Transcriptional mapping of the macaque retina and RPE-1 choroid reveals conserved inter-tissue transcription drivers 2 and signaling pathways 3

4	
5 6	Ameera Mungale ^{1#} , David M. McGaughey ^{2#} , Congxiao Zhang ³ , Sairah Yousaf ¹ , James Liu ¹ , Brian P. Brooks ⁴ , Arvydas Maminishkis ³ , Temesgen D. Fufa ¹ , Robert B. Hufnagel ^{1*}
7	Dhan I. Drooks , Hivydas Manninsikis , Tenesgen D. I dia , Robert D. Humager
8	¹ Medical Genetics and Ophthalmic Genomics Unit, Ophthalmic Genetics and Visual Function
9	Branch, National Eye Institute, National Institutes of Health
10	² Bioinformatics Group, Ophthalmic Genetics and Visual Function Branch, National Eye
11	Institute, National Institutes of Health
12	³ Section on Epithelial and Retinal Physiology and Disease, Ophthalmic Genetics and Visual
13	Function Branch, National Eye Institute, National Institutes of Health
14	⁴ Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual
15	Function Branch, National Eye Institute, National Institutes of Health
16	
17	[#] Equal contributors
18	
19	*Correspondence: Robert B. Hufnagel (<u>robert.hufnagel@nih.gov</u>): 10 Center Drive, rm 10N109,
20	Bethesda, MD 10N109.
21	
22	Running title: Conserved primate macular transcriptome
23	
24	
25	
26	
27	
28 29	
29 30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
11	

46 Abstract

- 47 Purpose: The macula and fovea comprise a highly sensitive visual detection tissue that is
- 48 susceptible to common disease processes like age-related macular degeneration (AMD). Our
- 49 understanding of the molecular determinants of high acuity vision remains unclear, as few model
- 50 organisms possess a human-like fovea. We explore transcription factor networks and receptor-
- 51 ligand interactions to elucidate tissue interactions in the macula and peripheral retina and
- 52 concomitant changes in the underlying retinal pigment epithelium (RPE)/choroid.
- 53
- 54 Methods: Poly-A selected, 100 bp paired-end RNA-sequencing (RNA-seq) was performed
- 55 across the macular/foveal, perimacular, and temporal peripheral regions of the neural retina and
- 56 RPE/choroid tissues of four adult Rhesus macaque eyes to characterize region- and tissue-
- 57 specific gene expression. RNA-seq reads were mapped to both the macaque and human genomes
- 58 for maximum alignment and analyzed for differential expression and Gene Ontology (GO)
- 59 enrichment.
- 60
- 61 Results: Comparison of the neural retina and RPE/choroid tissues indicated distinct, contiguously
- 62 changing gene expression profiles from fovea through perimacula to periphery. Top GO
- 63 enrichment of differentially expressed genes in the RPE/choroid included cell junction
- 64 organization and epithelial cell development. Expression of transcriptional regulators and various
- disease-associated genes show distinct location-specific preference and retina-RPE/choroid
- 66 tissue-tissue interactions.
- 67
- 68 Conclusions: Regional gene expression changes in the macaque retina and RPE/choroid is
- 69 greater than that found in previously published transcriptome analysis of the human retina and
- 70 RPE/choroid. Further, conservation of human macula-specific transcription factor profiles and
- 71 gene expression in macaque tissues suggest a conservation of programs required for retina and
- 72 RPE/choroid function and disease susceptibility.

73 Introduction

The retina is a thin tissue of the posterior eye (range: $166.9 \pm 20.9 \,\mu\text{m} - 271.4 \pm 19.6 \,\mu\text{m}[1]$

- respective respective
- is composed of multiple layers, which contain seven cell classes including rod and cone
- photoreceptors, in apposition with the retinal pigment epithelium (RPE), which is underlaid by
- the choroid. The choroid is a vascular structure that supports the outer retina, the RPE is
- necessary for maintaining healthy photoreceptors, and rods mediate dark-adapted vision while
- 80 cones are responsible for color vision[2, 3]. The relative composition of cell types varies across
- 81 the retina, and provides visual function specializations, such as high acuity color vision at the
- 82 fovea, which is cone photoreceptor rich and rod depleted. Furthermore, the neural retinal layers
- change in thickness and morphology, including the inner and outer nuclear layers of the
- 84 photoreceptors, whereas the choroidal layer has increased thickness at the macula but the
- morphology of the entire layer remains relatively unchanged[4, 5]. Many genes have varied
- 86 expression in different cell types and tissue layers, with 819 genes implicated in heritable retinal
- 87 degenerations as of 2022 (RetNet, https://sph.uth.edu/RetNet/)[6, 7]. While retinal degeneration
- 88 may initiate in a single tissue layer, eventually the disease progresses across all tissue layers [8].
- 89 Importantly, retinal manifestations in many diseases are region specific. For example, Stargardt
- 90 disease and Best disease primarily affect the macula and cause loss of central vision first,
- 91 whereas retinitis pigmentosa initiates in the rod-rich periphery[9-12]. We hypothesize that this
- 92 location-specific disease susceptibility of the retina is due to cellular specialization and region-
- dependent molecular interactions, which we can assess by regional layer-specific gene
- 94 expression profiling of healthy retinae.
- 95

96 Previous investigations of the transcriptomic landscape of the human retina support a significant 97 differential gene expression between the retina and the RPE/choroid/sclera tissue layers as well 98 as across macular and peripheral regions, as described by Li et al., 2014[13]. Comparison of 99 gene expression between the nasal and temporal peripheries of retina and RPE/choroid/sclera 100 tissues indicated little to no variability, yet macular and peripheral profiles remained distinct in 101 each tissue[13]. Gene expression across the retina has shown to be consistent with the spatial distribution of photoreceptors and ganglion cells, and RPE-specific genes appear to be enriched 102 103 in the periphery over the macula as outlined by Whitmore et al., 2014[14]. Further 104 characterization of gene expression between foveal and peripheral retina has been conducted 105 using single-cell RNA sequencing in both primate (*Macaca fascicularis*) by Peng et al., 2019[15] 106 and human retina by Voight et al., 2019[16]. These studies showed variability in both cell type

- 107 distribution and gene expression between foveal and peripheral retina[15, 16]. While it has been
- 108 well established that regional differences exist across tissue layers in the primate retina, the
- 109 molecular drivers of these differences remain unclear.
- 110
- 111 Here we generate an RNA-seq dataset from adult Rhesus macaque (*Macaca mulatta*) eyes that
- 112 reflect the changing photoreceptor composition of the contiguous macular/foveal, perimacular,
- and peripheral regions to determine tissue- and location-dependent differential gene expression
- 114 of the neural retina and RPE/choroid. The use of matched retina and RPE/choroid tissue biopsies
- in this analysis with an additional perimacular sample provides a contiguous assessment of gene
- 116 expression across location as opposed to a binary macular vs periphery comparison and allows
- 117 for a more comprehensive look at patterns of gene expression and their related pathways and

- 118 ontologies. We additionally explore conservation of these shared and distinct pathways through a
- 119 meta-analysis comparing our macaque datasets to previously published human data. Finally, we
- 120 examine gene regulation via transcription factors and tissue-tissue interactions using
- 121 ligand/receptor analysis to understand differences in the macular and peripheral retina and the
- 122 affiliated changes in the RPE/choroid.

124 Methods

125

123

126 <u>Animal Care</u>

- 127 All experimental protocols were approved by the National Eye Institute Animal Care and Use
- 128 Committee. Procedures were performed in accordance with the United States Public Health
- 129 Service policy on the humane care and use of laboratory animals.
- 130
- 131 <u>Tissue Acquisition</u>
- 132 Postmortem eyes were enucleated from two adult Rhesus monkeys (Macaca mulatta), aged 13
- 133 and 18 years. Two-millimeter punch biopsies were removed from macular/foveal, perimacular,
- temporal, and nasal regions of the retina. Following the biopsy, the tissues were separated into
- 135 layers of neural retina and RPE/choroid using microdissection techniques. Biopsies were
- 136 optimized for smallest diameter in other macaque samples in order to obtain the minimal number
- 137 of cells required for RNA-sequencing. Optimization was performed by measuring total RNA
- 138 yield in different sized biopsy samples as below and requiring a minimum of 200 ng as input for
- 139 RNA-seq.
- 140
- 141 <u>RNA Extraction</u>
- 142 Total RNA was isolated from fresh tissues using the PicoPureTM RNA Isolation Kit (Applied
- 143 Biosystems, Waltham, Massachusetts, USA) following mortar and pestle tissue homogenization.
- 144 Extracted RNA samples were checked for quality using the 2100 Bioanalyzer (Agilent
- 145 Technologies, Santa Clara, CA, USA) and only samples with RIN value > 6.5 were used (Range
- 146 1 10).
- 147
- 148 <u>RNA sequencing</u>
- 149 Extracted RNA was prepared into 100 bp libraries for paired-end, poly-A-selected RNA
- 150 sequencing on the Illumina HiSeq4000 at the NIH Intramural Sequencing Center.
- 151
- 152 Bioinformatic Analysis
- 153 Briefly, reads were quantified against the macaque genome Mmul_8.0.1 using Salmon pseudo-
- alignment transcript quantification tool (version 0.13.0; Patro et al., 2017)[17], imported into R
- 155 with tximport[18] and analyzed for differential expression using DESeq2, using the Rhesus
- 156 macaque sample as a covariate [19]. Transcript reads were additionally aligned to the human
- 157 genome (GRCH38, gencode version 30 [20], to supplement any unquantified genes. To select the
- 158 gene name for each macaque transcript, we used the HGNC Comparison of Orthology
- 159 Predictions[21] data, aggregated by the hcop R package (<u>https://github.com/stephenturner/hcop</u>).
- 160 We counted the number of sources supporting each gene ID to transcript and selected the gene
- 161 ID with the most support, as detailed in <u>https://github.com/davemcg/macaque_macula_RNA-</u>
- 162 <u>seq/blob/master/analysis/01_QC_prelim_analysis.Rmd</u>.
- 163

