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Abstract
De novo molecular design is a key challenge in drug dis-
covery due to the complexity of chemical space. With the
availability of molecular datasets and advances in machine
learning, many deep generative models are proposed for gen-
erating novel molecules with desired properties. However,
most of the existing models focus only on molecular distri-
bution learning and target-based molecular design, thereby
hindering their potentials in real-world applications. In
drug discovery, phenotypic molecular design has advantages
over target-based molecular design, especially in first-in-class
drug discovery. In this work, we propose the first deep graph
generative model (FAME) targeting phenotypic molecular
design, in particular gene expression-based molecular de-
sign. FAME leverages a conditional variational autoencoder
framework to learn the conditional distribution generating
molecules from gene expression profiles. However, this dis-
tribution is difficult to learn due to the complexity of the
molecular space and the noisy phenomenon in gene expres-
sion data. To tackle these issues, a gene expression denoising
(GED) model that employs contrastive objective function is
first proposed to reduce noise from gene expression data.
FAME is then designed to treat molecules as the sequences
of fragments and learn to generate these fragments in au-
toregressive manner. By leveraging this fragment-based gen-
eration strategy and the denoised gene expression profiles,
FAME can generate novel molecules with a high validity rate
and desired biological activity. The experimental results
show that FAME outperforms existing methods including
both SMILES-based and graph-based deep generative mod-
els for phenotypic molecular design. Furthermore, the effec-
tive mechanism for reducing noise in gene expression data
proposed in our study can be applied to omics data modeling
in general for facilitating phenotypic drug discovery.

Keywords: fragment, conditional generation, gene expres-

sion, variational autoencoder, contrastive learning.

1 Introduction.

De novo molecular design which requires knowl-
edge from multidisciplinary domains including chem-
istry, biology, and computational science is a challeng-
ing task in drug discovery by virtue of the complexity in
the corresponding molecular space [1]. This task aims
to generate novel chemical compounds with desirable
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Figure 1: Phenotypic molecular generation. This task
aims to generate novel molecules that have a high as-
sociation with the corresponding phenotypes. In our
setting, we train our model on LINCS L1000 dataset
which consists gene expression profiles - the molecular
phenotype that captures the change in expressions of
multiple landmark genes in the cell line under molecular
interventions. At the inference stage, given gene expres-
sion profiles retrieved from analyzing patient samples or
using genetic modification techniques, we sample nove
molecules that are likely to induce these profiles using
our trained model.

pharmacological properties using computational meth-
ods. With the advances in computational technologies
and theoretical findings in deep learning recently, many
deep generative models have been shown to be pow-
erful tools to capture complex patterns in molecular
spaces, thereby enabling them to generate novel com-
pounds with desired properties. In particular, these
methods have been applied to generate both SMILES
linearization [2, 3] and graph [4, 5, 6] representations
of molecules. In spite of their success demonstrated by
both theoretical and experimental evidences, they are
designed only for the task of general molecular distri-
bution learning [4, 5] and target-based molecular de-
sign [3], thereby hindering the performance of deep gen-
erative models in the real scenario of drug discovery.

Phenotypic molecular design is another approach
in drug discovery that evaluates different chemicals
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against phenotypes which are characteristics observed
in biological systems such as animals or cells. This
approach has been shown to be more effective than
the target-based approach in first-in-class drug discov-
ery [7, 8]. Different from general molecular distribu-
tion learning and target-based molecular design which
are formulated as unconditional generation and fine-
tuning settings respectively, phenotypic molecular de-
sign can be considered as a conditional generation prob-
lem in which the conditions a.k.a phenotypes (e.g., gene
expressions, cell images) are formulated as numerical
representations (e.g., vectors, matrices, or tensors) (as
shown in Figure 1). The availability of high-throughput
drug-induced gene expression data [9, 10] creates op-
portunities for deep generative models to design novel
chemicals with desired biological activities. However,
existing deep generative architectures are not designed
specifically for handling the following challenges in phe-
notype readouts, thereby making them not well-suited
for phenotypic molecular design.

C1. High-throughput phenotypic data such as
drug-induced gene expression is collected in a massive,
fast manner making it extremely noisy. Lacking a pro-
cedure to denoise this data precludes deep generative
models from realizing their full potentials in the pheno-
typic molecular design.

