BLCA samples [22] and signature 5 (SBS5) specifically in XPD mutant BLCA samples, 

but analysis was restricted to exomes [21]. Since APOBEC related mutations are frequent in 

BLCA and have a distinct mutational process, we first assessed the contribution of APOBEC and 

non-APOBEC related processes (Other) in XPD mutant and non-mutant BLCA. We 

hypothesised that if we separate the APOBEC related mutations from Other mutations in the 

sample, we can better delineate the XPD mutational processes. This is feasible due to the highly 

specific nature of APOBEC mutations [22]. To this end, we assigned C>D at TCN as APOBEC 

and all else as Other. XPD mutant samples have a tendency for more Other mutations than WT 

(Figure 1A and Supplementary table 1). After separating APOBEC from Other mutations (Figure 

1B, Figure S1A), we found that, as expected, the cosine similarity of APOBEC mutations was 

more similar to SBS2 and SBS13 than for all mutations (Figure 1C), while other mutations were 

more similar to SBS5 than all mutations (Figure 1C). This demonstrates that we can largely 

distinguish these mutational processes using this method. We next investigated the distribution 

of APOBEC and Other mutations across the genome. We found that the genome-wide 

distribution of Other mutations but not APOBEC mutations differ between WT and XPD mutant 
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samples (Figure 1D). This suggests that XPD specific mutational processes are unique and 

validates the concept of separating APOBEC mutations from analysis to uncover these genomic 

patterns. We did not observe any significant genome-wide differences in indel and structural 

variant counts between XPD WT and mutant samples (Figure S1B). 

 

XPD Mutant Samples Display Altered Genomic Distribution of Other Mutations 

Somatic mutations in human cancer are unevenly distributed across the genome, with mutations 

in most mismatch repair proficient cancers showing reduced mutation burden at early replicating 

regions of the genome which are associated with open chromatin and expressed genes [8]. 

However, for certain mutations processes such as APOBEC-induced mutations, this trend does 

not apply [23]. To explore mutation distribution further, mutation densities for APOBEC and 

Other mutations were calculated with respect to gene bodies and replication time in XPD mutant 

and WT BLCA. We found that the distribution of Other mutations is significantly higher in all 

genic regions and lower in intergenic regions in XPD mutant samples compared with WT, which 

is particularly pronounced for the 5’UTR (q=0.007171, Student’s t-test with multiple testing 

correction, Figure 2A). However, there were no significant differences between XPD mutant and 

WT samples for APOBEC mutations (q>0.33, Student’s t-test with multiple testing correction, 

Figure 2A). We found an increase in the burden of APOBEC related mutations in 5’UTR relative 

to what is expected by chance (observed-expected ratio > 1) in both XPD mutant and WT groups 

(Figure 2A). This is consistent with previous findings that APOBEC causes mutation clusters 

around the start of active genes [24]. A linear regression between mutation densities and 

replication time showed that WT samples had a slope of -0.02601 compared with -0.005661 for 

mutant (Figure 2B), with significantly decreased and increased burdens of mutations in mutant 
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samples compared with WT in late and early replicating regions respectively (q=0.000197 and 

q=0.000015, Student’s t-test with multiple testing correction, Figure S2A). APOBEC mutations 

remained largely unchanged across the replication time landscape as consistent with previous 

literature [23], and this pattern is not affected by XPD mutations (Figure 2B, Figure S2A). The 

differential burden of Other mutations between mutant and WT samples in gene bodies and over 

the replication time landscape suggested that transcriptionally active or open chromatin plays a 

role in the distribution of XPD related mutagenesis. We next examined the effect that 

transcriptional activity has on mutagenesis in the BLCA genomes. We find that XPD mutant 

samples have increased genic mutation burden for Other but not APOBEC mutations, compared 

to WT specifically at expressed genes (Figure 2C). This was particularly pronounced 

immediately before the transcriptional start site (TSS) (Figure 2C and S2C), which is consistent 

with our results from Figure 2A.  

To look more generally at active and inactive chromatin genome-wide, we next used DNase 

hypersensitivity (DHS) to compare the burden of APOBEC and Other mutations between XPD 

mutant and WT samples. Interestingly, we find that Other mutations in XPD mutant samples 

tend to accumulate in DHS regions (Figure 2D), with significantly more mutations in XPD 

mutants compared with WT in the most DHS regions (q=0.000361, Student’s t-test with multiple 

testing correction, Figure S2C). We also found significantly increased and decreased burden of 

Other mutations in XPD mutant samples in open compartments and closed compartments 

respectively compared with WT (q=0.000067, q=0.000067, Student’s t-test with multiple testing 

correction, Figure 2E). These observations remained the same even when restricting the analysis 

to intergenic and non-CBS regions (Figure S2D). This provides strong evidence that XPD 

mutagenesis is enhanced at accessible chromatin.  
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XPD Mutant Cancers Display Strong Mutation Hotspots in CTCF-Cohesin Binding Sites 

DHS are associated with cis-regulatory elements, including promoters, enhancers and CTCF-

cohesin binding sites (CBS). As Other mutations in XPD mutants showed increased mutation 

density at DHS regions, we examined these elements individually and found striking mutation 

hotpots in CBS but not promoters or enhancers (Figure 3A).  