- 164 Genes were considered to be differentially expressed based on IHW[22] corrected p value <
- 165 0.05. Gene lists were then assigned gene ontologies using the clusterProfiler "enrichGO"
- 166 function[23]. 167
- 168 For the heatmap visualizations, we used length-scaled transcripts per million (TPM)
- 169 quantification from tximport scaled by library size with the edgeR[24] "calcNormFactors"
- 170 function. The heatmaps were made with the R package ComplexHeatmap[25].
- 171

172 Human single cell transcriptome data from the scEiaD resource at plae.nei.nih.gov was searched

- 173 for machine predicted RPE cells from fovea or peripheral punches. We found 217 cells, 159
- 174 from the fovea and 58 from the periphery, across four studies[26-30]. The Seurat object was
- downloaded on 2022-01-14 from plae.nei.nih.gov and subsetted to these 217 cells. The Seurat
 object was converted to a SingleCellExperiment object to run wilcox and t tests with the scran
- 177 "findMarkers" test and used the study as a covariate. Genes were kept which had both a wilcox
- 178 AUC (area under curve) greater than 0.7 (1 is best), an abs(log2)fold change greater than 0.7, and
- a FDR corrected p value < 0.01. For the overlap testing we kept genes that had a padj < 0.01 in
- 180 each comparison (single cell human RPE, bulk human RPE-choroid, or bulk macaque RPE-
- 181 choroid) and the direction of the fold change between fovea and peripheral was the same. The
- 182 venn diagram was created with the R package eulerr (https://cran.r-
- 183 project.org/web/packages/eulerr/citation.html).
- 184

185 For the exact commands used in the analysis of this data, we make our Snakemake[31]

- 186 reproducible workflow available at <u>https://github.com/davemcg/macaque_macula_RNA-seq.</u>
- 187188 **Results**
- 189

190 We performed RNA-seq on 2 mm retina and RPE/choroid tissues of 4 adult Rhesus macaque

- 191 eyes in each of the central macular (foveal), perimacular, and peripheral regions (Fig. S1). Tissue
- 192 dissections and RNA extractions were optimized for minimal input samples (<1 μ g) to maximize
- spatial resolution. Principle component analysis (PCA) visualization indicates that samples group
- primarily by tissue. Foveal and peripheral samples generally cluster furthest from each other, and
- 195 perimacular samples cluster in between (Fig. S2). We then assessed overall gene expression by
- 196 tissue layer and location as well as differential gene expression between foveal samples and other
- 197 peripheral samples (Table 1).
- 198

199 Analysis of the foveal versus peripheral regions in the retina and RPE/choroid depicted distinct

- sets of differentially expressed genes in each tissue layer, with 9644 and 7925 differentially
- 201 expressed genes in the retina and RPE/choroid, respectively (Padj < 0.05) (Table 1). Many of the
- significantly differentially expressed genes are known to have tissue-specific roles in
- 203 development and disease (Fig. 1A, 1B). Retinal diseases also manifest uniquely at particular
- regions of the RPE or retina. For example, Age-Related Macular Degeneration (AMD) is thought
- to begin in the macular RPE[32], Late Onset Retinal Degeneration manifests in the peripheral
- 206 RPE[33], Retinitis Pigmentosa causes photoreceptor loss in the peripheral retina[10], and finally,
- 207 Cone-Rod Dystrophies primarily affect photoreceptors in the central retina[34].
- 208

In order to confirm that the differentially expressed genes across locations further reflect cellular

- 210 composition of different tissues, we used expression patterns of published rod-enriched genes as 211 identified in Holt et al., 2015[6] and Mustafi et al., 2016[35]. We observed correlated gene
- expression between eyes and animals, as well as a progressive increase in rod-enriched gene
- expression between eyes and annuals, as wen as a progressive increase in rod-enrened gene 213 expression from the fovea to the perimacula and then to the periphery, reflecting changes in
- neural retina composition (Fig. S3A). In this list of rod enriched genes, we find that our
- peripheral retina samples are 2.8 fold enriched in rod signal relative to the fovea (t test p < 3.5 e-
- 216 12). The perimacular region was enriched in rod signal by 1.7 fold over the fovea (p < 1.1 e-09).
- 217 The enrichment of cone gene expression between the fovea and peripheral retina samples was
- 218 1.6 fold (p < 0.02) (Fig. S3B, Table S1). Among the RPE samples the enrichment of rod and
- 219 cone markers was less substantial and not significant (Figure S3C).
- 220

221 Next, we performed an unfiltered analysis of the differentially expressed, contiguously changing

- genes from fovea to perimacula to periphery in the RPE/choroid. This analysis highlights
- stepwise changes due to changing photoreceptor composition in the cone-predominant macula,
- rod-predominant periphery, and admixed perimacula, and how these morphological changes in
- the neural retina may affect changing gene expression in the RPE/choroid. Differential
- expression analysis revealed distinct blocks of genes with low expression in the fovea that
- increase moving outward through the perimacula to the periphery, and other genes that are
- highly expressed in the fovea but progressively decrease moving outwards (Fig. 1C). We observe
- enrichment for gene ontologies including cell junction organization and epithelial celldevelopment, as well as urogenital and renal system development (Fig. 1D).
- 231

232 Next, we sought to understand the transcriptional regulators driving the spatial and inter-tissue 233 differences in gene expression. Using a list of all known transcription factors in humans, we 234 identified a subset which is differentially expressed by location in each of the retina (Fig. S4B) 235 and RPE/choroid datasets (Fig. 1E). After conducting a literature review, we further identified 236 transcription factors with known associations in the respective tissues. In the retina and RPE, 237 distinct sets of fovea-enriched and periphery-enriched transcription were elucidated. Our data 238 shows three transcription factors, NFRF1, IRX2, and ZFHX4, to be differentially expressed in 239 both neural retina and RPE/choroid and show a similar pattern in independent human data 240 curated from eyeIntegration[36] (Fig. S5). Interestingly, ZFHX4 appears to be enriched in the 241 macular neural retina and the peripheral RPE/choroid, whereas NFRF1 and IRX2 expression is present in both tissues.

242 243

244 We then analyzed tissue-tissue interactions using ligand and receptor characterizations from the 245 CellPhoneDB database[37]. After converting protein names from the database to gene names via 246 the Uniprot conversion tool and merging the data with our location-based differential expression, 247 we generated lists of distinct up- and down-regulated interactions in which both interacting 248 partners in each tissue were either up- or downregulated in the fovea over the periphery (Table 249 2). Pathway analysis on these gene lists shows enrichment in the upregulated interactors for cell 250 adhesion pathways (Fig. 2A, C) and that downregulated interactors were highly enriched for Wnt 251 signaling in kidney disease and the ErbB signaling pathway, both of which are heavily involved 252 in tissue development, including ocular development (Fig. 2B, D, Fig. S7C-D).

254 To determine the conservation of location-specific differential expression of transcriptional 255 regulators across fovea to periphery, we performed a meta-analysis comparing our macaque data 256 to previously published human datasets [13, 14]. We see generally conserved patterns of 257 expression from fovea to periphery in neural retina and to a lesser extent, RPE/choroid (Fig. 3A-258 B). We performed the same analysis on unfiltered gene lists from the human and macaque and 259 found approximately 700 genes that follow similar differential expression patterns from fovea to 260 periphery in both species. (Fig. 3A, Table 1S). GO terms for this list of conserved genes involve 261 neuronal connectivity and cellular morphogenesis (Fig. 3C), similar to the GO terms for the 262 macaque retina data seen previously in this study. In one case, we see a distinct block of macula-263 specific transcription factors in the Rhesus monkey neural retina including HR, MYC, EBF3, AR, 264 EBF2, EBF1, TWIST1, IRX2, POU4F2, IRX1, and SHOX2 that seem to also correlate to macula-265 specific transcription factors in the human data (Fig. S6B). Overall, this supports a conservation 266 of gene expression and function across monkey and human species. 267

To test whether there was any correspondence between our macaque tests and an independent single cell RPE cells taken from either the fovea or periphery, we extracted 219 cells from the scEiaD resource at plae.nei.nih.gov. We found ten genes that overlap between our macaque resource and the scEiaD resource, including *VIM*, *S100B*, and *PMEL*. Of these overlapping

genes, *CXCL4*, *SULF4*, and *WFDC1* are shown to be enriched in the macula (Figure 4).

274 **Discussion**

275

Using the Rhesus macaque as a model to study the transcriptome landscape of higher primate 276 277 retina, we conducted RNA-sequencing across neural retina and RPE/choroid tissue layers. The 278 small RNA punch size and bulk processing of the tissues allowed for high resolution and 279 sensitivity of transcript quantification due to the decreased likelihood of variability from 280 extended amplification, gene dropouts, and biological noise. Furthermore, it allows for the ability 281 to profile rare and low-expressed transcripts as compared to single-cell RNAseq such as the 10x 282 Genomics Chromium platform, in which only the top 20-30% of expressed genes are captured, 283 or Drop-seq, which requires a more manual approach. Unlike previous studies, our approach 284 included the perimacular retina to define contiguously changing gene expression across the 285 retinal landscape, thereby reflecting the stepwise differences in the ratio of cone and rod 286 composition. By doing this, we isolated the critical pathways regulating changes in retinal

connectivity and RPE/choroid function necessary to support different photoreceptor mosaics.

