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Abstract30

Aim: Understanding connections between environment and biodiversity is crucial for conservation,31

identifying causes of ecosystem stress, and predicting population responses to changing environments.32

Explaining biodiversity requires an understanding of how species richness and environment co-vary33

across scales. Here, we identify scales and locations at which biodiversity is generated and correlates34

with environment.35

Location: Full latitudinal range per continent.36

Time period: Present-day.37

Major taxa studied: Terrestrial vertebrates: all mammals, carnivorans, bats, songbirds, humming-38

birds, amphibians.39

Methods: We describe the use of wavelet power spectra, cross-power and coherence for identifying40

scale-dependent trends across Earth’s surface. Spectra reveal scale- and location-dependent coherence41

between species richness and topography (E ), mean annual precipitation (Pn), temperature (Tm) and42

annual temperature range (∆T ).43

Results: > 97% of species richness of taxa studied is generated at large scales, i.e. wavelengths & 10344

km, with 30–69% generated at scales & 104 km. At these scales, richness tends to be highly coherent45

and anti-correlated with E and ∆T, and positively correlated with Pn and Tm. Coherence between46

carnivoran richness and ∆T is low across scales, implying insensitivity to seasonal temperature vari-47

ations. Conversely, amphibian richness is strongly anti-correlated with ∆T at large scales. At scales48

. 103 km, examined taxa, except carnivorans, show highest richness within the tropics. Terrestrial49

plateaux exhibit high coherence between carnivorans and E at scales ∼ 103 km, consistent with contri-50

bution of large-scale tectonic processes to biodiversity. Results are similar across different continents51

and for global latitudinal averages. Spectral admittance permits derivation of rules-of-thumb relating52

long-wavelength environmental and species richness trends.53

Main conclusions: Sensitivities of mammal, bird and amphibian populations to environment are54

highly scale-dependent. At large scales, carnivoran richness is largely independent of temperature and55

precipitation, whereas amphibian richness correlates strongly with precipitation and temperature, and56

anti-correlated with temperature range. These results pave the way for spectral-based calibration of57

models that predict biodiversity response to climate change scenarios.58

59

1 Introduction60

Biological diversity is critical to many basic human needs, including health, food, water and shelter.61

It also plays an important role in moderating physical and chemical processes in natural environments62
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(Balmford & Bond, 2005; Barrett et al., 2011; Corenblit et al., 2011; Fei et al., 2014; Mori et al., 2022).63

Quantifying links between environment and biodiversity is crucial for understanding the response of64

ecosystems to climatic and physiographic change, and for conservation efforts (Araújo & Rahbek, 2006;65

Hampe & Petit, 2005; Norris et al., 2013; Yasuhara et al., 2020a). Many extrinsic processes postulated66

to control biodiversity (e.g. climate) are rapidly changing; therefore quantifying the strength of rela-67

tionships between them is a pressing concern (Nogués-Bravo et al., 2018).68

69

Environmental variables and species richness exhibit variance in space across a range of scales (e.g.70

Belmaker & Jetz, 2011; Buckley et al., 2012; Keil & Chase, 2019). However, it is unclear whether71

coherence between variables is uniform across all scales Storch et al. (2007). In this study we test72

the following five hypotheses. First, species richness is highly coherent with environmental variables73

across all scales. That would imply a direct forcing of richness by external drivers regardless of scale.74

It would give a basis for using theory developed to predict species richness at one scale (e.g. field sites)75

to predict richness at all scales. Secondly, species richness is most coherent with external variability at76

small scales, i.e. local changes in environment determine where species richness prospers. Thirdly, spe-77

cies richness is most coherent with changes in environment at large scales, i.e. global scale variability78

(e.g. large-scale climate change). Fourthly, the coherence of species richness with external variables79

depends on taxon. In other words, taxa have unique responses to environment variables. Finally,80

species richness does not directly depend on environment (i.e. coherence between species richness and81

environmental variables is low). Instead, species richness depends upon other factors, namely biotic82

interactions (prey-predator, competition), and/or historical contingencies.83

84

Here, we test the five hypotheses by quantifying coherence between species richness of continental85

vertebrate taxa and elevation, precipitation, temperature, and annual temperature range, which are86

postulated to drive biodiversity (e.g. Antonelli et al., 2018; Rahbek & Graves, 2001). As a starting87

point, we focus on mapping coherence between contemporary biotic and environmental signals as a88

function of scale and location, using wavelet spectral analyses. Many existing approaches, e.g. spa-89

tial regression analyses, are unsuited to testing such hypotheses because of the challenges associated90

with disentangling scale and location from biotic and environmental data to identify correlations. In-91

stead, here, we use wavelet spectral analyses, which inherently disentangle scale-dependent effects, and92

identify strength of correlation between variables at individual scales. Such analyses have been used to93

identify scale-dependence of temporal biotic series, to filter spatial series and identify outliers, and to94

investigate biodiversity on local (. 500 km) scales (Carl et al., 2008, 2016; Dormann et al., 2007; Keitt,95

2007; Ma & Zhang, 2015; Roberts & Mannion, 2019). We acknowledge that other processes, including96

species-species interactions, are also important for determining species richness (e.g. Chaudhary et al.,97

2021; Yasuhara et al., 2020b; Yasuhara & Deutsch, 2022). As such, we also present a preliminary98
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assessment of the coherence between species richness of different taxa, in Supporting Information. We99

return to discuss the results of these tests in the context of the five hypotheses described above, in the100

concluding section of this manuscript.101

102

Identifying links between biodiversity and environment has recently become significantly more103

tractable for three reasons. First, global patterns of species richness have been estimated with un-104

precedented detail, from horizontal scales as broad as continents, to those as fine as ∼ 10 km in105

wavelength (e.g. Jenkins & Joppa, 2009; Jenkins et al., 2013, 2020; Kass et al., 2022; Marsh et al.,106