C2. Existing approaches for decoding novel chemi-
cals through their SMILES (e.g., character-by-character
and context-free grammar) and graph (e.g., one-shot
and node-by-node) representations are not very effec-
tive in preserving desirable pharmacological properties,
making the generated molecules not associated with the
corresponding phenotypes.

C3. Common evaluation metrics used in the
general molecular distribution learning cannot provide
comprehensive assessments for deep generative models
in the task of generating novel chemicals that are likely
to induce the phenotype of interest.

In this paper, we propose a fragment-based
conditional molecular generation model (FAME) for
phenotypic molecular design that overcomes the afore-
mentioned shortcomings in deep generative models.
FAME leverages conditional variational autoencoder
(VAE) to sample a latent vector from the latent space
constructed during training, then combines it with
the drug-induced gene expression profile which is the
phenotype in our setting to generate novel molecules
that are most likely to induce that desired gene ex-
pression profile. In particular, we propose the gene
expression denoising model (GED) (dealing with C1)
utilizing contrastive objective function to reduce noise
in gene expression data by forcing gene expression pro-
files of the same chemical more similar than those from

different chemicals. The conditional graph-based en-
coder of the proposed model is then used to generate
the latent vector for the chemical from their molecular
structure and the corresponding gene expression gen-
erated by GED. The latent vector generated from the
encoder (standard normal distribution in the inference
stage) and the gene expression profile are put into the
fragment-based graph decoder (dealing with C2) to gen-
erate molecule through the sequence of fragments gen-
erated in an autoregressive manner. By leveraging the
fragment-based generation strategy, the proposed model
can generate novel chemicals with a high validity rate
and desired biological activity. We demonstrate the ef-
fectiveness of the proposed model compared to existing
deep generative models by conducting experiments on
LINCS L1000 dataset [9] which consists of the measure-
ment of differential gene expression of the most informa-
tive genes due to molecular interventions. We then eval-
uate the performances of these models by using Fréchet
ChemNet Distance (FCD) metric [11] (dealing with C3)
along with other common metrics used in the molecular
distribution learning task. In summary, our contribu-
tions include the following:

• We design a deep generative architecture (FAME)1

that effectively generates novel molecules associ-
ated with the input gene expression profiles.

• We develop a gene expression denoising model
(GED) utilizing contrastive objective function to
successfully reduce noise in gene expression data.

• We also introduce the fragment-based graph de-
coder that generates novel molecules by the
fragment-to-fragment strategy to achieve high va-
lidity rate and desired biological association.

• Finally, we conduct a comprehensive empirical
study to demonstrate the effectiveness of FAME
compared to a wide range of previous approaches
for phenotypic molecular design.

2 Related Works.

Deep generative models in drug discovery.
The abundance of molecular data generated in recent
years has created an unprecedented opportunity to ap-
ply deep generative methods for molecular design. Most
of these works focus on the three main tasks includ-
ing molecular distribution learning, molecular optimiza-
tion, and target-based molecular design. In particular,

1Code and data are available at https://github.com/

pth1993/FAME
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Figure 2: Overall architectures of GED and FAME. First, GED is used to reduce noise in gene expression profiles
by mapping them to the embedding space using contrastive objective function. Then, FAME takes both gene
expression embeddings and molecules as input and learns to generate the sequence of fragments constructing the
input molecule. In the inference stage, the latent vector sampled from N (0, I) and the gene expression embedding
is used to generate novel molecules that are likely to induced that embedding. (FFNN: feed-forward neural
network, MLP: multi-layer perceptron, GIN: graph isomorphism network, GRU: gated recurrent unit.)

the molecular distribution learning task can be consid-
ered as unconditional generation problem in which the
deep generative models are trained on the large set of
molecules to learn the underlying distribution that gen-
erates these molecules. Several deep generative architec-
ture including generative adversarial network (GAN),
variational autoencoder (VAE), adversarial autoencoder
(AAE), autoregressive (AR)-based and flow-based mod-
els have been proposed to learn the complex distribution
of observed molecule space by considering molecules
as SMILES codes (e.g., ChemVAE [2], ORGAN [12],
SD-VAE [13]) or graphs of atoms and bonds (Mol-
GAN [6], JT-VAE [5], MolecularRNN [14], MoFlow [15],
GraphAF [16]). Molecular optimization is the task
of produce novel molecules with optimal criteria such
as octanol-water partition coefficients (logP) or drug-
likeness score (QED) starting from input molecules.
This task can be handled by using optimization meth-
ods (e.g., Bayesian optimization, stochastic gradient de-
scent) to find optimum molecules on latent space [2, 5]
or molecular space [17]. The target-based molecular
design aims to improve a molecule’s biological activ-
ity against biological targets. This task can be handled
by using a fine-tuning approach in which transfer learn-
ing [3] and reinforcement learning [18] techniques are
applied to guide the deep generative models to generate
novel molecules with desired biological activity.