289 The macaque gene expression changes observed in our data are orthogonally confirmed in

human datasets. Furthermore, our findings also indicate conservation of contiguously changing

- 291 gene expression patterns from the central to peripheral retina between Rhesus monkeys and 202 humana actabliching a more qualible model system for future human transmittenia studies
- humans, establishing a more available model system for future human transcriptomic studies.
 Rhesus monkeys offer an accessible model in which conditions of tissue acquisition can be
- further controlled, including age, optimization of biopsy and RNA extraction, and reduced time
- from enucleation to tissue dissection and RNA extraction.
- 296
- 297 PCA of gene expression data by tissue type predicts the distinct nature of the neural retina and
- 298 RPE/choroid tissues, and further clustering by location confirms there are transcriptomic
- 299 differences between regions of the retina. The grouping of transcriptomes by animal highlights

300 the genetic variability observed between individuals. The lower number of differentially

301 expressed genes in fovea vs perimacular comparisons versus fovea vs periphery indicates a

302 continuum of gene expression. The highly variable patterns of gene expression across the neural

- 303 retina corresponds to the changing composition of cell types based on location.
- 304

305 In contrast, the presence of distinct changing RPE/choroid gene expression suggests variability 306 in the cell processes occurring across the retina in the RPE and choroid. Due to the relatively 307 unchanged morphology of these tissues across the retina save for increased RPE diameter and 308 choroidal thickness in the macula, the contiguous changes in gene expression observed may be a factor in driving changes in cell processes across the entire retina. GO terms enriched for the 309 310 contiguously changing genes in the retina involved neuron projection and axon development as 311 well as regulation of cell morphogenesis, supporting known findings that there are differences in 312 circuitry and cone packing across the neural retina[10]. Furthermore, the changing gene 313 expression across the RPE/choroid is enriched for GO terms such as cell junction organization 314 and epithelial cell development, supporting reported findings that RPE diameter is smaller in the 315 fovea/macula as compared to the periphery[38]. It is known that RPE cells form tight junctions, 316 creating the outer blood-retinal barrier. These tight junctions serve as regulators of cell 317 proliferation, polarity, and transport, as well as transducers of signals responsible for regulating 318 cell size and shape[39]. Therefore, genes involved in cell junction organization and epithelial cell 319 development may play a role in varied cell sizes across the RPE. GO terms involving urogenital 320 and renal system development are also enriched in the RPE/choroid gene list, and interestingly, 321 there are several heritable genetic conditions that affect both the eye and kidney, and there is also 322 a link between chorioretinal thinning and chronic kidney disease, thought to be due to 323 inflammation and endothelial dysfunction[40, 41]. In addition to observing greater levels of gene 324 expression variability across location in the RPE-choroid than expected, several disease-relevant 325 genes known to play roles in various ocular disorders including TIMP3 (various 326 retinopathies[42]), ABCA4 (Stargardt disease[12]), and TYRP1 (oculocutaneous albinism[43]), 327 were found to be significantly differentially expressed by location. 328

329 Differential expression of particular transcription factors, including neural retina- and

330 RPE/choroid show conserved patterns of expression between macaque and human datasets, with

- 331 *IRX2* being upregulated in the macula. Other differentially expressed transcription factors that
- 332 show conservation with past human studies include FOXI3, which is upregulated in the
- 333 periphery, and POU4F2, POU4F1, as well as its target, RIT2, all of which are enriched in the

334 macula in both monkey and human datasets⁷. Additional transcription factors following similar

335 gene expression patterns across species in the RPE/choroid include VEZF1 and NR2F1, which

336 are thought to be involved in retinal and vascular development [44, 45]. Identifying conserved

337 location-specific transcription factors can provide insight into the regulatory landscape of the two

338 tissues and how they relate to patterns of differential gene expression. It may be inferred then, 339 that these changes in global gene expression across location and tissue, driven by distinct sets of

340 transcription factors, likely reflect location-specific cellular processes and interactions.

341

342 Beyond patterns of transcriptional regulators, location-based tissue-tissue interactions are also

343 indicative of specific pathways being up- or downregulated by location, suggesting specific roles

- 344 in different locations of the tissues. The enrichment for Wnt signaling in kidney disease in the
- 345 downregulated interactions in the macula may be connected to the GO enrichment for renal

346 development in the RPE/choroid. Furthermore, ErbB signaling and peptide G-protein coupled

- 347 receptor signaling are required for retinal development, with ErbB involved in neural crest
- 348 development and adult pigment formation[46] and GCPR signaling involved in light processing
- in photoreceptors[47]. The tissue-tissue interaction analysis suggests these pathways are
- 350 upregulated in the peripheral tissues of the eye. Certain pathways were enriched for tissue-tissue
- interactions both up- and downregulated in the macula, including Hippo signaling. Hippo-YAP
- 352 signaling is known to play roles in both ocular development as well as disease, as it regulates
- retinogenesis, photoreceptor cell differentiation, and retinal vascular development, but
 misregulation also has associations with coloboma and optic fissure closure, uveal melanoma,
- and rating a degeneration and the midden and optic fissure closure, used melanoma,
- and retinal degeneration[48]. The widespread enrichment of this pathway informs the many rolesit plays in regulating the retinal landscape across location.
- 357

358 The three-way comparison of single cell, bulk human, and Rhesus macaque data showed many

- 359 more differentially expressed genes detected in our macaque dataset than the other two
- 360 sequencing methods. Furthermore, identifying differentially expressed genes in the Rhesus
- 361 monkey data that intersect with the single cell data allows us to identify known RPE-specific
- 362 genes that are conserved between the datasets including VIM[39], and PMEL[49], which we
- have shown to change contiguously by location. Of the three macula-enriched genes in the
- overlapping set, CXCL14 and WFDC1 have been previously identified as enriched in the macula
- 365 compared to peripheral retina via RNA microarray[50], and WFDC1 enrichment in the macula 366 was independently confirmed by both expression and immunostaining[51]. As such, our data
- solve was independently confirmed by both expression and initial ostaining[51]. As such, our data shows the known macula-enrichment of WFDC1 to be conserved. As a serine protease inhibitor,
- 368 mediator of endothelial cell migration and promoter of angiogenesis, its enrichment in the RPE
- and specifically, the macula, may suggest a role for WFDC1 in age-related macular degeneration
- 370 [52], in which neovascularization beneath the macula is characteristic[50].
- 371

Considering the differential gene expression patterns across contiguous regions of the neural retina and especially the RPE/choroid allows for a combined approach in which we assessed the

drivers of change as well as gross changes in gene expression by location. We identified highly

- enriched gene ontologies associated with each tissue location and layer, highlighted sets of
- 376 contiguously changing transcription factors, determined important tissue-tissue interactions that
- 377 highlight various up- and down-regulated location-specific pathways, and examined the
- 378 conservation of gene expression patterns across multiple independent studies. In addition to the
- 379 previous RNA-sequencing studies performed on human and non-human primate retinas, the data
- and findings presented here provide valuable resources for future studies aimed at identifying
- 381 regional specialization of the retina and understanding disease mechanisms.
- 382

383 <u>Acknowledgements</u>

- 384 We would like to thank Bob Wurtz, Bruce Cumming, James Cavanaugh, Mitch Smith
- 385 of the Laboratory of Sensorimotor Research, National Eye Institute for providing non-human
- primate samples. We would also like to thank the NEI/NIMH Animal Program, including Jim
- 387 Raber and Ginger Tansey, the National Institutes of Health Intramural Sequencing Center, where
- 388 RNA sequencing was performed, and Dr. Sheldon Miller for helpful comments and advice about
- 389 the experiments and manuscript.
- 390

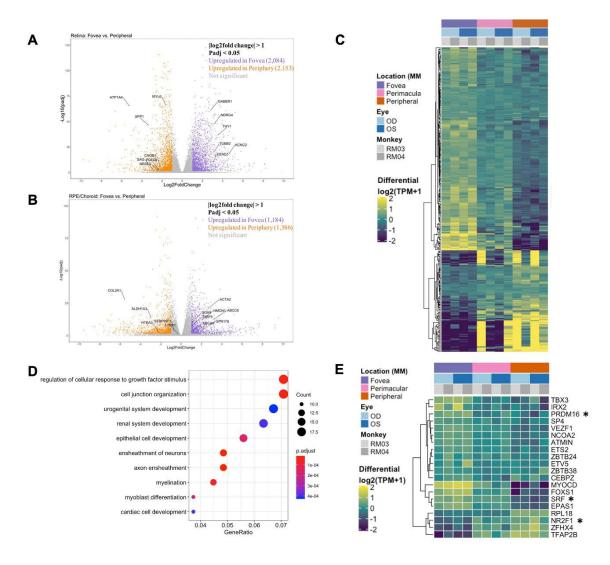
Table 1. A summary of the differential gene expression (padj < 0.05) in retina and RPE/choroid

392 by location.