2022). Second, values and variance of many environmental variables postulated to be responsible for107

determining distributions of species are now available globally at even higher resolution (e.g. Kar-108

ger et al., 2017). Finally, wavelet spectral methods, which can identify the locations and scales at109

which signals (e.g. spatial series of taxa) are generated, as well as coherence and phase differences110

(offsets) between series such as species richness, topography and climate, are now established (see111

Materials and Methods; Grinsted et al., 2004; Torrence & Compo, 1998). Such analyses are key to112

understanding how the changing global climate will affect the distribution of biodiversity across Earth.113

114

2 Materials and Methods115

2.1 Species Richness Data116

Species richness is here defined as number of species of a given taxon within a 10×10 km square. We117

use the grids compiled by Jenkins et al. (2013), which were generated by combining maps of species118

distributions, and counting the number of overlapping polygons in a given cell. For birds, the species119

richness data were calculated from breeding ranges compiled by BirdLife International NatureServe120

(2011). For amphibians and mammals, the data were based on expert range maps generated by the121

International Union for Conservation of Nature (2021).122

123

Figure 1a–f shows species richness per 10×10 km cell for all mammals (Mammalia), carnivorans124

(Carnivora), bats (Chiroptera), songbirds (Passeriformes), hummingbirds (Trochilidae), and amphi-125

bians (Amphibia). In Supporting Information Figures 1–2, we show species richness and associated126

analyses for other evaluated taxonomic groups (including Cetartiodactyla, Eulipotyphla, primates,127

marsupials, rodents, parrots, and frogs). The taxa which we focus on in the main text of this study128

have the greatest latitudinal coverage and are well-mapped, and they also cover a range of modes of life.129

The data shown in Figure 1 reinforce well-known large-scale observations, e.g. the latitudinal diversity130

gradient, but also contain evidence of significant complexity across scales of interest, here wavelengths131
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between 10–104 km (e.g. Hillebrand, 2004; Willig et al., 2003). We examine species richness trends in132

this study, since it is a straightforward measure of diversity, and has been determined for a wide range133

of taxa from fine scales up to near global scales. Here, we focus on terrestrial vertebrate taxa since134

terrestrial surface environmental conditions are well-mapped, as is terrestrial vertebrate biodiversity.135

Similar analysis is possible for marine taxa, invertebrates, plants etc., and for metrics other than spe-136

cies richness, for example range sizes and trophic interactions.137

138

Species richness varies as a function of the spatial range characteristics of a study, particularly139

“grain”, i.e. piece-wise horizontal resolution within a study (Gaston, 2000; Palmer & White, 1994;140

Willig et al., 2003). By using a constant grain (i.e. “focus” or grid spacing) of 10 km, challenges141

associated with comparing results generated using different grains are avoided (Willig et al., 2003).142

Here, scale-dependent trends are calculated as a function of “extent”, i.e. total width of study region,143

rather than “grain”, i.e. width of each plot/grid cell within the study region sensu Palmer & White144

(1994). Hurlbert & Jetz (2007) indicated that range map data might only be valid at wavelengths145

> 100 km. In this study, we evaluate how short-wavelength uncertainties in species richness contribute146

to uncertainties in calculated wavelet spectra by adding theoretical noise to transects before they are147

transformed into the spectral domain (Supporting Information Figure 3; panels a–c show results of148

adding white noise which has wavelengths between 10–100 km). Latitudinal transects through ter-149

restrial vertebrate richness and environmental data are shown in Figure 2. We show data from the150

Americas, where transects can be generated that encompass almost all of Earth’s latitudinal range151

(Figures 1 & 2: A—A′). Transects through data for Australia (B—B′), Africa (C—C′), Eurasia (D—152

D′) and global averages are shown in Supporting Information Figures 4–7.153

154

2.2 Environmental Variable Data155

Figures 1g–j and 2m, o, q and s show examples of maps and cross sections through elevation and156

climatic data which we use, from the ETOPO1 and CHELSA datasets, respectively (Amante & Eakins,157

2009; Karger et al., 2017).158

159

The global elevation grid ETOPO1 has a horizontal resolution of 1 arc-minute (Figure 1g; Amante160

& Eakins, 2009). It is primarily generated from ∼ 30 m resolution Shuttle Radar Topography Mis-161

sion (SRTM30) data and includes interpolated coastlines and satellite altimetry (Jarvis et al., 2008).162

Amante & Eakins (2009) suggested a mean vertical error of ∼ 10 metres for ETOPO1. We down-163

sampled the data to a horizontal resolution of 10 km using Generic Mapping Tools to match resolution164

of species richness grids (Wessel et al., 2019).165
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166

Annual mean values for climatic data, from 1981–2010, were extracted from the Climatologies at167

High Resolution for the Earth’s Land Surface Areas (CHELSA) dataset (Karger et al., 2017). CHELSA168

was generated by applying corrections to the ERA-Interim climatic reanalysis and has a horizontal169

resolution of up to 30 arc-seconds (Dee et al., 2011). Temperature data were corrected for elevation170

above sea level and precipitation rates were corrected using wind direction, valley exposition and171

boundary layers. Precipitation rate is weakly dependent on elevation. These values were successfully172

benchmarked against alternative climatology data and models: WorldClim, TRMM , GPCC and GHCN173

(Hijmans et al., 2005; Goddard Earth Sciences Data and Information Services Center, 2017; Lawrimore174

et al., 2011; Schneider et al., 2014). The data were down-sampled to 10 km prior to spectral analyses.175

2.3 Continuous Wavelet Transform176

Spatial series, xn, of species richness or environmental variables were transformed into distance-177

wavenumber space using continuous wavelet transforms (for practical guide, see Torrence & Compo,178

1998). The transform convolves uniformly sampled spatial series with a mother wavelet, ψ. The179