While somatic mutation hotspots in CBS have previously been reported in UV associated skin 

cancers [17] and SBS17 associated gastrointestinal cancers [14, 16, 18] it is a striking and novel 

observation that XPD associated mutational signatures in BLCA also have CBS mutation 

hotspots. Therefore, we sought additional samples to validate these findings. We accessed 2 

Chinese cohorts of BLCA [25, 26] and found an additional 3 samples with XPD mutations and 

found 3 additional XPD mutant liver cancer samples from PCAWG. Combined with the TCGA 

BLCA, there were 10 XPD mutant samples for these corresponding cohorts. We plotted the 

density enrichment at CBS and flank and found XPD mutant samples observed elevated 

mutation densities in CBS in XPD mutant compared to WT (Figure 3B, Figure S3A). We also 

observed increased mutation densities in flanking regions in XPD mutant samples compared with 

WT but this is likely reflects generally greater chromatin accessibility of the CBS flank and, in 

any case is substantially lower compared with the CBS itself (Figure 3B). A proportion of CBS 

sites lies within the covered regions of exome capture (n = 1049), so we further generated a 

contingency table of mutations from TCGA exome sequenced BLCA samples and found >4-fold 

enrichment for mutations at CBS in XPD mutant samples compared with WT samples 

(p<0.0001, Fisher’s exact test, Figure 3C,). Collectively, these results provide strong evidence 

that XPD mutant cancer displays hotspots in CBS. 
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Previous reports of CBS hotspots had found specific mutational patterns and signatures across 

the CBS motif [14, 17]. We observed that the CBS mutations in XPD mutants also have a similar 

distribution compared with CBS hotspots found in esophageal adenocarcinoma (ESAD) but is 

different to melanoma (MELA) (Figure 3D, Figure S3B, C). In terms of the type of the CBS 

specific trinucleotide mutational spectrum,  there is strong enrichment for T>N mutations with 

the strongest enrichment being T>G which is absent from the CBS flank (Figure 3E). This is 

similar to gastrointestinal cancers with SBS17 where predominantly T>G and T>C mutations 

accumulate at CBS [14, 18].  

 

Effect of XPD Presence on Genomic Mutation Distribution 

We next wanted to explore how XPD itself affects the development of mutations in WT and 

mutant cancers. Using previously published XPD ChIP-seq data [27], we examined mutagenesis 

in genomic regions with respect to XPD coverage. We found a strong enrichment of XPD at 

CBS, and as XPB is also enriched at CBS (Figure 4A), implying that these proteins are co-bound 

to CBS as part of the TFIIH complex. We next examined the general relationship between XPD 

binding and mutation burden in XPD mutant and WT BLCA. We found that WT BLCA had a 

distinct pattern of increased somatic mutation densities at low XPD coverage regions and 

decreased mutation densities at high XPD coverage regions, a trend which is reduced in XPD 

mutant samples with slopes of -0.3261 and -0.09264, respectively (Figure 4B and S4A). This 

suggests that the WT XPD protein likely plays a protective role where it is bound in the genome. 

We found that the mutational spectra were highly similar across XPD high and low binding 

regions in XPD mutant and WT cancers (Figure 4C). Therefore, the amount of XPD coverage in 

the genome affects mutation densities, not mutation types. If mutant XPD was actively causing 
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damage or repair errors, we would expect a specific mutational signature to be present at high 

XPD coverage regions of the genome that should be absent in low XPD coverage regions. A 

change in mutation density but not mutation types with XPD coverage is consistent with a loss of 

dependence on DNA repair.  

These observations led us to hypothesise that WT XPD has a role in protecting genomic integrity 

either through DNA repair or by reducing replication errors. XPD is involved in NER as part of 

the TFIIH complex making a role in NER seem feasible. We used published TFIIH cisplatin/ 

oxaliplatin repair sequencing (XR-seq) data [28] and found that, as with XPD ChIP-seq 

coverage, the mutation densities in WT samples inversely correlated with TFIIH repair, whereas 

the slope was largely flat for XPD mutant (-0.0712 versus 0.0067, Figure 4B) with significantly 

higher obs/exp and lower obs/exp in WT compared with mutant for high and low TFIIH 

coverage regions respectively (q=0.000003 and q=0.000178, Student’s t-test with multiple 

testing correction, Figure S4B). The mutational spectrum in high and low TFIIH in both XPD 

WT and mutant cancers were also highly similar, again suggesting a loss of repair rather than 

XPD causing mutations (Figure S4C). 