Phenotypic molecular design. In contrast to
the target-based approach, phenotypic molecular design

does not rely on knowledge of the identification of a spe-
cific molecular target to find potential drug treatments
for diseases. The phenotypic approach is successful in
delivering first-in-class drugs by addressing the incom-
plete understanding of complexity of diseases through
phenotypic readouts [8]. With the advancement of cell-
based phenotypic screening technologies, many drug-
induced phenotypic datasets such as gene expression
profiles [9] and cell painting images [10] are available
for phenotypic drug discovery. These huge datasets also
create opportunities for applying deep generative mod-
els for designing novel molecules with desired biological
activities. However, to the best of our knowledge, only
two studies focus on developing deep generative mod-
els for phenotypic molecular design [19, 20]. Both of
them formulate this problem under conditional gener-
ation setting and use SMILES to represent molecules.
While [19] leverages conditional GAN, [20] utilizes con-
ditional AAE to generate novel molecules having a high
association with the input phenotype.

3 Method.

We first describe the phenotypic molecular design
and notations used in our study and then introduce our
deep generative model for this task including fragment-
based conditional molecular generation (FAME) and
gene expression denoising (GED) network. The overall
architecture of FAME is shown in Figure 2.
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Figure 3: Molecular fragmentation. In this example,
molecules Flavanone are transformed to a sequence
of 3 fragments by sequentially breaking BRICS bonds
(highlighted with red color) and replacing them with
dummy atoms (denoted by ‘*’).

3.1 Problem Formulation.
Phenotypic molecular design. We formulate

this problem under conditional generation setting in
which the model aims to learn a parameterized con-
ditional distribution Pθ(molecule |phenotype) and then
sample novel molecules from the input phenotypes us-
ing the learned distribution. In FAME, a molecule is
represented as an undirected graph G = (V,E) where
V = {v1, v2 · · · , vN} and E = {(vi, vj)|vi, vj ∈ V }
are the sets of atoms and bonds belonging to that
molecule and N is the number of atoms. The nu-
merical representation of graph G includes a node fea-
ture matrix X ∈ {0, 1}N×|V | and an adjacency tensor
A ∈ {0, 1}N×N×|E|. A phenotype in our setting is a
gene expression profile represented by a numerical vec-
tor y ∈ RM where M is the number of genes in that
profile. Then, the goal of our proposed model is to learn
a distribution Pθ(G|y).

Conditional variational autoencoder. The
conditional distribution Pθ(G|y) is often intractable so
stochastic gradient variational Bayes setting is applied
to optimize the variational lower bound of the log-
likelihood as a surrogate objective function as follows.

logPθ(G|y) ≥ EQφ(z|G,y) log[Pθ(G|y, z)]
−KL(Qφ(z|G, y)||Pθ(z|y))

(3.1)

where Q is the learned posterior distribution (i.e., en-
coder network), φ and θ are parameters of encoder
and decoder networks of the conditional VAE frame-
work and z is the latent vector in the latent space con-
structed by this framework. The sampling process of
this framework is as follows. For given gene expres-
sion profile y, z is drawn from the prior distribution
Pθ(z|y) = Pθ(z) = N (0, I) (i.e., making the latent vari-
ables statistically independent of gene expression pro-

Algorithm 1: Molecular Fragmentation

Input: molecule M , threshold n
Output: sequence of fragments F

1 Procedure fragmentation(M,n)
2 if count atoms(M) < n then
3 return M ;
4 B = get brics bonds (M);
5 flag == false ;
6 while not flag do
7 if length(B) == 0 then
8 return M
9 Select random bond b and remove it

from bond list B;
10 f, r = break molecule(M, b);
11 if count atoms(f) > n and

count atoms(r) > n then
12 flag == true;

13 end
14 if flag then
15 return f , fragmentation(r, n);
16 else
17 return f ;

file), and the output graph G is generated from the dis-
tribution Pθ(G|y, z).