Morlet wavelet with dimensionless frequency ω◦ = 6 is used in this study, although other mother180

wavelets are investigated in Supporting Information Figure 8. Use of different mother wavelets (Mor-181

let, order ω◦ = 4, 8; Paul, order m = 2, 4, 6; derivative of Gaussian, order m = 2, 4, 6) does not182

significantly change patterns of mapped power, and distance-averaged power shows similar trends to183

the results presented here. The mother wavelet is scaled and translated along spatial series by n′ to184

reveal variations in amplitude as a function of scale, s, and position, xn. Sampling interval δt = 10185

km, n = 0, 1 . . . N − 1, where N is number of measurements. The wavelet transformation is186

Wn(s) =
N−1∑
n′=0

xnψ
∗
[

(n′ − n)δt

s

]
, (1)

where ∗ denotes the complex conjugate. We use the mlpy Python module to transform the spatial187

series (Albanese et al., 2012), which is based on the methods summarized by Torrence & Compo188

(1998). Scales were calculated using the approach described in Torrence & Compo (1998), such that189

sj = s◦2
jδj , where j = 0, 1, . . . J . The smallest scale, s◦ = 2δt. A minimum grid spacing of 10 km190

therefore yields a minimum scale for wavelet spectral analysis of ∼ 20 km (Torrence & Compo, 1998).191

In the example shown in Figure 2, N = 1598, δj = 0.1 and J = 96, which yields a total of 97 scales192

that range from ∼ 20 to ∼ 15, 521 km. Spatial series were mirrored across the x (distance) and193

y (dependent variable) axes to reduce edge effects (Roberts et al., 2019). Inverse transforms were194

reconstructed for each signal to quantify fidelity of transformed series (see Torrence & Compo, 1998).195

Median difference between input signals and inverse transforms were always ≤ 0.9%. Signals can be196

filtered by calculating inverse transforms at specific wavelengths. For example, Figure 2a, c, e, g, i and197
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k show inverse transforms of species richness spectra at scales > 103 km. Depending on taxonomic198

group, these filtered signals fit the input species richness trends with mean differences of 4.4–25% (see199

Figure 2 caption for mean raw differences in terms of species per pixel, spx). The same filtering process,200

but including wavelengths > 102 km, yields mean differences of only 0.7–4.7%. The distance-averaged201

power spectrum, which yields similar results to Fourier transformation, is given by202

φ(s) =
1

N

N∑
x=0

|Wn(s)|2. (2)

In Figure 2, we plot rectified distance-averaged power φr = φ(s)s−1 after Liu et al. (2007). We203

calculate distance-averaged power within and outside of the tropics, but note that in those calcula-204

tions, power was normalized by the proportion of the transect within/outside of the tropics respect-205

ively. Therefore there is no bias in distance-averaged power if the transect has a greater distance206

within/outside of tropical latitudes. A guide to scale-dependence and self-similarity of spatial series is207

the color of spectral noise that they possess. For example, red (Brownian) noise occurs when φ ∝ k−2,208

where k is wavenumber or spatial frequency, proportional to 1/wavelength, indicating self-similarity.209

Pink noise occurs when φ ∝ k−1, and white noise indicates that power is equal across all scales,210

φ ∝ 1. Best-fitting spectral slopes for all variables and transects were identified using simple one- and211

two-slope models after Roberts et al. (2019); see Supporting Information Figures 9–18.212

2.4 Cross Wavelet Power & Wavelet Coherence213

Cross wavelet power is calculated to identify signals in separate spatial series (e.g. amphibian richness214

and precipitation) that have large amplitudes located at the same position in distance-wavenumber215

space. To facilitate comparison, signals are normalized to zero mean and unit variance prior to trans-216

formation. The normalized signals X and Y , are transformed to yield WX and WY . Cross wavelet217

power WXY is calculated such that218

WXY = WXWY ∗ , (3)

where ∗ denotes complex conjugation. Wavelet coherence, R2
n, is calculated to identify parts of signals219

that are coherent, but not necessarily of common high amplitude, such that220

R2
n(s) =

|S{s−1WXY
n (s)}|2

S{s−1|WX
n (s)|2} · S{s−1|WY

n (s)|2}
, (4)

where s, n and Wn(s) are as in Equation 1. S is an operator that smooths along distance and scale221

(Grinsted et al., 2004).222

223

Signals with certain spectral distributions (e.g. red noise) can, by chance, correlate without true224
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interdependence. Therefore, it is important to calculate the coherence between each pair of signals,225

and not simply their cross wavelet power. Torrence & Compo (1998), Grinsted et al. (2004) and others226

have shown that coherence between signals above (assumed) background noise (i.e. spectral distribu-227

tions) can be estimated by first calculating the coherence between large numbers of surrogate datasets228

with the same autoregressive (AR) coefficients as the original data set. In this study, the minimum229

bound for statistically significant coherence (above assumed background noise) per scale, for each tran-230

sect, was calculated from cross wavelet power spectral analysis of 300 random signals. Guided by the231

spectral content of actual biotic and environmental signals, we assumed that each theoretical random232

signal has a red noise distribution, which was generated using the same autocorrelation coefficient as233

the actual input signals. The surrogates also have the same length and number of measurements,234

N , as the actual signals. The 90% significance limit for coherence, which was used to mask Figure235

3, depends only on scale and not position, and was calculated using Monte Carlo methods with the236

PyCWT Python module (Grinsted et al., 2004; Krieger et al., 2020).237

238

The local phase difference (angular offset, 0 ≤ a ≤ 2π) of two signals is given by the complex239

argument of their cross wavelet transform, arg
(
WXY

)
(Grinsted et al., 2004). Figure 3 indicates240

phase difference as arrows measured from horizontal: in-phase, a = 0, B; anti-phase, a = π, C.241