 

Determinants of Mutagenesis at CBS in Cancer 

The previous results suggest that a loss of XPD’s repair function contributes to mutation hotspots 

at CBS. In order to confirm statistically that the presence of XPD is a determinant of 

mutagenesis at CBS, as well as shed light on the potential mechanism, we performed logistic 

regression predicting if a CBS is mutated or not in XPD mutant cancer based on several features 

known to impact mutagenesis or be associated with XPD. We also performed this analysis on 
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other cancer types with reported mutation hotspots at CBS. All mutations from ESAD and 

MELA were chosen as other cancer types because samples frequently display strong SBS17 and 

SBS7 signatures respectively, which are associated with CBS hotspots. XPD interacts with 

POLR2A [29] and POLR2A ChIP-seq signal is also elevated at CBS [30, 31]. POLR2A may 

have an impact on local mutation densities through the recruitment of TC-NER. Genes, 

euchromatin and early replicating regions are typically protected from mutations. As such, we 

selected the following features for our model: whether or not the CBS falls within a gene, and the 

average replication time, XPD ChIP, CTCF ChIP, DNase hypersensitivity and POLR2A ChIP 

signal of the CBS +/- 150 bp.  

In all cancer types, CTCF ChIP and DHS coverage significantly increased the chance of a CBS 

being mutated and genic CBS were less likely to be mutated (Figure 5A-C) as expected. In both 

ESAD and MELA replication time reduces the chance of a CBS being mutated as expected 

(Figure 5B-C). Replication time was not a predictor for XPD mutant cancer which is interesting 

as we found that XPD mutant BLCA lose replication time dependence of mutation density 

compared with WT (Figure 2B). XPD was not a predictor of CBS mutagenesis in XPD mutant 

cancer (Figure 5A). This is likely because XPD mutant cancers have lost their dependence on 

XPD related repair which is consistent with Figure 4B. Interestingly, XPD ChIP coverage 

significantly decreased the likelihood that a CBS is mutated in ESAD (OR=0.88363, pvalue 

=0.00218, Figure 5B). This suggests that XPD is important in the repair of SBS17 related 

damage. XPD was not a predictor of CBS mutagenesis in melanoma which we think points to an 

unrelated mechanism. We next analysed the impact of XPD coverage on ESAD mutation 

densities genome-wide. Since SBS17 mutations are T>G and the other predominant mutation 

type in ESAD is C>T, we analysed the mutation densities of these mutations with respect to 
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XPD ChIP and TFIIH XR-seq coverage. We found a strong inverse relationship between XPD 

and TFIIH XR-seq coverage and ESAD mutation densities (Figure 5D, Figure S5) for both C>T 

and T>G mutations. Interestingly, the slope for T>G mutations was greater than that for C>T 

mutations (XPD ChIP, -0.5536 vs -0.2959 and TFIIH repair, -0.2423 vs -0.1266). This suggests 

that XPD does indeed have a role in repair of CBS mutations. 

 

Discussion 

In this study, we present strong evidence that XPD mutant cancers display somatic mutation 

hotspots in CTCF-cohesin binding sites. While the biological mechanisms of this observation 

remain unresolved, our results suggest that it is likely related to a loss of a protective role of the 

WT XPD protein and implicate a role for the XPD in protecting genomic integrity of the 

accessible genome. While we acknowledge that it is possible that the mutant XPD protein could 

actively cause errors or damage in the genome, rather than the WT XPD protein preventing them 

under normal circumstances, we believe our results support the latter. We observed an inverse 

relationship between XPD coverage and mutation densities in WT BLCA samples which is lost 

in mutant samples. This indicates that XPD is playing a protective role in the WT samples and is 

absent in mutants (Figure 4B). Further, the mutational signatures were highly similar in high and 

low XPD regions indicating that a similar mutational process is taking place where XPD is 

bound compared to where XPD is not bound (Figure 4C). The fact that the mutation spectrum is 

unchanged, but the mutation burden increased is consistent with a loss of DNA repair. These 

results are also consistent with the clinical diseases progression of patients with xeroderma 

pigmentosum caused by XPD mutation where the incidence of skin cancer is greatly increased in 
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sunlight exposed skin [32]. This supports that mutant XPD does not directly generate DNA 

damage, but rather, is unable to repair damage arising from genomic insults such as UV-light. 