Tissue	Location	# Genes
Retina	Fovea	6,921
	Perimacula	6,926
	Periphery	10,517
	Fovea vs Perimacula	4,633
	Fovea vs Periphery	9,644
RPE/Choroid	Fovea	6,775
	Perimacula	7,465
	Periphery	10,983
	Fovea vs Perimacula	414
	Fovea vs Periphery	7,925

393

Table 2. Ligand-Receptor interactions across neural retina and RPE/choroid in the macula.

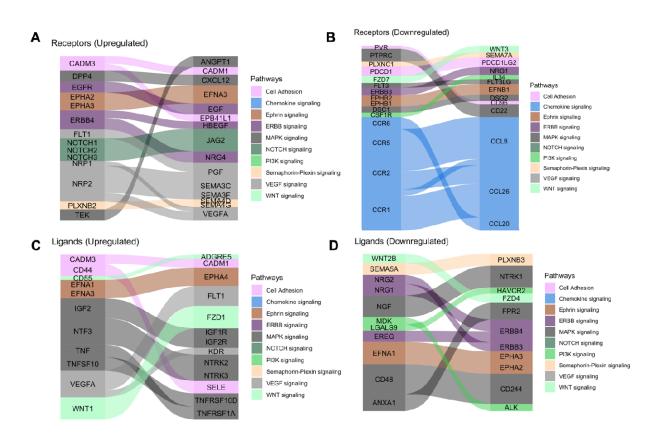

	Interactions in	Downregulated Interactions in				
	Macula	the Macula				
RPE/Choroid	Neural Retina	RPE/Choroid	Neural Retina			
NOTCH2	JAG2	EPHB2	EFNB1			
FGFR1	NCAM1	WNT2B	FZD4			
NTF3	NTRK3	EFNA1	EPHA2			
IGF2	IGF1R	EPHB1	EFNB1			
EPHA2	EFNA3	CCR1	CCL26			
NOTCH1	JAG2	NRG2	ERBB3			
PLXNB2	SEMA4D	CD48	CD244			
NTF3	NTRK2	FLT3	FLT3LG			
TNFSF10	TNFRSF10D	DSC1	DSG2			
EPHA3	EFNA3	EFNA1	EPHA3			
TEK	ANGPT1	PTPRC	CD22			
VEGFA	FLT1	CCR5	CCL8			
PLXNB2	SEMA4G	LGALS9	HAVCR2			
NOTCH3	JAG2	MDK	ALK			
WNT1	FZD1	PLXNC1	SEMA7A			
NRP1	VEGFA	ANXA1	FPR2			
EGFR	EGF	FGFR1	NCAM1			
EPHA4	EFNB1	CCR1	CCL26			
NRP2	SEMA3C	NGF	NTRK1			
ERBB4	HBEGF	CD48	CD244			
IGF2	IGF2R	FZD7	WNT3			
EFNA1	EPHA2	CCR6	CCL20			
EPHB1	EFNB1	CCR2	CCL26			
TNF	TNFRSF1A	CCR2	CCL8			

IGF2	IGF2R	PLXNB2	SEMA4C
EFNA3	EPHA4	PVR	CD96
CD55	ADGRE5	NRG1	ERBB4
CD44	SELE	ERBB3	NRG1
ERBB4	NRG4	PTPRC	CD22
CADM3	CADM1	SEMA5A	PLXNB3
EFNA1	EPHA3	CSF1R	IL34
CADM3	EPB41L1	CCR5	CCL8
VEGFA	FLT1	PDCD1	PDCD1LG2
VEGFA	KDR	CCR1	CCL8
NRP2	PGF	EREG	ERBB4
DPP4	CXCL12		
EPHB6	EFNB1		
NRP2	VEGFA		
FLT1	PGF		
EFNA1	EPHA4		
NRP2	SEMA3F		

395

396

397 Figure 1. (A) A volcano plot depicting differentially expressed genes between foveal and 398 peripheral tissues in the neural retina. Colored genes show significant up- or down- regulation 399 with several labeled genes having known tissue-specific roles in development and disease 400 including PDE6B. (B) A volcano plot showing RPE fovea vs periphery differential expression, 401 with key genes labeled, including ABCA4 and TIMP3. (C) Unfiltered differential expression 402 analysis of contiguously changing genes from fovea to perimacula to periphery in the 403 RPE/choroid exhibits distinct blocks of lowly expressed genes in the fovea with a progressive 404 increase in expression in peripheral tissues as well as blocks of genes with progressive 405 downregulation moving outwards through the tissue despite less obvious morphologic changes in 406 the tissue as compared to neural retina. (D) Top 10 enriched gene ontology (GO) terms from the 407 RPE/choroid differentially expressed gene set include cell junction organization and epithelial 408 cell development. VEGF is enriched in multiple of these ontologies and has increased expression 409 in the macula over the periphery. (E) A subset of genes identified as differentially expressed 410 transcription factors by location in the RPE/choroid. Changes in transcriptional regulators can be 411 a factor in driving gene expression changes. *These transcription factors have published 412 associations with the respective tissue in the literature.



- 415 416
- 417
- 418

419 **Figure 2.** Tissue-tissue interactions showing receptor/ligand pairs in the central retina. (A)

420 Upregulated macular receptors in the RPE/choroid are linked to their upregulated ligand in the

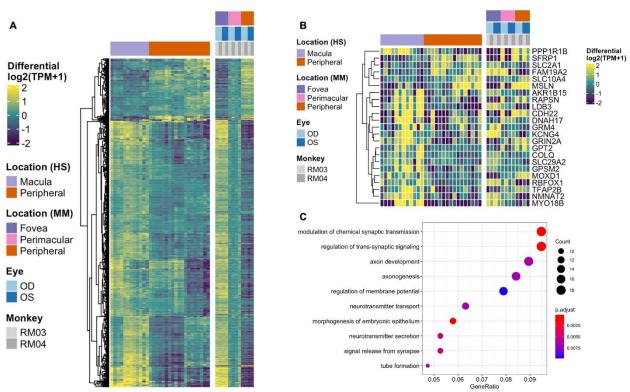
- macular neural retina. Interactors are grouped by signaling pathway and the width is scaled by
 average log2 fold change. (B) Downregulated macular receptors in the RPE/choroid and their
- 422 average log2 fold change. (b) Downregulated macular receptors in the KLE/choloid and then
 423 respective downregulated ligand in the macular neural retina. (C) Upregulated macular ligands in
- 424 the RPE/choroid are linked to their upregulated receptor in the macular neural retina. (D)
- 425 Downregulated macular ligands in the RPE/choroid and their corresponding downregulated
- 426 receptors in the macular neural retina.

427 428

429 **Figure 3.** (A) Heatmap displaying the comparison of differential gene expression in the neural

430 retina between published data from a human macula vs periphery set (Li et al., 2014, Whitmore

431 et. al, 2014) and the macaque data presented here, with 664 genes following similar expression

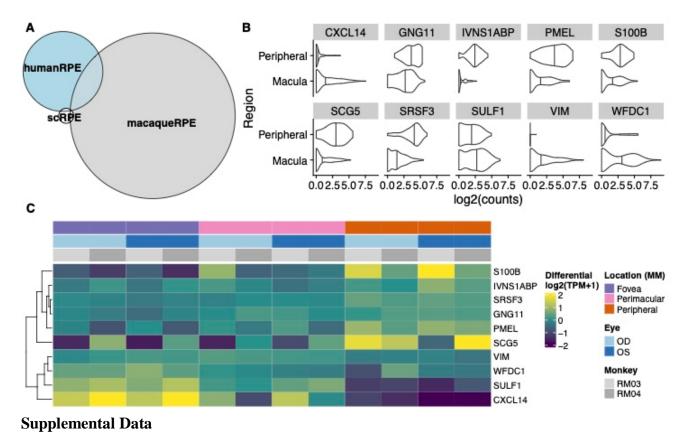

432 patterns. (B) A comparison of conserved differential expression to the human studies in the

433 RPE/choroid tissue. Fewer genes follow similar patterns of differential expression. (C) GO

434 enrichment for conserved differentially expressed genes between human and macaque datasets in

the neural retina. Terms including neuronal connectivity and cellular morphogenesis are highly

436 enriched.

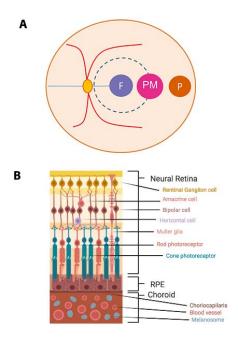

437

438 **Figure 4.** (A) Venn diagram of overlaps between differentially expressed genes between the

439 fovea and periphery in three systems: human single cell RPE, bulk human RPE-choroid, and

bulk macaque RPE-choroid. (B) Violin plot of the single cell expression with the ten genes

which overlap between the human single cell RPE testing and bulk macaque RPE-choroidtesting. (C) Heatmap of the same ten genes in our macaque RPE-choroid punches.