A working example for species richness and elevation, including continuous wavelet transformation,242

cross wavelet power and wavelet coherence calculations, can be found at https://doi.org/10.5281/243

zenodo.XXXXXX.244

3 Results and Discussion245

3.1 Wavelet Transformation of Richness and Environmental Variables246

Spectral analyses of vertebrate species richness and environmental variables are shown in Figures 2 and247

3. Figure 2 shows that highest spectral power, φ (∝ z2, where z is signal amplitude), is concentrated248

at largest scales for all taxa and environmental variables studied. Dependent on taxonomic group,249

from 96% to almost 100% of power resides at wavelengths > 103 km. 30–69% of power resides at250

wavelengths & 104 km. These results reinforce the notion that species richness is dominated by long251

wavelength, latitudinal, variability.252

253

Species richness tends to have a pink noise spectrum (see Supporting Information Figures 9–18).254

Thereby, shorter wavelength features in species richness signals tend to have the lowest amplitudes255

and comprise relatively little (few %) of species richness signal at a particular location. Mammals256

and bats are better characterized by red noise at long wavelengths. This result implies self-similarity257
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across scales, and that signal amplitudes decrease even more rapidly with decreasing wavelength than258

for other taxa. At wavelengths & 103 km, species richness power for amphibians is best characterized259

as blue noise, i.e. φ ∝ k1. This trend is not observed along the entire transect, but indicates that short260

wavelength features can be increasingly important contributors to amphibian richness (see Figure 2f).261

A single spectral slope akin to pink noise can adequately fit the amphibian richness spectrum (see e.g.262

Supporting Information Figure 9f).263

264

We address concerns regarding the accuracy of range maps in two ways. First, we show the results265

of inverse wavelet transforms at scales > 1000 km alongside the results for transformation of the full266

frequency content of the available data. Secondly, we explore the impact of inserting distributions267

of theoretical, hitherto unknown, species in a suite of increasing severe tests for our results and con-268

clusions. White noise was added to the amphibian transect in a systematic set of tests. These tests269

examined changes in calculated spectra when noise with maximum amplitudes of 10%, 50% and 100%270

of the standard deviation of the original signal’s amplitude (in this case = 24 species per pixel) was271

added to the transect prior to transformation. These tests included adding noise at wavelengths . 100,272

. 1000 and . 10, 000 km (Supporting Information Figure 3). As expected, these tests indicated that273

spectral power is least likely to be well constrained at short wavelengths. Nonetheless, these tests274

indicate that even high amplitude uniformly distributed noise does not significantly change the over-275

all spectral characteristics of terrestrial species richness. Finally, we note that that Hurlbert & Jetz276

(2007) suggest that species richness values estimated from range maps are likely to be overestimates at277

short length scales compared to richness estimated from atlas data (e.g. their Figure 5). That result278

indicates that range maps are more likely to generate higher power at short wavelengths than maps279

derived from atlas data. Therefore, spectra derived from atlas data are likely to be even redder than280

those obtained from range maps. In other words, our conclusion that species richness is dominated281

by long wavelength structure is expected to be insensitive to the choice of range or atlas data. In282

fact, atlas data is likely to more strongly emphasize the importance of long wavelength variability for283

determining species richness. We suggest that these observations and results indicate that range maps284

are useful for our purposes.285

286

Although almost no power is concentrated below wavelengths of ∼ 100 km for any of the taxa287

examined here, there are regions of some wavelet transforms which show increased power in the range288

∼ 300–1000 km. This deviation, away from a broadly monotonic decrease in power towards shorter289

wavelengths, is driven principally by species richness within tropical latitudes, and is especially prom-290

inent for songbirds, hummingbirds and amphibians (Figure 2h, j, l). Supporting Information Figure291

19a–f shows that at wavelengths & 1000 km, there is no notable difference between power in species292

richness within or outside the tropics, across the Americas. However, at wavelengths . 1000 km, there293
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is significantly greater power for regions within the tropics. This trend arises because power spectral294

slopes remain close to −2 at shorter wavelengths outside of the tropics (i.e. red noise; Supporting295

Information Figure 19), before increasing to be closer to −1 (i.e. pink noise). We suggest that these296

results are consistent with the concept that topography in tropical regions can generate higher spe-297

cies richness towards the equator via the increased effectiveness of altitudinal variation in habitat at298

isolating species either physically or physiologically (i.e. by being associated with variation in other299

environmental variables such as temperature; Ghalambor et al., 2006; Janzen, 1967). We find the300

effect has a greatest impact on species richness power of hummingbirds and amphibians; the impact301

on bats and songbirds richness appears to be more modest. Tropical increases in species richness of302

carnivorans, and mammals more generally, are much more subdued (Supporting Information Figure303

19).304

305

Elevational transects exhibit red and pink noise spectral characteristics at wavelengths & 103 km306

and . 103 km, respectively, which we note is similar to distance-averaged power from wavelet trans-307

forms of longitudinal river profiles and other topographic transects (Supporting Information Figures 9g,308

9q, 10g, 10q; Roberts et al., 2019; Wapenhans et al., 2021). Precipitation rate, temperature and annual309

temperature range can also be characterized as red and pink noise (Supporting Information Figures310

9h–j, r–t & 10h–j, r–t). Similar results are obtained for latitudinal transects through Africa, Eurasia311

and Australia, as well as across global, latitudinally-averaged sections (see Supporting Information312

Figures 11–23).313

3.2 Coherence between Richness and Environment314

Visual inspection of Figure 2 indicates that there is strong, location- and scale-dependent, similarity315

between the wavelet transforms of transects through species richness and environmental variables. To316

quantify the strength of these relationships we calculate cross wavelet power, which identifies co-located317

high amplitudes in the location-scale domain, and wavelet coherence (see Materials and Methods). Fig-318

ure 3 shows results for carnivorans (which are similar to those for mammals generally), and amphibians319