Probing determinants of mutagenesis at CBS in XPD mutant, SBS7 and SBS17 related cancers 

further support that XPD mutant cancers lose dependence on XPD related repair and suggest that 

XPD may be involved in the repair of SBS17 related mutations. ESAD often display SBS17 

[33], and we found that ESAD local mutation densities were inversely correlated with XPD 

coverage, and the slope was greater for T>G than C>T mutations, leading us to the hypothesis 

that XPD is involved in SBS17 related CBS hotspots. The patterns of mutagenesis across the 

CTCF motif of CBS in XPD mutant cancers and ESAD is similar but different to that of MELA. 

We believe it is unlikely that SBS17 and XPD mutant cancers could have different mechanisms 

leading to the exact same sites of the motif being mutated. SBS17 is believed to be a result of 

oxidative stress generated by gastric reflux [34], a process which causes 8-oxo-guanine 

misincorporation, resulting in T>G mutations [35]. Interestingly, XPD mutant cells are sensitive 

to oxidative stress and hence thought to have a role in the mitigation of oxidative damage [36]. 

We therefore postulate that SBS17 cancers are dependent on XPD related DNA repair. Our 

results showing decreased mutagenesis with more XPD coverage in ESAD (Figure 5B) further 

support this. Our finding that T>G and T>C mutations are enriched in XPD mutant CBS 

compared with flank (Figure 3E) is consistent with this hypothesis as these are the predominant 

mutations in SBS17. 

It is therefore likely that accessible chromatin, particularly CBS are highly dependent on XPD 

related DNA repair. We speculate that this could be because transcriptionally active CBS are 

susceptible to strand breaks [37]. This observed dependence on DNA repair was initially 

surprising in light of our previous work that showed that XPC mutant UV associated skin 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.21.477237doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.21.477237
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

cancers display an absence of mutation hotspots compared with WT counterparts [17]. At that 

time, we concluded that CBS are vulnerable to mutation hotspots in skin cancer because they are 

deficient in NER. While this seems to contradict our present finding, two important points that 

demonstrate that these hypotheses are compatible. Firstly, XPD is required for both transcription-

coupled and global NER, whereas XPC only functions in global NER, so it is possible that the 

damage being repaired in BLCA is dependent on TC-NER whereas in skin cancer it is global 

NER dependent. Logically it makes sense that transcriptionally active regions of the genome are 

dependent on TC-NER. However, the majority of CBS are non-coding, making the function of 

TC-NER in these regions less clear. The next point relates to the position of mutation hotspots 

within the CTCF motif. In XPD mutant and SBS17 cancers, mutations are concentrated on the 

left side of the motif, while in skin cancer the mutations are concentrated at the 3’ GG pair in the 

motif. In this way, it is possible that CBS are both highly dependent on and deficient in NER on 

different sides of the CTCF motif. Additionally, it was recently demonstrated that UV causes 

more damage to the specific hotspot in the CBS motif [38], indicating a distinct mutational 

process from that of XPD mutant and SBS17 cancers. 

Euchromatin, genic and early replicating regions of the genome display lower mutation burden 

than less accessible, gene rich and late replicating areas of the genome due to mismatch repair 

[9]. Our results suggest that XPD related DNA repair is another potential mechanism by which 

these regions of the genome have a lower mutation burden.  
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Methods 

Sample cohorts  

Somatic mutation calls from 23 The Cancer Genome Atlas (TCGA) whole-genome sequenced 

(WGS) BLCA samples were accessed from Pan-cancer analysis of whole genomes (PCAWG) 

[39]. Samples were defined as XPD mutant if they harboured a missense XPD mutation that is 

defined as ‘oncogenic’ or ‘likely oncogenic’ in OncoKB [40]. A total of 4 samples were 

characterised as mutant of which 2 had N238S, 1 had S44L and 1 had T484M XPD mutations 

(Supplementary table 1). The remaining 19 samples were classed as wild-type (WT).  

To provide more evidence for observations made from the TCGA cohort, 2 Chinese cohorts of 

BLCA were accessed and other cancer types from PCAWG were searched for other samples 

with XPD mutations. In one cohort, there were 2 samples out of 65 containing recurrent, 

functional XPD mutations [25] and in the cohort of 6 neuroendocrine BLCA samples, 1 sample 

had a recurrent, functional XPD mutation [26]. In PCAWG, there were 3 liver cancer samples 

with recurrent, functional XPD mutations. Analysis performed on ‘XPD mutant cancer’ included 

all SNVs pooled from the above 3 cohorts of BLCA and the 3 PCAWG liver cancer samples, 

giving a total of 10 XPD mutant WGS cancer samples (Supplementary table 1). 