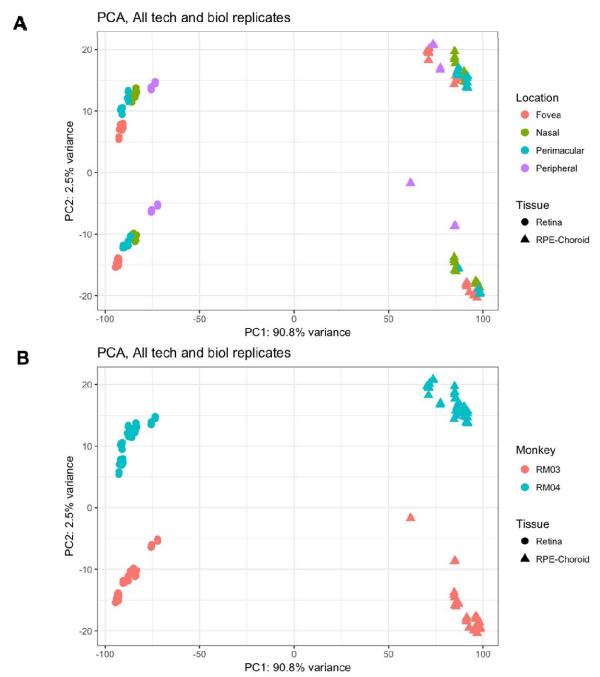


444 445 446

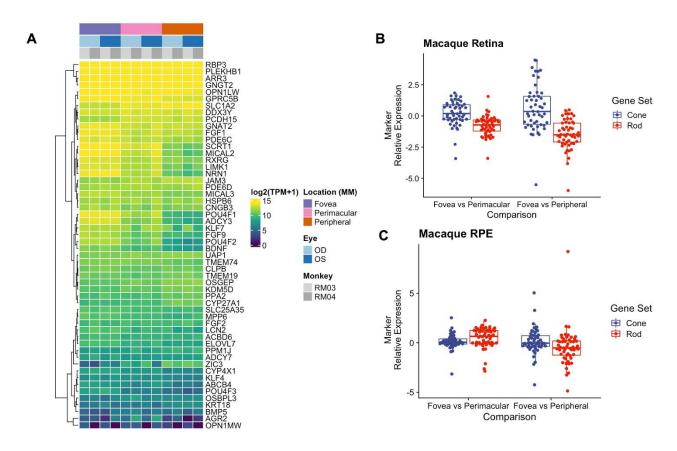
447 **Figure S1.** (A) Layout of punch biopsies taken from the Rhesus monkey eyes, including foveal

448 (F), perimacular (PM), and peripheral (P) samples. (B) Diagram of the retina, highlighting the

449 cell types in the neural retina as well as the RPE and choroid tissues (made in Biorender).



450 451 Figure S2. PCA clustering for the 1000 most variable genes sequenced. (A) Samples primarily


cluster by tissue type, with RPE/choroid samples clustering away from retina samples. (B) 452

453 Within the retina and RPE/choroid, foveal and peripheral samples tend to cluster furthest apart

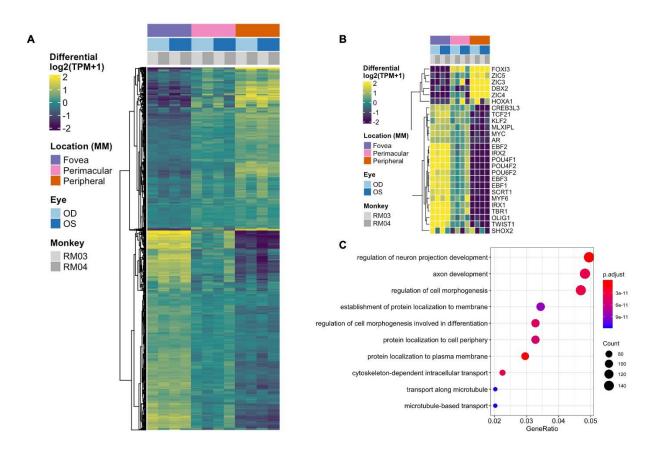
with perimacular samples clustering less tightly between. 454

456 Figure S3. (A) Heatmap depicting macaque expression of published rod-enriched gene 457 expression (Holt et. al 2015, Mustafi et. al, 2016) across the neural retina reflects cellular 458 composition of rods in the retina. Genes are highly expressed in the periphery, where rod 459 composition is highly enriched, and lowly expressed in the fovea/macular which is highly cone-460 enriched. (B) Peripheral and perimacular retinal samples express rod-enriched genes at a 2.8- and 1.7-fold increase compared to foveal retinal samples. The periphery is 1.6-fold enriched in cone 461 signal compared to the fovea in the neural retina (Table S1). (C) Changes in rod- and cone-462 463 enriched gene expression do not vary greatly by location in RPE/choroid. 464

465 466

467 Figure S4. (A) Heatmap showing contiguous differential expression across location of the neural
468 retina tissue, also exhibiting distinct blocks of progressive up and down regulated gene
469 expression as seen for RPE/choroid in Fig. 1C. (B) A subset of genes identified as differentially

470 expressed transcription factors by location in the neural retina. Changes in transcriptional


471 regulators can be a factor in driving gene expression changes.

472 *These transcription factors have published associations with the respective tissue in the

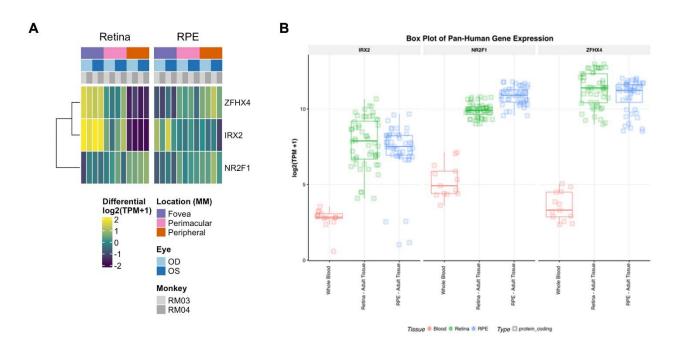
473 literature. (C) Top 10 enriched gene ontology (GO) terms from the retina differentially expressed

474 gene set, including neuron projection, axon development, regulation of cell morphogenesis, and475 protein localization and transport.

- 476
- 477

- 478 479
- 480

481 **Figure S5.** (A) Expression of commonly expressed transcription factors between the neural


482 retina and the RPE/choroid. While *NR2F1* and *IRX2* follow similar expression patterns across

483 location, ZFHX4 actually displays opposite expression patterns in the retina and RPE/choroid

484 tissues. (B) Expression of these three transcription factors from the publicly available

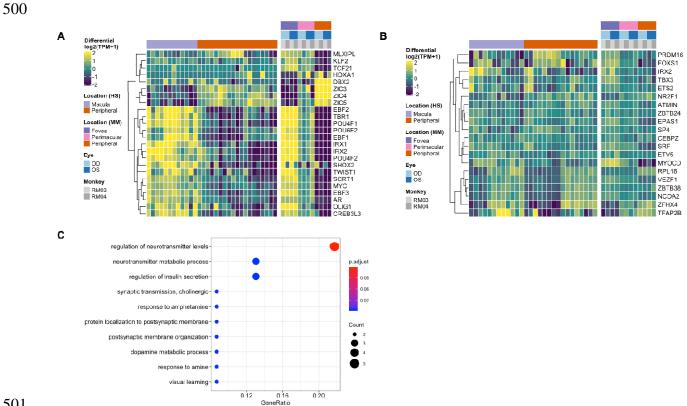
485 EyeIntegration database (Swami and McGaughey et al., 2019) showing similar expression levels

- 486 of each gene in both tissue types with whole blood for comparison.
- 487 488

- 489 490
- 491
- 492

493 **Figure S6.** (A) A comparison of conserved transcription factor differential expression in the

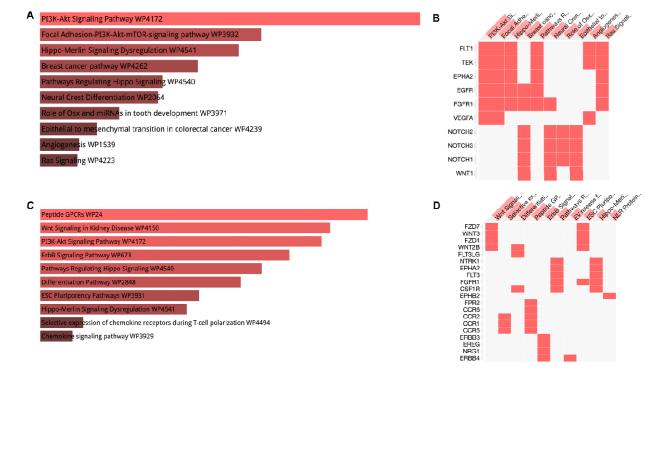
494 neural retina between published data from a human macula vs periphery set (Li et al., 2014,


495 Whitmore et. al, 2014) and the macaque data presented here. (B) A similar comparison of human

496 conservation of transcription factor differential expression in the RPE/choroid tissue. (C) Top

497 enriched GO terms for the conserved gene expression across fovea to periphery in the

498 RPE/choroid. Top terms include regulation of neurotransmitter levels and metabolic processes as


499 well insulin secretion.

501 502 Figure S7. (A) Enricht bar graph depicting highly enriched pathways via the WikiPathways 503 2019 Human database for the downregulated ligand/receptor interactions in the macula. Top 504 enriched pathways include Wnt signaling in kidney diseaseand ErbB signaling. (B) Enrichr 505 clustergram depicts the genes contributing to the enriched pathway terms including WNT, FZD4, 506 and ERBB3. (C) Enrichr bar graph for upregulated ligand/receptor interactions in the macula. 507 Top enriched pathways include PI3K-Akt signaling and Focal Adhesion-PI3K-Akt-mTOR, both 508 of which are involved in the VEGF signaling pathway. (D) Enrichr clustergram is enriched for 509 genes including VEGFA, FLT1, and KDR, all of which are key components of VEGF signaling.