(which are similar to those for bats, songbirds and hummingbirds). See Supporting Information Figure320

1–2 for analyses of those other taxa. Figure 3a shows cross wavelet power between species richness321

of carnivorans along transect A—A′ and elevation. Almost no short-wavelength (< 103 km) features322

are coherent above a 90% confidence limit. These short wavelength regions contain almost no cross323

wavelet power; 94% of all cross wavelet power is in the region of high coherence colored on Figure 3a,324

which accounts for 30% of the location-scale domain. 79% of the area of the cross wavelet spectrum325

that is significantly coherent resides at wavelengths & 103 km. Distance-averaged cross wavelet power326

for all parts of the power spectrum, not just those parts which are coherent above the 90% significance327
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threshold, is shown to the right of each panel, on a logarithmic scale. Full, unmasked, plots of cross328

wavelet power are shown in Supporting Information Figure 24. Masked and unmasked cross power329

plots for other transects and global latitudinal averages are shown in Supporting Information Figures330

25–32. Distance-averaged cross wavelet power between all taxa and environmental variables studied is331

shown in Supporting Information Figures 19–23, panels g–ad.332

333

Cross wavelet power between amphibians and elevation is also highest at long wavelengths, al-334

though overall there is a smaller proportion of the two signals that is coherent: 78% of the plot region335

is masked in Figure 3e (gray regions). Only a small part of the cross wavelet transform for amphibians336

and elevation is coherent below wavelengths of ∼ 5000 km, and that part lies near the centre of the337

transect, i.e. within the tropics. Distance-averaged power outside the tropics, plotted to the right338

of Figure 3e as a gray curve, is an order of magnitude lower than within the tropics, especially at339

wavelengths . 3000 km. This observation is in contrast to cross power between species richness of340

carnivorans and elevation, where there is almost no difference between the results within and outside341

of the tropics, across all scales. These results may indicate that carnivorans are less affected by “moun-342

tain passes” (sensu Janzen, 1967) in the tropics, compared with amphibians (cf. Antonelli et al., 2018;343

Eronen et al., 2015; Rahbek et al., 2019; Rolland et al., 2015). At wavelengths ∼ 103 km, carnivoran344

species richness is most coherent with elevation and mean annual temperature atop terrestrial plateaux345

(e.g. Rocky-Mountains-Colorado Plateau and Altiplano, between 4000−7000 km and 13, 000−14, 000346

km distance along transect A—A′, respectively; Figures 1–3). An obvious interpretation is the local347

importance of tectonics for determining biodiversity (Antonelli et al., 2018).348

349

Statistically significant (above background red noise), coherent cross wavelet power between carni-350

voran species richness, mean annual precipitation rate, temperature and annual temperature range is351

shown in Figure 3b–d. Results for amphibians are shown in panels f–h. Cross power between amphi-352

bian species richness and precipitation rate, temperature, and temperature range tends to be higher353

within the tropics compared to outside the tropics at wavelengths . 3000 km (cf. grey, blue, black354

lines in Figure 3). Those differences are absent or reduced for carnivorans. Furthermore, a smaller area355

of the power spectra of these three climatic variables is significantly coherent with carnivoran richness,356

compared to amphibian richness (cf. extent of gray masks in Figure 3). One likely interpretation of357

these results is that carnivorans are less sensitive to changes in those variables than amphibians (e.g.358

Rolland et al., 2018). Calculated phase indicates long-wavelength anticorrelation between elevation359

and species richness for both carnivorans and amphibians (left-pointing arrows in Figure 3a and e;360

phase angle, a = π; see Materials and Methods). Highly coherent long-wavelength anticorrelation361

between amphibian species richness and annual temperature range is also observed across the entire362

transect. Highly coherent, long-wavelength cross power between precipitation rate or temperature,363
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and species richness of both carnivorans and amphibians, is in phase, i.e. there is positive correlation364

at these scales. This result is in agreement with the idea that faster diversification rates contribute365

to heightened species richness, since it suggests that both taxonomic groups benefit from increased366

energy and higher productivity associated with greater availability of heat and water (cf. Allen et al.,367

2006).368

369

3.3 Global and Local Species Richness and Environment370

These results for the Americas can be compared to transects from Australia, Eurasia and Africa. For371

Australia, similar trends in power spectral slopes, distance-averaged power and cross wavelet power372

are observed (Figure 1: B—B′; Supporting Information Figures 4, 11–12, 20, 25–26). However, for373

Australia there is almost no difference in power or cross power between tropical regions and regions374

outside the tropics. We note, however, that the Australian transect does not include the entirety of375

the tropics; it only spans latidudes between 11.2◦S–37.6◦S. Signals are mostly coherent at wavelengths376

& 103 km, and the same pattern of correlation/anticorrelation is observed with climatic variables as377

that recovered for the Americas (Supporting Information Figures 25–26). In Africa, songbirds and378

amphibians have greater species richness power within the tropics but the differences outside of the379

tropics are not as stark as for the Americas (Figure 1: C—C′; Supporting Information Figure 21a–f).380

This result may reflect differences in Cenozoic paleoclimatic history between Africa and the Americas381

(Hagen et al., 2021). The greatest difference between cross power within and outside the tropics is for382

precipitation rate, suggesting that water availability is a more important control species richness for all383

African taxa studied here. Wavelet coherence indicates that, across Africa, carnivoran species richness384

does not correlate with environmental variables, whereas species richness of amphibians is strongly385

positively correlated with precipitation rate at long wavelengths, in agreement with the findings of386

Buckley & Jetz (2007). Anticorrelation is observed between amphibian species richness and temper-387

ature across Africa. Results for Eurasia are dominated by the presence of the Tibetan Plateau, and388

the low proportion of the transect within tropical latitudes (Figure 1: D—D′; Supporting Information389