Where TCGA whole exome sequenced (WXS) BLCA samples were used for additional evidence 

to support findings from WGS, such as in CBS contingency analysis, samples that had WGS data 

were excluded. WXS with XPD mutations that were ‘oncogenic’ or ‘likely oncogenic’ in 

OncoKB [40] were assigned as mutant as described above for WGS samples, but there were an 

additional 10 samples with missense mutations with a VEP score indicated pathogenic but were 

not previously annotated in OncoKB. One of these mutations, E606Q, was recurrent, and so we 

considered it a putative driver and assigned it as ‘mutant’. 9 remaining samples with pathogenic, 
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missense mutations that were not annotated in OncoKB and not recurrent were excluded from 

analysis as they could not be confidently classified (Supplementary table 2). This resulted in an 

additional 23 and 356 XPD mutant and WT WXS samples, respectively (Supplementary table 2).  

For SBS17 and SBS7 cancers we used all PCAWG esophageal adenocarcinoma (ESAD) and 

melanoma (MELA), respectively. This resulted in 2,728,301 mutations from 98 samples for 

ESAD and 12,568,609 mutations from 107 samples for MELA. 

Somatic mutations and simulation 

For bladder WGS TCGA samples, single nucleotide variant (SNV) calls were obtained 

previously [11, 41] SNVs that were C>D (D represents A, G or T) at TCN context were defined 

as APOBEC whilst all SNVs not in this context were defined as ‘Other’ (Other). Mutation 

simulations were performed 100 times to calculate the distribution of mutations expected by 

chance based on the sequence composition of a region and the overall burden of mutations in 

each sample. Briefly, the trinucleotide of each position of the reference genome hg19 was 

defined using the R package ‘BSgenome.Hsapiens.UCSC.hg19’. Then each mutation in each 

sample was shuffled to a random place in the genome with the same trinucleotide context using 

the Unix command ‘shuf’ 100 times.  

The total number of small insertions and deletions were calculated from TCGA-

BLCA.mutect2_snv.tsv.gz accessed from the Xena browser [42] as mutations where the length 

of the alternate and reference base was greater than 1 respectively. Structural variants were 

calculated from the following files downloaded from icgc portal - 

final_consensus_sv_bedpe_passonly.tcga.public.tgz. 
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Calculation of Local Mutation Densities and Generation of Mutation Profiles across Genomic 

Sites 

To calculate mutation densities at specific genomic regions, we counted the number of actual 

mutations (observed) and simulated mutations overlapping these regions using the tool 

‘intersectBed’ [43]. Mutations of 100 simulations were merged for analysis and then divided by 

100 to give an ‘expected’ value, and then local mutation density was expressed as the ratio of 

observed to expected mutations. These analyses require a minimum mutation burden in each 

sample in order to be able to generate reliable ratios. Many of the WT samples had low mutation 

numbers, particularly for Other mutations, and some samples had low mutation numbers for 

APOBEC processes. Rather than completely discarding lowly mutated samples, we pooled the 

mutations of these samples together and displayed them graphically in analysis as indicated in 

figure legends. The lowest Other mutation count in the XPD mutant samples was 8219, is 

sufficient for analysis [11], and we therefore used a threshold of 8000 as the minimum number of 

Other and APOBEC mutations a sample must have to be included with samples lower than this 

being pooled. This pooled sample was not included in t-tests but was displayed graphically and 

almost always fell on the median, illustrating that these lowly mutated samples behave in the 

same way as the others in the cohort. IDs of these lowly mutated samples used for pooling are 

provided in supplementary table 3.  

Genome wide distribution of mutations was performed by calculating mutation densities as 

described above for 1 megabase (mb) windows of hg19 and then principal component analysis 

(PCA) was performed in R using prcomp function with scaling and centering. To perform 

statistics on local mutation densities of bins based on genomic coverage, we calculated the mean 

coverage of each bin and performed linear regression between mutation densities and coverage 
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for each sample displaying the mean and standard deviation and regression line on the graph. To 

generate mutation density profiles across regions, windows were generated within, upstream or 

downstream each site of the region separately according to the number of bins and number of 

bases flank specified. Where regions contain sites of varied lengths e.g. gene bodies, the number 

of windows for each site was fixed therefore changing the number of bases per window in the 

region. Mutation densities were then calculated in each of the windows as described above. 

Mutation Trinucleotide Frequency Calculations  

To calculate trinucleotide frequencies, ‘slopBed’ [43] was used to extend 1 base on either side of 

the SNV followed by ‘fastafrombed’ [43] for hg19 to retrieve the trinucleotide context of 

mutations. The total of each trinucleotide mutation was counted and divided by the total number 

of mutations to obtain its frequency. For the specific genomic regions of which the mutation 

trinucleotide frequencies were to be calculated, these values were divided by the trinucleotide 

counts of the region then multiplied by the trinucleotide counts for the whole genome in order to 

perform a region to genome normalisation.  