- 510
- 511

Table S1. Rod- and Cone-Enriched gene expression in Retina and RPE/choroid compared across

521 location

Tissue	Comparison	GeneSet	estimate	enrichment	statistic	p.value	parameter	conf.low	conf.high
	Fovea vs Perimacular	Rod	-0.7821306	-1.7196686	-7.4071987	1.11E-09	52	-0.9940137	-0.5702476
Retina	Fovea vs Peripheral	Rod	-1.4620671	-2.7550282	-8.9989078	3.48E-12	52	-1.7880902	-1.1360439
	Fovea vs Perimacular	Cone	0.20531647	1.15293923	1.46077663	0.15045974	49	-0.0771353	0.48776821
Retina	Fovea vs Peripheral	Cone	0.6492966	1.56840332	2.441338	0.01829112	49	0.11483133	1.18376187
	Fovea vs Perimacular	Rod	0.47748612	1.39231546	3.3946687	0.00132244	52	0.1952359	0.75973635
RPE	Fovea vs Peripheral	Rod	-0.4613632	-1.3768422	-1.8370341	0.07192272	52	-0.9653239	0.0425975
	Fovea vs Perimacular	Cone	0.13785476	1.10026784	1.27906465	0.20689857	49	-0.0787328	0.35444235
RPE	Fovea vs Peripheral	Cone	0.14454836	1.10538455	0.76617502	0.44724757	49	-0.2345828	0.52367948

523	Table S2. List of conserved genes between human and macaque data as seen in the heatmap
524	(Fig. 3A)

(Ing. 5A)							
AACS	CCDC88C	ELOVL6	IFT22	MTA2	POLR2G	SHKBP1	TMEM189
ABCA1	CCDC92	EMB	IGIP	MTMR4	POPDC3	SHOX2	TMEM246
ABCG1	CCER2	EMC8	IK	MTURN	PPARG	SIAE	TMEM26
ABHD10	CCM2	EML4	IKBKE	MVD	PPIF	SIAH2	TMEM37
ABHD17A	CCNYL1	ENDOD1	IKBKG	MX1	PPM1K	SIGMAR1	TMEM41A
ABHD6	CD109	ENOX1	IL17RD	MYADM	PPP1R12C	SIRT5	TMEM71
ABR	CD151	ENPP1	IL17RE	MYB	PPP1R1C	SIX2	TMEM97
ACACA	CD274	ENTPD3	INCENP	MYC	PPP1R3C	SLC15A3	TMOD2
ACAT2	CD4	EPB41L1	INF2	MYCBP2	PPP1R3D	SLC16A7	TMTC1
ACER3	CD5	EPB41L2	INHBA	MYLIP	PPP2R2C	SLC16A9	TNFAIP2
ACLY	CD8A	EPB41L3	INPP4A	MYO1C	PPP2R5B	SLC22A18	TNFRSF21
ACOT7	CDC42BPA	EPDR1	INPP4B	MYO5A	РРРЗСВ	SLC25A1	TNFSF13
ACOX2	CDCA2	EPHA2	INPP5A	MYO5C	PRCP	SLC25A12	TNIP1
ACSS2	CDCA7	EPHA4	INPP5F	MYO6	PRDM11	SLC25A40	TOB2
ACTL6A	CDK14	EPHA5	INPP5J	MYOM1	PRDM4	SLC25A46	TPBG
ACTR1A	CDK18	EPHX4	INSIG1	NAALADL1	PRDX5	SLC26A11	TPGS2
ACTR1B	CDK6	ESYT1	IQCA1	NACAD	PRELP	SLC2A13	TRAF3IP2

ADAM23	CDKN2D	ETFBKMT	IQCK	NACC2	PREPL	SLC2A6	TRAF5
ADAMTS2	CDR2L	ETHE1	IQSEC3	NAGA	PRICKLE1	SLC35D1	TRAPPC1
ADAMTS7	CDS2	EXOC1	IRS1	NANS	PRIMA1	SLC36A1	TRHDE
ADAMTSL2	CDYL2	EXOSC5	IRX1	NAP1L2	PRKAG2	SLC39A13	TRIM2
ADAP1	CELSR1	EXPH5	IRX2	NAP1L4	PRKCB	SLC39A8	TRIM24
ADCY3	CEP68	F7	IRX3	NAP1L5	PRKG2	SLC41A3	TRIM37
ADD2	CERS2	FABP3	ISCU	NARS	PRPH	SLC45A1	TRIP4
ADGRA2	CFAP298	FAM102B	ISLR2	NBEAL2	PRRT2	SLC47A2	TRIP6
ADGRA3	CFI	FAM104A	ISYNA1	NCDN	PRRT3	SLC4A3	TRMT2B
ADI1	CFL2	FAM110B	ITGB1BP1	NCS1	PRSS16	SLC6A15	TRPC3
ADIPOR1	CHD3	FAM111A	ITPK1	NDEL1	PRUNE2	SLC6A17	TRPM2
ADRA2A	CHD7	FAM120AOS	JAK1	NDRG2	PSD3	SLC9A1	TRPM4
ADRB2	CHIC1	FAM124B	JAKMIP2	NDRG4	PSD4	SLC9A6	TRPS1
ADSS	CHRAC1	FAM131A	JHY	NDUFA4L2	PSIP1	SLCO2A1	TRPV2
ADSSL1	CHRDL1	FAM131B	KANK3	NEBL	PSMA7	SLCO3A1	TSC22D3
AFAP1	CHST9	FAM189A2	KCNA2	NECAP2	PSMD1	SMARCC1	TSPAN2
AFF3	CIAPIN1	FAM189B	KCNAB2	NEDD4L	PTDSS1	SMIM10	TSPAN31
AGBL5	CIC	FAM198B	KCNC2	NEFH	PTH1R	SMIM12	TSPAN9
AGO1	CISD1	FAM210B	KCNK1	NEFL	PTMS	SMOC1	TSPYL4
AGPAT2	CIT	FAM219A	KCNN2	NEFM	PTPN3	SMYD2	TTC39A
AHNAK2	CLCN5	FAM43A	KCNQ3	NEK6	PTPRE	SMYD3	TTC39B
AHR	CLCN6	FAM49A	KCNQ4	NEPRO	PTPRN2	SNAPC2	TTC39C
AIF1L	CLDN1	FAM53B	KCNQ5	NES	PTPRU	SNCA	TTC7B
AJUBA	CLDN2	FAM69A	KCTD17	NFATC1	PXYLP1	SNCAIP	TUBA1A
ALDH1B1	CLIC5	FAM69B	KCTD2	NFE2L1	PYGB	SNCG	TUBA1B
ALDH1L1	CLIP2	FAM69C	KCTD20	NFIB	PYGL	SNN	TUBB
ALKBH6	CLSTN2	FAM83G	KCTD21	NFIX	PYGM	SNRPD3	TUBB3
ALPK3	CLTC	FAM84A	KDM5B	NIPA1	QPRT	SNW1	TUBB4A
AMER1	CLTCL1	FAM98A	KIAA1324L	NIPAL2	QRFPR	SNX16	TUBGCP5
AMPD2	CLU	FAR2	KIF21A	NIPAL3	QRICH1	SNX9	TULP2
ANK1	CMAS	FASN	KIF3C	NKAPD1	QSOX1	SORBS2	UBASH3B
ANK3	CMC2	FAT1	KIF5A	NKD2	RAB11FIP4	SORL1	UBE2E2
ANKRD11	CMPK1	FBLL1	KIFAP3	NKRF	RAB11FIP5	SOX5	UBE2N
ANKRD13A	CNBP	FBLN1	KIFC2	NLRP1	RAB15	SP1	UBE2O
ANKRD13D	CNN3	FBRS	KLC1	NMNAT2	RAB33A	SPARCL1	UBE2T
ANKRD24	CNNM1	FBXO2	KLF13	NMRK2	RAB35	SPATA20	UBFD1
ANKRD27	CNOT2	FBXW5	KLF7	NOTCH4	RAB37	SPATS2	UBL4A
ANKRD40	CNST	FBXW7	KLF8	NOVA1	RAB3D	SPHK1	UCHL1
ANKRD50	CNTNAP1	FCHO1	KNDC1	NPHP1	RAB5B	SPINT1	UGP2