Figures 6, 15–16, 22, 29–30). Similar trends to the Americas are observed, albeit with generally lower390

cross power and coherence.391

392

Mean terrestrial values of each variable across all latitudes globally were transformed into the393

location-scale domain. Distance-averaged wavelet power spectra of the resulting transects have spec-394

tral slopes between −2 and −1 (red to pink noise), reflecting the importance of long-wavelength trends.395

Species richness power for all taxa, except Mammalia and Carnivora, is at least an order of magnitude396

lower outside of tropical latitudes, at wavelengths . 3000 km, consistent with results obtained from397
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transforming the American transect (Figures 2 and 3). This result suggests that the increase in species398

richness power at short wavelengths may be a global phenomenon, reflecting sensitivity of tropical399

species to local climatic effects.400

401

Figure 4a–f shows a summary of results for the transect across the Americas, A—A′. Panels a and402

b show inverse wavelet transforms generated using only the the longest 20% of scales (wavelengths403

& 3750 km; approximately one quarter of the length of the transect), for amphibian and carnivoran404

species richness respectively. Those taxa have significantly different modes of life and their wavelet405

power, cross power and coherence with environment exhibit the greatest differences of any taxa stud-406

ied. These low-pass filtered series account for ∼ 41 and ∼ 11% of species richness in terms of mean407

difference to input, respectively. Figure 4c–f shows inverse wavelet transforms of environmental series408

filtered in the same way. Coherence, R2
n, between the filtered series and amphibian (green) and carni-409

voran (purple) species richness trends is annotated on each panel. These results for the Americas are410

consistent with global averages, although coherence is generally lower for global results since regions411

of common power may not be generated at the same longitudes (see Figure 4g–l).412

413

3.4 Transfer Functions Between Environment and Species Richness414

It is useful to derive ‘rules-of-thumb’ to estimate species richness from environmental variables. This415

study indicates that such conversion schemes (transfer functions) are likely to be particularly useful416

at large scales where most species richness appears to be determined, and where coherence with417

environmental variables is highest. In the scale-distance domain, after wavelet transformation (see418

Methods and Materials), species richness W of any given taxon X can be expressed:419

WX(x, s) = ZXε(x, s) · ε(x, s) + η, (5)

where x is distance, s is scale, and η is noise or contributions from variables that have not been420

considered. ZXε refers to the admittance (transfer function) between a set of environmental variables ε,421

and richness in the scale-distance domain, WX . For any individual variable Y within ε, the admittance422

between WX and WY can be expressed:423

ZXY (x, s) =
WXWY ∗

WYWY ∗ , (6)

where ∗ denotes complex conjugate. Thereby, a species richness signal X can be estimated from424

calibrated admittance ZXY , by convolving the inverse transform of ZXY with Y (see Methods and425

Materials; Torrence & Compo, 1998).426
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427

Table 1 and Figure 4 show estimates of admittance between environmental variables and amphibian428

and carnivoran richness series for the largest 25% of scales (wavelengths ≥ 3756 km). The mean of429

the transfer function between mean annual precipitation (i.e. WY ) and amphibian richness (WX) in430

the Americas, for example, is 12.7+5.3
−3.2 spx/m. These scales account for & 60% of observed amphibian431

species richness. Stated uncertainties are distances to 1st and 3rd quartiles of admittance values, across432

all (x, s) space for s ≥ 3756 km. Calculated admittance is most likely to be a reliable rule of thumb433

for converting environmental variable values into species richness when coherence is high. In Table434

1, bold values indicate values where coherence is > 0.5. For example, consider the mean large-scale435

coherence between amphibian richness and precipitation, which is 0.76 ± 0.2. This result, coupled436

with the associated high positive admittance value, is suggestive of amphibian richness dependence on437

large-scale precipitation patterns. Compare that result to the relatively low mean large-scale coher-438

ence between American carnivoran richness and annual temperature range, which is only 0.22 ± 0.2,439

reflecting their likely independence. A comparison with results generated using global mean species440

richness and environmental variables indicates that these rules are generally applicable (see Table 1441

& Figure 4). Such simple rules-of-thumb appear to provide a means to predict species richness from442

external variables at large (& 1000 km) scales.443

444

Table 1: Rules of thumb to convert values of environmental variables into species richness. E =
elevation, Pn = mean annual precipitation, Tm = mean annual temperature, ∆T = annual temperature range
(see Figures 1–2). Z = admittance (transfer function) between environmental variables and species richness
at large scales (> 3756 km); subscripts AA & MA indicate American amphibians & mammals; subscripts AG
& MG indicate global amphibians & mammals; units are spx/km, spx/m or spx/◦C, where spx = species per
pixel. R2

n = coherence between environmental variable and species; bold = admittance and coherence values
for species-variable relationships with mean R2

n > 0.5

Variable ZAA R2
n ZMA R2

n ZAG R2
n ZMG R2

n

E, km −7.6+3.0
−2.5 0.52± 0.3 −1.7+0.6

−1.1 0.62± 0.2 2.5+15.5
−17.7 0.14± 0.1 −1.3+5.5

−6.4 0.13± 0.1
Pn, m 12.7+5.3

−3.2 0.76± 0.2 2.5+2.0
−0.9 0.51± 0.2 14.0+10.1

−7.5 0.41± 0.2 1.8+2.2
−2.5 0.21± 0.2

Tm, ◦C 0.9+0.8
−1.0 0.31± 0.2 0.2+0.2

−0.3 0.28± 0.2 −0.4+3.0
−2.3 0.46± 0.2 −0.3+0.7

−0.5 0.55± 0.3
∆T, ◦C −0.4+0.9

−0.5 0.26± 0.3 −0.1+0.3
−0.1 0.22± 0.2 −0.7+0.7

−0.7 0.28± 0.2 0.0+0.1
−0.2 0.29± 0.2

3.5 Drivers of Species Richness445

In the introduction of this paper we described five hypotheses to test. First, we hypothesized that446