Genomic Annotations and Data Binning 

Gene expression data was taken from GTEx portal and the top half of expressed genes were 

defined as ‘expressed’ in bladder. Genes with 0 counts in bladder were defined as ‘silent’. 

Annotations of genic regions including 5’ untranslated region (UTR), 3’ UTR, exons and introns 

were accessed from UCSC table browser for hg19. Intergenic regions for hg19 were defined as 

parts of the genome without overlap of any of these regions. Hg19 coverage and narrow peaks 

data for human bladder tissue DNase-seq experiments were accessed from ENCODE [44] 

(ENCSR813CKU) (Supplementary table 4) as bigWig and bed file respectively. ChIP-seq for 
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XPD, XPB and input was accessed from GEO (GSE44849) and cisplatin/ oxoplatin based TFIIH 

XR-seq was accessed from GEO under accession GSE82213 as bigwig files. Deeptools 

‘bigWigCompare’ was used to generate ChIP to input log2 ratio bedgraph files for XPD and 

XPB ChIP-seq. For TFIIH XR-seq data, ‘bigWigMerge’ was used to merge plus and minus 

outputting a bedgraph. 1 kb windows of hg19 were generated and then filtered for blacklisted 

and low coverage regions of the genome. To divide the genome into bins based on coverage of 

different genomic assays, including DNase-seq, replication time, XPD ChIP-seq and TFIIH, the 

mean bedgraph signal from genomic assays was calculated for each of the 1kb filtered genomic 

windows using bedtools map [43]. For mutation density calculations, these filtered 1 kb windows 

were then divided into quintiles based on coverage from lowest signal (bin 1) to highest signal 

(bin 5).  

Bladder DHS peaks were overlapped with other DHS marks to generate annotations for bladder 

DNase hypersensitive regions (DHS) as follows. Promoters were defined by overlap with 

bladder H3K4Me3 ChIP-seq peaks from ENCODE (ENCSR632OWD) (Supplementary table 4) 

and then gene start sites to get promoters. Bladder DHS peaks were overlapped with high 

quality, experimentally determined CBS accessed from supplementary materials of [14] to 

generate CBS annotations. Later analysis of CBS uses these high quality CBS annotations [14] 

without overlapping with DHS. Finally, enhancers were defined as the centre of bladder 

H3K27Ac ChIP-seq peaks from ENCODE (ENCSR054BKO) (Supplementary table 4) that 

overlapped bladder DHS peaks. Chromatin A/B compartments for bladder were taken from 

supplementary files of [45]. For later analysis on CBS, all 31252 CBS sites were used [14]. 

Generating Coverage Profiles Across Genomic Regions for ChIP-seq Data 
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BigWig files for XPD and XPB ChIP-seq and input were accessed from gene expression 

omnibus (GEO) under accession GSE44849 which was previously published [27] 

(Supplementary table 4). Deeptools ‘bigwigCompare’ [46] was used to generate log2 ratio 

bigwig files of the ChIP compared with input, skipping regions that had no coverage in both the 

input and the ChIP. To generate sequencing coverage profile plots for regions, windows were 

generated within, upstream or downstream of each site in the region according to the number of 

bins and number of bases flank specified. Where regions contain sites of varied lengths e.g. gene 

bodies, the number of windows for each site was fixed therefore changing the number of bases 

per window. UCSC tool ‘bigWigAverageOverBed’ was then used to retrieve the average signal 

of each region in each window. The average region signal of each window was averaged and 

plotted positionally. 

Regression Analyses 

Logistic regressions were performed to predict the chance of a site being mutated. We modelled 

whether a CBS is mutated or not based on the replication time, CTCF ChIP, XPD ChIP, DHS 

and POLR2A ChIP signal of that CBS and whether it fell in a gene body in XPD mutant cancer, 

ESAD and MELA. 

Whether the site was mutated in the given cancer was calculated using intersectBed [43]. Then 

the average signal for each of these assays was calculated using bedtools map [43] on bedgraph 

files, mapping to each of the sites. As CBS regions were only 39 bp, we extended the region by 

150 bp on each side using slopBed [43] before mapping bedgraph signal.  