3.2 Fragment-based Conditional Molecular
Generation.

The key challenge in estimating the conditional
distribution is the complex space consisting of all con-
figurations of labeled nodes and edges, which are in-
tractable for reasonably sized graphs. We will show that
existing graph-based generative models using node-by-
node sampling strategy are not ideal at discovering com-
mon substructures such as rings in molecules in the ex-
perimental section, thereby making the conditional dis-
tribution hard to learn. To alleviate this phenomenon,
we break molecules to a sequence of fragments and then
let FAME learn to design novel molecules by sampling
each fragment at each step in an autoregressive man-
ner. This approach guarantees the model to generate
valid substructures at each step by transforming the
conditional distribution from the combinatorial space
of atoms and bonds to the fragment space. In particu-
lar, we propose the molecular fragmentation algorithm
using BRICS bonds [21] to sequentially break an input
molecule to smaller substructures. The pseudo-code and
example of this algorithm are shown in Algorithm 1 and
Figure 3, respectively. Then, the conditional distribu-
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tion is computed as follows.

(3.2) Pθ(G|y) =
∑
F

Pθ(F |y)1(M(F ) = G)

where F is the sequence of fragments, M is the recon-
struction operator that maps a sequence of fragments
to molecule, and 1 is the identity function. Note that,
due to the randomness in selecting BRICS bonds in the
molecular fragmentation algorithm, one molecule can
have multiple fragment sequences. Under an autore-
gressive manner, this distribution can be further decom-
posed as follows.

(3.3) Pθ(F |y) =
T∏
t=1

Pθ(ft|f<t, y)

where F = [f1, f2, · · · fT ] and f<t = {f1, f2, · · · ft−1}.
Then, the objective function for FAME is as follows.

Lθ,φ = EQφ(z|G,y)

T∑
t=1

log[Pθ(ft|f<t, y, z)]

−KL(Qφ(z|G, y)||Pθ(z|y))

(3.4)

Conditional graph encoder. We implement the
conditional graph encoder Qφ(z|G, y) as a multi-layer
message passing network that leverages the graph struc-
ture of molecules and gene expression profile to con-
struct the latent vector z. In particular, a 5-layer graph
isomorphism network (GIN) which has been shown to
be more powerful than other graph neural networks [22]
is employed to learn the vector representation hG for
the input graph G = (X,A) as follows.

hki = MLPk

hk−1i +
∑
j∈N(i)

ReLU
(
hk−1j + eij

)
k ∈ {1, 2, · · · , 5}

(3.5)

where MLP is a multi-layer feed-forward neural net-
work, hki is the representation of node vi at k− th layer,
h0i = xi is the k − th row of the node feature matrix
X denoting the atom type of node vi, eij is the (i, j)-
vector in the adjacency tensor A denoting the bond type
of the edge between nodes vi and vj , and Ni is the set
of nodes that have edges to node vi. We average the
representations of all nodes to generate the graph rep-
resentation hG (The original model uses sum operator
but we found that it makes KL-divergence loss unstable
during training). Then, latent vector z is sampled from
N(µ, σ) where µ, σ is computed as:
(3.6)

[µ;σ] = MLPreadout
(
CONCAT

(
hG,MLPge(y)

))
where CONCAT is the concatenation operator.

Fragment-based graph decoder. The latent
vector z generated by the encoder network and the gene
expression profile y are put into the decoder network to
estimate the distribution Pθ(F |y, z) which is equal to
the product of conditional distributions Pθ(ft|f<t, y, z).
In particular, we employ GIN and gate recurrent unit
(GRU) networks to model this sequence of conditional
distributions as follows.

hFt = GRAPH EMBED(ft)(3.7)

ĥFt = MLPin
(
CONCAT

(
hFt ,MLPge(y), z

))
(3.8)

hRt = GRU(hRt−1, ĥ
F
t )(3.9)

θt = SOFTMAX
(
MLPout

(
hRt
))

(3.10)

where GRAPH EMBED is the GIN used to transform
fragment Ft to the vector representation hFt , and has
similar architecture to the one used in the conditional
graph encoder. hRt is the hidden representation com-
puted by GRU at time step t and θt is the vector that
represents the conditional distribution Pθ(ft|f<t, y, z).