species richness is highly coherent with environmental variables across all scales. Given the spectral447

analyses we present, which indicate that most species richness does not have statistically significant co-448

herence with environmental variables at wavelengths . 1000 km at most latitudes, this hypothesis can449

be rejected. Our second hypothesis—species richness is most coherent with external variability at small450
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scales—is also thus rejected. Our third hypothesis—species richness is most coherent with changes in451

environment at large scales—was found to be reasonable. Generally, our results indicate that species452

richness is most coherent with environment at wavelengths & 103 km, where highest species richness453

power also resides. Our fourth hypothesis—that coherence of species richness with external variables454

depends on taxonomic group—was also found to be reasonable. For example, amphibian richness is455

found to be highly coherent with temperature range at scales > 5000 km, whereas carnivoran richness456

has very low coherence at these scales (cf. Figure 3d and 3h). Furthermore, amphibian richness seems457

to be more coherent with precipitation and temperature within the tropics, while carnivoran richness458

is not. Our fifth and final hypothesis—that species richness does not directly depend on environment,459

instead, species richness depends upon biotic interactions—requires modification. Species richness was460

found to have both high and low coherence with environmental variables, depending on location, scale461

and the environmental variable being considered. We have shown that wavelet transformation provides462

a means to identify coherence in the space-frequency domains. Our preliminary assessment of species-463

species interactions indicates that their coherence is also scale- and location-dependent (Supporting464

Information Figure 2). However, we note that calculated coherence and cross power between species465

tends to be lower than that between species and environmental variables. We note that historical466

effects, i.e. speciation/extinction rates over geologic time, are not identified within this study, solely467

modern correlations between variables, although long-term speciation/extinction rates may themselves468

depend on environment (e.g. Skeels et al., 2022). Nonetheless, we tentatively suggest that these res-469

ults indicate that environment is more important in determining species richness than species-species470

interactions.471

472

3.6 Implications for Macroecological Biodiversity Patterns473

A principal result of this study is that terrestrial species richness tends to be most coherent with474

topography, precipitation and temperature at long wavelengths (> 103 km). These results indicate475

that large-scale variation in tectonic and climatic processes play a governing role in generating the476

latitudinal diversity gradient (Field et al., 2009). However, our results also indicate that the distri-477

bution of taxa, and their coherence and phase with environmental variables, is highly location- and478

scale-dependent. For example, whereas carnivorans and amphibians are in phase and coherent with479

mean annual precipitation and temperature at wavelengths > 104 km, that is not true at smaller scales480

(i.e. shorter wavelengths). Significant deviations from the latitudinal diversity gradient indicate that481

external variables such as elevation, climatic patterns and tectonic history, play important roles in482

determining biodiversity at specific locations and scales (e.g. Archibald et al., 2010, 2013; Hagen et al.,483

2021; Jones et al., 2022; Mannion et al., 2014; Saupe, 2021; Song et al., 2020; Yasuhara et al., 2017).484
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485

Spectral analyses highlight the importance of the tropics for biodiversity, in particular for amphi-486

bians, for which local changes in elevation and mean annual temperature (but not annual temperature487

range) are highly coherent with species richness. These results are consistent with the idea that in-488

creased resource availability in the tropics may generate higher primary productivity, supporting a489

greater number of individuals within a given area (i.e. higher carrying capacity), and therefore a490

greater number of different species (e.g. Fritz et al., 2016; Gillman et al., 2015; Hawkins et al., 2003;491

Kessler et al., 2014). Our results support the suggestion that elevated topography at the tropics is492

more likely to result in increased species diversity when compared to higher latitudes (Ghalambor493

et al., 2006; Janzen, 1967; Polato et al., 2018). However, this trend is not uniformly observed across494

taxa and for all continents. Species richness of carnivorans, for example, has no significant coherence495

with elevation or temperature range in the tropics, which suggests that this group is largely unaf-496

fected by the challenges posed by tropical mountain ranges. This might reflect the group’s relatively497

unusual biogeographical history and seemingly high dispersal ability, with carnivorans originating at498

high latitudes and dispersing into the tropics, with net diversification rates comparable in tropical499

and temperate regions (Rolland et al., 2015). Power spectral slopes for such taxa are steeper (more500

negative) at shorter wavelengths, whereas more environmentally-sensitive taxa, such as hummingbirds501

and amphibians, have shallower spectral slopes at longer wavelengths within tropical latitudes.502

503

Cross wavelet power and coherence indicate that species richness is decoupled from short wavelength504

(. 103 km) changes in elevation, temperature, annual temperature range and precipitation at nearly505

all locations, except for certain taxa within the tropics. Locally, uplifted topography can be highly co-506

herent with species richness. Trends across the Americas are reflected in global, latitudinally-averaged,507

transects and for other continents. In general, the species richness of taxa such as hummingbirds and508

amphibians is strongly and positively correlated with precipitation rate and temperature, except in509

Africa, where high temperatures may limit availability of water.510

511

3.7 Conclusions512

In summary, wavelet power spectral analysis provides insight into the coherence between species rich-513

ness and environmental variables. Species richness is shown to vary as a function of location and scale.514