In order to generate the aforementioned bedgraph files consistently, we downloaded filtered 

hg19 bam files from ENCODE for ChIP and DHS data (Supplementary table 4). For ENCODE 
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ChIP-seq experiments, deeptools bamCompare [46] was used to generate bedgraph files of ChIP 

normalised to respective input files as log2 ratios. XPD ChIP-seq was accessed from GSE44849 

(Supplementary table 4) and deeptools bigWigCompare was used to generate ChIP signal as L2R 

to input. For DHS, deeptools bamCoverage [46] was used skipping mitochondria and output 

RPKM signal. Replication time was obtained from the UCSC table browser 

(wgEncodeEH002244). All of the above variables were z-score normalised. As an additional 

binary variable, whether sites were genic or intergenic was determined using intersectBed. 

Out of 31252 CBS sites, a total of 1283, 2959 and 5902 sites were mutated for XPD mutant 

cancer, ESAD and MELA respectively. In order to balance the mutated and non-mutated sites, 

5%, 20% and 10% of non-mutated sites were randomly extracted 100 times for XPD mutant 

cancer, esophageal adenocarcinoma and melanoma respectively. Logistic regression was 

performed in R. Adjusted odds ratios and p values were calculated based on a multivariable 

model. 
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Figures 

 

Figure 1  Contribution of APOBEC and Other Mutations in XPD mutant and WT Bladder 

Cancer (A) Total number of mutations attributed to T[C>D]N (APOBEC) or not T[C>D]N 

(Other) in each sample of the TCGA WGS bladder cancer cohort arranged by genotype and total 

mutation number. (B) Trinucleotide mutational spectra of APOBEC and Other mutations for 

TCGA bladder cancer samples. (C) Heat map of cosine similarities to mutational signatures in 

bladder cancer. COSMIC signatures 2, 5 and 13 are from COSMIC, the other signature, 

TCGA.130.DFCI.MSK.50.signature5 is from the supplementary material from [21] (D) Principle 

component (PC) analysis plots representing PC1 and PC2 of observed-expected mutation density 

ratios were calculated across each 1 mb window of hg19 for all SNVs, APOBEC SNVs and 

Other SNVs 
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Figure 2 Genome-Wide distribution of APOBEC and Other Mutations in XPD mutant and 

WT Bladder Cancer (A) Mutation densities as observed-expected ratios (obs/exp) in exons, and 

3’ and 5’ untranslated regions (UTR), introns or not in any of these regions (intergenic) in WT 

samples in orange and XPD Mutant samples (Mutant) in pink with Other SNVs displayed on the 

left and APOBEC SNVs displayed on the right. Large hollow circle point represents the pooled 

mutations of lowly mutated samples. ** q < 0.01, *** q < 0.001, **** q < 0.0001, n.s. not 

significant, Student’s t-test with multiple testing correction. (B) Mutation densities as obs/exp for 

5 genomic bins organised by replication time. Plots and error bars represent mean and standard 
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deviation of different samples and the line represents a linear regression model between mutation 

densities and the mean replication time for each of the bins. (C) Observed-expected mutation 

density ratio profile plots Other SNVs (left) and APOBEC SNVs (right) across gene body of 

genes expressed in bladder tissue (Expressed Genes) or genes not expressed in bladder tissue 

(Silent Genes). (TSS = transcriptional start site, TES = transcriptional end site). The gene body 

was organised into 150 bins and the region 2.5 Kb up or downstream of the TSS or TES was 

organised into 50 bins. (D) Mutation densities as obs/exp for 5 genomic bins organised by DNase 

hypersensitivity (DHS). Plots and error bars represent mean and standard deviation of different 

samples and the line represents a linear regression model between mutation densities and the 

mean DHS coverage for each of the bins. (E) Observed/expected mutation density ratios for 

genomic regions annotated in normal bladder to be either a chromatin A compartment (open) or 

chromatin B compartment (closed). Large hollow circle point represents the pooled mutations of 

lowly mutated samples 
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Figure 3 Mutation Densities at DNase Hypersensitive Regions in XPD mutant and WT 

Bladder Cancer. (A) Profile plots of mutation densities as observed-expected ratios (obs/exp) 

for Other Mutations in regions annotated in normal bladder as the promoter, enhancer or CTCF-

Cohesin binding site (CBS) 2.5 Kb up or downstream of the TSS, centre and motif, respectively. 

(B) Mutation densities (obs/exp) of CBS motif and +/-1 Kb flanking regions for all XPD mutant 

cancer samples (n=10). **** q < 0.0001, Student’s t-test with multiple testing correction. (C) 

Contingency table displaying the number of mutations falling in CTCF-Cohesin binding sites 

(CBS) or any other region of the exome (Other) in XPD mutant and WT TCGA whole-exome 

sequenced bladder cancer samples that were not also whole-genome sequenced. (D) 

Observed/expected mutational profile of TCGA XPD mutant samples across the CBS motif. (E) 

Trinucleotide mutation frequencies of bladder XPD mutations in CBS and flanking regions. 
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Figure 4 Effect of XPD on Mutagenesis in WT and XPD Mutant Bladder Cancer  

(A) Profile and heat maps of coverage of XPD and XPB ChIP-seq across CBS. Data accessed 

from  (GSE44849). (B) Mutation densities in genomic bins with respect to Mutation densities as 

obs/exp for 5 genomic bins organised by XPD ChIP and TFIIH cisplatin/oxaliplatin XR-seq 

coverage. Plots and error bars represent the mean and standard deviation of different samples. 