3.3 Gene Expression Denoising.
With the advancement of phenotypic screening

technologies, several massive phenotypic datasets have
been generated in a quick manner but these screening
methods also introduce lots of noises in their measure-
ments. In particular, the gene expression profiles in
LINCS L1000 dataset measured under the same con-
dition (i.e., chemical and cell line) may be very differ-
ent, resulting in difficulties for deep generative models
to learn the relationship between chemical and its bio-
logical activity. To alleviate this problem, we propose
a gene expression denoising (GED) network utilizing
contrastive objective function to map gene expression
profiles into a unit hypersphere space and then forc-
ing to pull together the gene expression embeddings of
the same chemicals while simultaneously pushing them
away from gene expression embeddings of other chemi-
cals in that space, thereby helping to denoise gene ex-
pression data. In particular, a gene expression profile
yl induced by chemical cl is projected to unit hyper-
sphere space as ŷl = NORM(PROJ(yl)) where PROJ
is the projection network and NORM is the normaliza-
tion operator making the learned representation to lie
in the embedding space. Then the contrastive objective
function is applied as follows.
(3.11)

LCL = −
L∑
l=1

1

|P(l)|
∑
p∈P(l)

log
exp(ŷl · ŷp/ρ)∑

a∈A(l) exp(ŷl · ŷa/ρ)

where A(l) ≡ {1, 2, · · · , L} \ {l} is the set of all indices
except l and P(l) ≡ {p ∈ A(i) : cp = cl} is the set
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Datasets #ge #unique
mols

#avg atoms
per mol

#atom
types

LINCS L1000

Training 25658 16019 31.23

15Validation 2872 1782 30.83

Testing 3291 1980 30.54

ChEMBL

Training n/a 1290143 30.13

33Validation n/a 184488 30.12

Testing n/a 368603 30.12

Table 1: LINCS L1000 and ChEMBL data statistics.
(ge: gene expression, mol: molecule, avg: average)

of indices of all gene expression profiles induced by
chemical cl. Inspired by the success of DenseNet used
in image recognition task [23], we design the PROJ
network as a very deep feed-forward neural network
having shortcut connections between every layers as
follows.

(3.12) ho = MLPo(CONCAT(h1, h2, · · · , ho−1))

where input at o − th layer is the concatenation of all
hidden representations produced in previous layers. In
particular, GED consists of 64 feed-forward layers with
growth rate = 16, and the size of the output layer is set
at 64. After training, we replace yl by ŷl transforming
the condition distribution in Equation 3.1 to Pθ(G|ŷ).

3.4 Handling Infrequent Fragments.
Due to the complexity of molecular space, a small

number of fragments appears much more frequent than
the others in the data, resulting in difficulties in estimat-
ing the probability of generating infrequent fragments.
To ease this problem, at the training stage, we group
all infrequent fragments and mark them with the spe-
cial tag < RARE >. At the time step t of the decoder
network, if ft+1 is infrequent fragment, the label for this
step is the tag < RARE > instead of ft+1. At the in-
ference stage, for each gene expression profile ŷl in the
test set, we construct its neighboring gene expression
set by calculating similarity scores between this gene
expression profile and all profiles in the training set as
G(ŷl) ≡ {ŷt : SCORE(ŷl, ŷt) > tsim} where SCORE
function is Pearson’s correlation and tsim is the thresh-
old. Then, the infrequent fragments of molecules corre-
sponding to the gene expression profiles in this neigh-
boring set are extracted to form the set Ĝ(ŷl). At the
time step t of the molecular sampling process for gene
expression profile ŷl, if the tag < RARE > is selected,
the fragment ft+1 will be uniformly sampled from set

Ĝ(ŷl) as the output of that time step.

Datasets #unique
frags

#freq
frags

#avg frags
per mol

LINCS L1000

Training 10560 3702 3.12

Validation 2009 1087 3.05

Testing 2234 1178 3.05

ChEMBL

Training 548771 37579 3.20

Validation 128633 31996 3.20

Testing 216276 36313 3.20

Table 2: Fragment statistics in LINCS L1000 and
ChEMBL datasets. (frag: fragment, freq: frequent,
mol: molecule, avg: average)

4 Experiments and Discussions.

In this section, we evaluate the performance of
FAME on the drug-induced gene expression data and
compare its results with state-of-the-art deep generative
models including both SMILES-based and graph-based
models designed for either unconditional or conditional
generation settings to demonstrate the efficiency of
our method for phenotypic molecular design. Besides
achieving a superior generation performance, we also
show the effectiveness of GED model in the task of
reducing noise for gene expression data.