ANKRD52	COL11A1	FDPS	KREMEN1	NPR3	RAB6A	SPNS2	URM1
ANKRD9	COL14A1	FEZ1	KRI1	NPTN	RAB6B	SPOCK2	USB1
ANO4	COL18A1	FFAR1	L1CAM	NQO2	RAB8A	SPTB	USP14
ANO5	COL23A1	FGF10	LACC1	NRAS	RABGGTA	SPTSSB	USP25
ANXA11	COL2A1	FGF13	LAMA2	NRF1	RAC3	SQLE	USP31
ANXA6	COL3A1	FGFR1	LAMA4	NRN1	RAP2A	SREBF2	USP35
ANXA7	COL4A3	FHDC1	LARP1	NSG1	RARRES2	SRGAP2	USP5
AP1M1	COL4A4	FHL2	LATS2	NT5M	RASA3	SRPX	UTRN
AP2B1	COLCA2	FIGN	LDLR	NUAK1	RASGRP2	SSH3	UXS1
AP3M1	COPZ1	FKBP1B	LGALS1	NUDT10	RASGRP3	ST14	VAMP1
AP5S1	CORO1C	FKBP9	LGALS3	NUDT18	RASSF2	ST3GAL2	VANGL1
APBA1	CORO2A	FLOT1	LGALS8	NUDT3	RBFOX2	ST3GAL6	VAPB
APBA2	CORO2B	FLYWCH2	LGALSL	NUMBL	RBPMS	ST5	VASH1
APOBEC3C	CORO6	FMNL1	LGI2	NUP214	RBPMS2	ST6GAL1	VIM
APOD	COX4I2	FMO3	LGI3	NUP37	RCAN2	ST6GALNAC	VOPP1
APOE	CPEB1	FNBP1	LHFPL2	NUP93	RDH10	2 ST6GALNAC 5	VPS35
APOL2	CPED1	FNDC10	LIMK1	NXN	REEP1	ST8SIA4	VSIG10
APP	CPLX1	FNDC11	LIMS2	ODF3B	REEP5	STAC2	VSTM2L
AR	CPNE3	FOCAD	LIN7A	OGDH	RELL2	STARD13	VWC2
ARAF	CPNE9	FOXD1	LITAF	OPA1	REPS2	STARD4	WDR20
ARAP2	CPZ	FOXF2	LIX1L	OPLAH	RET	STAT4	WDR72
ARFGEF3	CREG1	FOXN3	LMO2	OPN3	RETREG1	STAT6	WDYHV1
ARFIP1	CRYAB	FRY	LNX1	OPTN	RFFL	STEAP4	WEE1
ARHGAP42	CRYL1	FXYD3	LPIN1	OSBPL10	RFLNA	STK32A	YAP1
ARHGAP44	CSDC2	FXYD6-	LRFN5	OSBPL5	RFX5	STMN2	YBX1
ARHGAP6	CSNK1G3	FXYD2 GABBR1	LRP11	OXCT2	RGS6	STMN3	YWHAB
ARHGAP9	CSRP2	GALNT10	LRP2	OXR1	RGS7BP	STS	YWHAG
ARHGEF17	CTDSP1	GALNT9	LRP3	OXTR	RHNO1	SUCLG2	YWHAH
ARHGEF7	CTIF	GAREM2	LRPAP1	PADI2	RHOC	SULF2	ZBTB7C
ARL8B	CTNNAL1	GAS2L3	LRPPRC	PAFAH1B1	RHOD	SULT4A1	ZC2HC1A
ARMCX3	CTNNBIP1	GATB	LRRC36	PAFAH1B2	RHOF	SURF2	ZCCHC24
ARNT	CTNND2	GCNT4	LRRC4B	PAIP2B	RHOJ	SUSD1	ZDHHC23
ARPC2	CTSH	GCOM1	LRRC4C	PALM3	RIC8B	SV2C	ZDHHC3
ARRB1	CYB561	GDI1	LRRC8C	PALMD	RNASEH2B	SVEP1	ZDHHC5
AS3MT	CYB5A	GFOD1	LRRFIP1	PAM	RNF112	SYDE1	ZDHHC7
ASAP1	CYB5R3	GIPC2	LRRK2	PANK1	RNF121	SYN2	ZFAND3
ASAP2	CYFIP1	GLI3	LSS	PANX1	RNF144B	SYN3	ZFHX3
ATAT1	CYGB	GLRB	LUZP1	PANX2	RNLS	SYNGR3	ZFHX4

ATL1	DAP	GNA12	LYNX1- SLURP2	PAQR8	ROBO1	SYNJ2	ZFP92
ATOH8	DBNDD1	GNB1	MAD1L1	PARP16	ROBO2	SYNPO2	ZFYVE9
ATP10A	DCBLD1	GNG12	MAGEE1	PATJ	RPL11	SYS1	ZHX2
ATP13A2	DCDC2	GNG5	MAL	PBXIP1	RPL12	SYT11	ZNRF1
ATP1B1	DCTN1	GOLIM4	MAOB	PC	RPL22	SYT7	ZNRF2
ATP2B2	DCTN2	GOT1	MAP1A	PCBP2	RPL36	SYTL2	ZYG11B
ATP2B3	DDAH1	GPATCH1	MAP1B	PCDH9	RPL4	TACC3	
ATP8B2	DDHD2	GPC4	MAP3K20	PCDHB15	RPL41	TAF4B	
ATRNL1	DDR2	GPCPD1	MAP3K9	PCMT1	RPS6KA4	TAF6	
ATXN7L3	DEAF1	GPM6B	MAP4	PCNX2	RRAGA	TANC1	
B3GNT8	DESI1	GPR143	MAP4K4	PCYT2	RRAS2	TANGO2	
B3GNT9	DEXI	GPR161	MAP7D1	PDE4A	RREB1	TATDN3	
B4GALNT1	DGKA	GPRC5B	MAPK10	PDE8B	RRP1B	TBC1D30	
B4GALT5	DGKQ	GPX3	MAPK8IP3	PDLIM3	RTN1	TBC1D4	
BASP1	DHCR24	GPX8	МАРК9	PDLIM4	RTN3	TBC1D9B	
BBC3	DIP2C	GRB2	MAPRE2	PDP1	RUFY2	TBRG1	
BBS12	DISC1	GRK3	MARCH2	PDP2	RUNDC3B	TC2N	
BBS9	DKK3	GRSF1	MARCKS	PDXK	RUSC1	TCAF1	
BCAN	DLC1	GSK3B	MARF1	PDXP	RXRG	TCEAL7	
BCAS4	DLG1	GSTA4	MARK1	PDZD7	RYR2	TCF25	
BCL2	DMTN	GSTO1	MARVELD2	PERM1	S100A10	TCF7L2	
BCL2L11	DNAJC22	GTPBP1	MAST3	PERP	S100A13	TCIRG1	
BCL2L2	DNAJC27	GYG1	MCF2	PGM2L1	S100A16	TCTN1	
BDNF	DNM1L	GZMK	MCF2L	PGRMC2	SACM1L	TCTN3	
BEAN1	DOCK11	H2AFY	MCTP1	PHACTR3	SACS	TEDC2	
BHMT2	DOCK5	H3F3B	MDH1	PHF12	SAE1	TENM3	
BICD2	DOK7	HABP4	MDK	PHF24	SAMD14	TESC	
BLOC1S2	DPYS	HADHB	MED8	PHLDA2	SBF2	TEX261	
BLVRB	DPYSL2	HAGHL	MEI1	PHOSPHO1	SBSPON	TFCP2	
BMPR1B	DSG2	HARS	MESD	PI16	SC5D	TFCP2L1	
BRSK1	DSP	HBEGF	METTL7B	PI4KA	SCAMP3	TGFB1I1	
BTD	DTNB	HECA	MFHAS1	PICK1	SCD	TGFBR3L	
C1QTNF1	DTX4	HECW2	MFSD6	PID1	SCG5	TGIF2	
CA2	DUSP14	HEPH	MGLL	PIEZO1	SCN1A	TGOLN2	
CA5B	DUSP3	HERC5	MGST2	PIK3CD	SCN1B	THAP10	
CABLES1	DYNC1H1	HERPUD2	MGST3	PIP4K2A	SCN8A	THEM6	
CABLES2	DYNC111	HES6	MICAL2	PITHD1	SCUBE2	THY1	
CACFD1	DYNC1LI1	HEY2	MICAL3	PITPNC1	SDHA	TICAM1	
CACNA2D3	DYNC1LI2	HINT1	MICU1	PITX2	SEC23B	TIFA	

CACNB3	DYNLL2	HMGCR	MIGA2	PKHD1	SELENBP1	TIGD2
CALM3	DYNLT3	HMOX2	MITF	PLA2G4A	SEMA6D	TIMP4
CAMK1	DYSF	HNRNPC	MLLT11	PLCB1	SEPT3	TJP2
CAMKK2	E2F5	HOPX	MLPH	PLCL2	SEPT5	TLL1
CAMTA2	EBF1	HPGD	MMP15	PLD1	SERINC5	TLR3
CAP2	EEF1AKMT3	HPS1	MOAP1	PLEKHA6	SERP2	TM6SF1
CAPNS1	EFEMP2	HR	MPP1	PLK2	SERPINE2	TMC6
CASP2	EFR3B	HSD17B11	MPP3	PLS3	SFRP2	TMED4
CAST	EFS	HSP90AB1	MPST	PLSCR4	SFXN1	TMEM106C
CAV1	EGFL7	HSPA12A	MRFAP1	PLVAP	SGCD	TMEM120A
CAV2	EIF2AK2	HTR1B	MRFAP1L1	PLXDC2	SGF29	TMEM123
CAVIN1	EIF4EBP1	HTR1F	MROH1	PMEPA1	SGSH	TMEM131L
CBFB	EIF5A2	HYAL3	MRPS15	PNMA3	SH3BGRL2	TMEM144
CBLN3	ELAVL2	ICA1	MRVI1	POC5	SH3BGRL3	TMEM150C
CCDC191	ELAVL3	ID3	MSI2	PODXL	SH3GLB2	TMEM159
CCDC69	ELAVL4	IDI1	MSL3	POFUT1	SH3RF1	TMEM179B
CCDC85A	ELMO1	IFIT3	MSRB3	POLR2C	SHANK3	TMEM181

525

526

527 **References**

528
529 1. Grover, S., et al., *Comparison of retinal thickness in normal eyes using Stratus and*530 *Spectralis optical coherence tomography.* Invest Ophthalmol Vis Sci, 2010. **51**(5): p.
531 2644-7.

532 2. Purves, D., et al., *Neuroscience 2nd edition. sunderland (ma) sinauer associates.* Types
533 of Eye Movements and Their Functions, 2001.