The line represents a linear regression model between mutation densities and the mean coverage 

for each of the bins. (C) Trinucleotide mutation frequencies (fraction of total mutations) for all 

mutations falling in high and low XPD ChIP coverage regions for WT and XPD mutant bladder 

cancer. These frequencies are scaled by the average trinucleotide composition of the regions. 
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Figure 5 Determinants of Mutagenesis at CTCF-Cohesin Binding Sites. Multivariable 

logistic regression models predicting whether a CBS is mutated or not based on genic and 

epigenetic features for (A) XPD mutant cancers (XPD Mutant), (B) SBS17 esophageal 

adenocarcinoma (ESAD) and (C) SBS7 related melanoma (MELA). (D) PCAWG esophageal 

adenocarcinoma C>T (blue) and T>G (red) mutation densities in genomic bins with respect to 

observed/expected mutations for 5 genomic bins organised by XPD ChIP and TFIIH 

cisplatin/oxaliplatin XR-seq coverage. Plots and error bars represent the mean and standard 

deviation of different samples. The line represents a linear regression model between mutation 

densities and the mean coverage for each of the bins. 
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Supplementary Figures 

 

Figure S1 – Contribution of different mutations in XPD mutant and wild-type (WT)  

bladder cancer. (A) Weighted trinucleotide mutation frequencies (fraction of total mutations) 

for mutations attributed to T[C>D]N trinucleotide (APOBEC), and mutations not attributed to 

T[C>D]N (Other) in  BLCA XPD WT samples. (B) Total number of small insertions and 

deletions (left) and structural variants (right) per sample. 
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Figure S2 – Genome wide distribution of mutations in XPD Mutant and WT bladder 

cancer (A) Mutation densities of individual data points with respect to replication time bins for 

Other and APOBEC SNVs. (B) A statistical representation of plots in Fig 2C. Mutation densities 

of individual samples are shown for the gene body, the 2.5 Kb upstream flanking region of TSS 

(TSS flank) and 2.5 Kb downstream flanking region of TES (TES flank). (C) Mutation densities 

of individual data points with respect to DNase hypersensitivity (DHS) bins for Other and 
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APOBEC SNVs. (D) Analysis in figure 2D and 2E performed with CBS and genes subtracted 

from DHS bins and from open and closed A/B compartments. Large hollow circle point 

represents the pooled mutations of lowly mutated samples. ** q < 0.01, *** q < 0.001, **** q < 

0.0001, n.s. not significant, Student’s t-test with multiple testing correction. 
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Figure S3 Mutation profiles across CBS and flanking regions. (A) Mutation profiles across 

CBS in XPD mutants from Chinese BLCA cohort (left) and PCAWG liver cancer samples 

(right). Observed/Expected mutation profile across the CTCF motif for esophageal 

adenomcarcinoma (ESAD) (B) and melanoma (MELA) (C). 
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Figure S4 Mutation load and mutational signature in relation to XPD binding and TFIIH 

XR-seq coverage. Observed/Expected mutation load across XPD ChIP-seq (A) and TFIIH XR-

seq (B) coverage bins for Other SNVs. (C) Trinucleotide mutation frequencies (fraction of total 

mutations) for mutations falling in high and low TFIIH XR-seq coverage regions for WT and 

XPD mutant bladder cancer. These frequencies are scaled by the average trinucleotide 

composition of the regions. ** q < 0.01, *** q < 0.001, **** q < 0.0001, n.s. not significant, 

Student’s t-test with multiple testing correction. 
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Figure S5 Effect of XPD and TFIIH repair on mutagenesis in esophageal adenocarcinoma. 

Observed/Expected mutation load across XPD ChIP-seq (A) and TFIIH XR-seq (B) coverage 

bins for C>T (blue) and T>G (red) mutations. 

  

1 2 3 4 5 1 2 3 4 5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.21.477237doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.21.477237
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 

 

Supplementary Tables 

Supplementary table 1. XPD mutant whole genome sequenced samples analysed in the study 

Supplementary table 2. XPD mutation status of all TCGA BLCA samples 

Supplementary table 3. Samples with low mutation counts that were pooled in analyses 

Supplementary table 4. List of public datasets used in the study 
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