Comparisons with topography, temperature and precipitation show that species richness tends to be515

highly coherent with external forcing at large scales (wavelengths > 104 km). Phase difference between516

signals reveals that species richness is in-phase with precipitation and temperature, and anti-phase with517

elevation and annual temperature range, at these scales. However, these relationships are dependent518
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on scale and taxon. At smaller scales, richness of bats, songbirds, hummingbirds and amphibians tends519

to be greatest in the tropics, where calculated coherence highlights the importance of topography and520

temperature range for determining species richness. Carnivorans, in contrast, show little coherence521

with environmental variables at these scales in the tropics. Instead, they are most coherent in the522

vicinity of terrestrial plateaux, for example the Colorado Plateau and Altiplano. These observations523

suggest that large scale (> 103 km) variations in environmental variables determine almost all of the524

distribution of terrestrial vertebrates. Smaller scale (. 103 km) variation can play an important role525

locally, particularly within the tropics. These results highlight the general importance of environ-526

mental change at the scale of tens degrees of latitude for determining biodiversity. They also indicate527

that changes at smaller scales are comparatively more important in the tropics for determining species528

richness. Crucially, these results could be used to predict the changes in biodiversity that could arise529

from different future Earth climate change scenarios.530
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Figure 1: Global patterns of species richness and environment. (a) All Mammalia (M , mammals),
(b) Carnivora (Ca, carnivorans), (c) Chiroptera (Ch, bats), (d) Passeriformes (Pa, songbirds), (e) Trochilidae
(Tr , hummingbirds), (f) Amphibia (Am, amphibians); spx = species per 10×10 km pixel (Jenkins et al.,
2013); horizontal lines = Tropics of Cancer (northern), Capricorn (southern), and Equator; A—A′ = transect
through Americas investigated here; B—B′, C—C′, D–D′ = transects investigated in Supporting Information.
Global latitudinal mean transects also studied therein and in Figure 4. (g) Elevation (E) from ETOPO1 global
model with horizontal resolution of 1 arc-minute (Amante & Eakins, 2009); filled circles on A—A′ = Colorado
Plateau/Mexican Highlands and Andean Altiplano. (h)–(j) Mean annual precipitation rate (Pn), temperature
(Tm), and temperature range (∆T ) from 1981–2010 (Karger et al., 2017).
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Figure 2
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Figure 2 (preceding page): Wavelet transforms of species richness and environment. (a) Black
line = species richness of Mammalia (M ) along transect A—A′; gray bands = 100 km wide swaths centred on
A—A′; blue bands = tropical latitudes; white circles are shown every 1000 km, see transect A—A′ in Figure 1;
black arrow and symbols above top axis = Equator and tropics as in Figure 1. Yellow line = inverse wavelet
transform of signal, filtering to pass only wavelengths > 1000 km; mean difference to input signal = 3.0 ± 3.3
(1σ) spx. (b) Continuous wavelet transform of mammal richness spatial series (black line in panel a). Colors
= rectified spectral power as a function of location and scale (wavelength); spx = species per pixel. (c)–(t)
As (a)–(b) but for Carnivora (Ca), Chiroptera (Ch), Passeriformes (Pa), Trochilidae (Tr), Amphibia (Am),
elevation (E), mean annual precipitation rate (Pn), temperature (Tm) and temperature range (∆T ) along
transect A—A′ (Amante & Eakins, 2009; Jenkins et al., 2013; Karger et al., 2017). Mean differences between
signals and inverse transforms filtered to remove wavelengths < 1000 km = 0.7 ± 0.6 spx (Ca), 1.5 ± 2.1 spx
(Ch), 11.6 ± 16.7 spx (Pa), 1.5 ± 2.5 spx (Tr), 2.9 ± 5.3 spx (Am), 0.36 ± 0.3 km (E), 0.35 +0.5

−0.35 m/yr (Pn),
2.2 ± 2.2 ◦C (Tm), and 1.2 ± 1.1 ◦C (∆T ). See Supporting Information for results for transects B—B′, C—C′,
D—D′ and average global latitudinal transect. Note high spectral power concentrated at wavelengths > 103

km for all series. High species richness power (darker patches) at shorter wavelengths tends to be concentrated
within the tropics.

Figure 3: Coherence, cross power, and phase difference between species richness and environ-
mental variables. (a) Comparison of Carnivora (Ca) and elevation (E) as a function of location and scale
along transect A—A′ (Figures 1–2). Colors = cross wavelet power; yellow = co-located large (positive or
negative) amplitude signals. Gray masks regions with coherence below 90% significance level (see body text,
Materials and Methods). Arrows = phase difference between spatial series: right/left pointing = in-phase/anti-
phase (see guide above panels b–d). Black arrow and symbols above plot = Equator and tropics, as in Figure
1. Side panel: black/blue/gray lines = distance-averaged cross wavelet power of all/tropical/non-tropical
latitudes (see Figure 2). High cross power = large co-located amplitudes in the two spatial series. (b)–(d)
Comparison of Carnivora and mean annual precipitation rate (Pn), temperature (Tm) and annual temperature
range (∆T ). (e)–(h) Comparison of amphibian species richness and same environmental variables as panels
a–d. Statistically significant coherence is concentrated at wavelengths > 103 km, where species tend to be in-
or anti-phase with environmental variables. The least statistically significant coherence is for Carnivora and
temperature range (note gray mask across most of panel d).
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Figure 4: Summary of coherence between species richness and environmental variables at large
scales. (a-f) Species richness and environmental variables along Americas transect A—A′ (see Figures 1–
2). Blue band = tropical latitudes; black arrow = Equator; symbols above x axis = Tropics of Cancer and
Capricorn. (a) Amphibian species richness. Gray = full-resolution observed species richness trend (see Figure
2k). Green = inverse wavelet transform showing filtered amphibian species richness at wavelengths ≥ 3756 km
(i.e. one quarter of transect length scale). Mean difference between gray and green lines = 4.4 spx. (b) As (a)
but for carnivoran species richness. Mean difference between gray and green lines = 1.2 spx. (c)–(f) As (a)–(b)
but for elevation, mean annual precipitation, mean temperature, and annual temperature range, respectively.
Z, R2

n = mean admittance and coherence, respectively, between species richness and given environmental
variable. Green text = admittance for amphibian species richness; purple text = admittance for carnivoran
species richness. (g)–(l) As (a)–(f) but for mean global latitudinal transects.
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