- 534 3. Nickla, D.L. and J. Wallman, *The multifunctional choroid*. Prog Retin Eye Res, 2010.
 535 29(2): p. 144-68.
- 5364.Bagci, A.M., et al., Thickness profiles of retinal layers by optical coherence tomography537image segmentation. Am J Ophthalmol, 2008. 146(5): p. 679-87.
- 538 5. Mori, K., J. Kanno, and P.L. Gehlbach, *Retinochoroidal Morphology Described by Wide-*539 *Field Montage Imaging of Spectral Domain Optical Coherence Tomography.* Retina,
 540 2016. 36(2): p. 375-84.
- 5416.Holt, R., et al., Identification of rod- and cone-specific expression signatures to identify542candidate genes for retinal disease. Exp Eye Res, 2015. 132: p. 161-73.
- 543 7. Daiger, S., et al., *Data services and software for identifying genes and mutations causing*544 *retinal degeneration*. Invest Ophthalmol Vis Sci, 1998. **39**(S295).
- 545 8. Di Pierdomenico, J., et al., *Early events in retinal degeneration caused by rhodopsin*546 *mutation or pigment epithelium malfunction: differences and similarities.* Frontiers in
 547 neuroanatomy, 2017. 11: p. 14.
- 5489.Lamin, A., et al., Changes in volume of various retinal layers over time in early and549intermediate age-related macular degeneration. Eye, 2019. **33**(3): p. 428-434.

Jones, B.W., R.E. Marc, and R.L. Pfeiffer, Retinal degeneration, remodeling and 550 10. 551 plasticity. 2018. 552 11. MacDonald, I.M. and T. Lee, Best vitelliform macular dystrophy. 2013. 553 12. Walia, S. and G.A. Fishman, Natural history of phenotypic changes in Stargardt macular 554 dystrophy. Ophthalmic genetics, 2009. 30(2): p. 63-68. Li, M., et al., Comprehensive analysis of gene expression in human retina and supporting 555 13. 556 tissues. Human molecular genetics, 2014. 23(15): p. 4001-4014. 557 14. Whitmore, S.S., et al., Transcriptomic analysis across nasal, temporal, and macular 558 regions of human neural retina and RPE/choroid by RNA-Seq. Experimental eye 559 research, 2014. 129: p. 93-106. 560 Peng, Y.-R., et al., Molecular classification and comparative taxonomics of foveal and 15. 561 peripheral cells in primate retina. Cell, 2019. 176(5): p. 1222-1237. e22. 562 16. Voigt, A., et al., Molecular characterization of foveal versus peripheral human retina by 563 single-cell RNA sequencing. Experimental eye research, 2019. 184: p. 234-242. 564 Patro, R., et al., Salmon provides fast and bias-aware quantification of transcript 17. 565 expression. Nature methods, 2017. 14(4): p. 417-419. Soneson, C., M.I. Love, and M.D. Robinson, Differential analyses for RNA-seq: 566 18. 567 transcript-level estimates improve gene-level inferences. F1000Research, 2015. 4. 568 Love, M.I., W. Huber, and S. Anders, Moderated estimation of fold change and 19. 569 dispersion for RNA-seq data with DESeq2. Genome biology, 2014. 15(12): p. 1-21. 570 Harrow, J., et al., GENCODE: the reference human genome annotation for The 20. 571 ENCODE Project. Genome research, 2012. 22(9): p. 1760-1774. 572 21. Yates, B., et al., Genenames. org: the HGNC and VGNC resources in 2017. Nucleic 573 acids research, 2016: p. gkw1033. 574 22. Ignatiadis, N., et al., Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature methods, 2016. 13(7): p. 577-580. 575 576 Yu, G., et al., clusterProfiler: an R package for comparing biological themes among gene 23. 577 *clusters*. Omics: a journal of integrative biology, 2012. **16**(5): p. 284-287. 578 24. Robinson, M.D., D.J. McCarthy, and G.K. Smyth, edgeR: a Bioconductor package for 579 differential expression analysis of digital gene expression data. Bioinformatics, 2010. 580 **26**(1): p. 139-140. 581 25. Gu, Z., R. Eils, and M. Schlesner, Complex heatmaps reveal patterns and correlations in 582 multidimensional genomic data. Bioinformatics, 2016. 32(18): p. 2847-2849. 583 26. Cowan, C.S., et al., Cell types of the human retina and its organoids at single-cell 584 resolution. Cell, 2020. 182(6): p. 1623-1640. e34. 585 Voigt, A.P., et al., Single-cell transcriptomics of the human retinal pigment epithelium 27. 586 and choroid in health and macular degeneration. Proceedings of the National Academy 587 of Sciences, 2019. 116(48): p. 24100-24107. 588 Yan, W., et al., Cell atlas of the human fovea and peripheral retina. Scientific reports, 28. 589 2020. **10**(1): p. 1-17. 590 29. Voigt, A.P., et al., Bulk and single-cell gene expression analyses reveal aging human 591 choriocapillaris has pro-inflammatory phenotype. Microvascular Research, 2020. 131: p. 592 104031. 593 30. Swamy, V.S., et al., Building the mega single cell transcriptome ocular meta-atlas. 594 bioRxiv, 2021.

595	31.	Köster, J. and S. Rahmann, Snakemake—a scalable bioinformatics workflow engine.
596		Bioinformatics, 2012. 28(19): p. 2520-2522.
597	32.	Boulton, M. and P. Dayhaw-Barker, The role of the retinal pigment epithelium:
598		topographical variation and ageing changes. Eye, 2001. 15(3): p. 384-389.
599	33.	Milam, A.H., et al., Dominant late-onset retinal degeneration with regional variation of
600		sub-retinal pigment epithelium deposits, retinal function, and photoreceptor
601		degeneration. Ophthalmology, 2000. 107 (12): p. 2256-2266.
602	34.	Hamel, JF., Les ruines du progrès chez Walter Benjamin: anticipation futuriste, fausse
603		reconnaissance et politique du présent. Protée, 2007. 35 (2): p. 7-14.
604	35.	Mustafi, D., et al., Transcriptome analysis reveals rod/cone photoreceptor specific
605		signatures across mammalian retinas. Human molecular genetics, 2016. 25(20): p. 4376-
606		4388.
607	36.	Swamy, V. and D. McGaughey, Eye in a disk: eyeIntegration human pan-eye and body
608		<i>transcriptome database version 1.0.</i> Investigative ophthalmology & visual science, 2019.
609		60 (8): p. 3236-3246.
610	37.	Efremova, M., et al., <i>CellPhoneDB: inferring cell–cell communication from combined</i>
611		<i>expression of multi-subunit ligand–receptor complexes.</i> Nature protocols, 2020. 15 (4): p.
612		1484-1506.
613	38.	R Sparrrow, J., D. Hicks, and C. P Hamel, The retinal pigment epithelium in health and
614		disease. Current molecular medicine, 2010. 10(9): p. 802-823.
615	39.	Zou, H., et al., Polarity and epithelial-mesenchymal transition of retinal pigment
616		epithelial cells in proliferative vitreoretinopathy. PeerJ, 2020. 8: p. e10136.
617	40.	Paterson, E.N., et al., Association of reduced inner retinal thicknesses with chronic
618		kidney disease. BMC nephrology, 2020. 21(1): p. 1-12.
619	41.	Balmforth, C., et al., Chorioretinal thinning in chronic kidney disease links to
620		inflammation and endothelial dysfunction. JCI insight, 2016. 1(20).
621	42.	Dewing, J.M., et al., The Diverse Roles of TIMP-3: Insights into degenerative diseases of
622		the senescent retina and brain. Cells, 2020. 9(1): p. 39.
623	43.	Simeonov, D.R., et al., DNA variations in oculocutaneous albinism: an updated mutation
624		list and current outstanding issues in molecular diagnostics. Human mutation, 2013.
625		34 (6): p. 827-835.
626	44.	Zou, Z., et al., Targeted Vezf1-null mutation impairs vascular structure formation during
627		embryonic stem cell differentiation. Arteriosclerosis, thrombosis, and vascular biology,
628		2010. 30 (7): p. 1378-1388.
629	45.	Tang, K., et al., COUP-TFs regulate eye development by controlling factors essential for
630		optic vesicle morphogenesis. Development, 2010. 137(5): p. 725-734.
631	46.	Budi, E.H., L.B. Patterson, and D.M. Parichy, Embryonic requirements for ErbB
632		signaling in neural crest development and adult pigment pattern formation. 2008.
633	47.	Martemyanov, K.A., G protein signaling in the retina and beyond: the Cogan lecture.
634		Investigative ophthalmology & visual science, 2014. 55(12): p. 8201-8207.
635	48.	Lee, M., et al., <i>Hippo</i> yap signaling in ocular development and disease. Developmental
636		Dynamics, 2018. 247(6): p. 794-806.
637	49.	Reyes, A.P., et al., Identification of cell surface markers and establishment of monolayer
638		differentiation to retinal pigment epithelial cells. Nature communications, 2020. 11(1): p.
639		1-15.

- 640 50. Radeke, M.J., et al., *Disease susceptibility of the human macula: differential gene*641 *transcription in the retinal pigmented epithelium/choroid.* Experimental eye research,
 642 2007. 85(3): p. 366-380.
- 51. van Soest, S., et al., *Comparison of human RPE gene expression in macula and periphery highlights potential topographic differences in Bruch's membrane*. Mol Vis, 2007. 13: p.
 1608-1617.
- 52. Zhu, S., et al., *Molecular structure, gene expression and functional role of WFDC1 in angiogenesis and cancer.* Cell Biochemistry and Function, 2021.
- 648