4.1 Datasets
The datasets used in our study include LINCS

L1000, ExCAPE, and ChEMBL. The summarized
statistics of these datasets are shown in Tables 1 and
2 and their details are described as follows.

LINCS L1000 dataset. This dataset consists of
the measurements of gene expression changes for most
informative genes (i.e., 978 landmark genes) caused
by molecular interventions at a variety of time points,
doses, and cell lines [9]. The dataset has 5 levels. We use
the level 4 (gene expression profiles measured for each
bio-replicate) and the level 5 (gene expression profiles
which are averaged from profiles of corresponding bio-
replicates). In our study, we conduct experiments
on the subset of this dataset extracted by [19] which
consists 31, 821 level 5 gene expression profiles induced
by 19, 768 compounds in MCF7 and VCAP cell lines
with the largest doses (i.e., 5 and 10 µM) after 24
hours of exposure. These gene expression profiles are
considered as chemical-induced phenotypes and are used
to train the generative model. We split this dataset
into training, validation, and testing set with a ratio
80 : 10 : 10 in terms of molecules. The testing set is
referred to as the internal testing set in our study. We
also use level 4 gene expression profiles to train GED
model to reduce noises in the gene expression data.
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ExCAPE dataset. Each gene expression profile
has only one corresponding molecule as a reference,
thereby prohibiting the usage of statistical metrics
to evaluate the performance of generative models for
molecular generation task at the individual profile level.
To surpass this problem, we further evaluate the perfor-
mances of generative models on the dataset constructed
in [19]. In particular, 148 gene expression profiles caused
by the intervention of CRISPR technology to the ten
protein targets (i.e., SMAD3, TP53, EGFR, AKT1,
AURKB, CTSK, MTOR, AKT2, PIK3CA, HDAC1)
are selected as phenotypes, and then the known active
molecules for these targets are extracted from the Ex-
CAPE dataset [25] to serve as the reference molecule
sets for each of these targets (i.e., > 1, 000 molecules
for each target/gene expression profile). We refer to
this dataset as the external testing set in our study.

ChEMBL dataset. Deep generative model often
requires large training data to achieve good perfor-
mances while the size of LINCS L1000 dataset is rela-
tively small in terms of the number of molecules. Thus,
we utilize the ChEMBL dataset [24] which consists of
∼ 2, 000, 000 drug-like molecules to pre-train the deep
generative models for the distribution learning task, and
then helping them to recognize important patterns in
the molecular space.

4.2 Experimental Settings
Baseline models. To validate the performance of

FAME for the phenotypic molecular design, we compare
it with a wide range of deep generative models including
both SMILES-based and graph-based models. To the
best of our knowledge, there are only two SMILES-based
models designed specifically for phenotypic molecular
design [19, 20]. Thus, we adapt some graph-based
models for this task by incorporating gene expression
profiles into these models. The details of these models
are presented as follows.

• UniAAE [20]. This SMILES-based model lever-
ages conditional AAE framework to explicitly learn
the shared and separated latent representations for
molecules and gene expression profiles, and then
the shared representations of gene expression pro-
files are used to sample novel molecules.

• LatentGAN [19]. This SMILES-based model
leverages conditional Wasserstein GAN with a gra-
dient penalty to generate latent representations for
molecules from the input gene expression profiles.
Then, the pre-trained auto-encoder is used to de-
code these latent vectors for novel molecules.

• MolGAN [6]. The graph-based model leverages
GAN architecture to generate node feature matrix

and adjacency tensor from noise vector. To make
it work in the conditional generation setting, the
generator takes input as the concatenation of gene
expression profiles and noise vectors. We apply the
post-processing technique proposed in [15] to guar-
antee the chemical validity of generated graphs.

• MolecularRNN. [14] This graph-based autore-
gressive model handles molecular graphs by incor-
porating atom and bond labels into its architecture.
This model guarantees the chemical validity by us-
ing valency-based rejection sampling method. We
concatenate the gene expression profile with inputs
of NodeRNN component to adapt this model into
the conditional generation setting.

Evaluation metrics. The most important crite-
rion of phenotypic molecular design is to generate novel
molecules with desired biological activity (i.e., molecules
that are likely to induce the input gene expression pro-
files). Thus, we focus on measuring the similarity be-
tween reference and generated molecules by utilizing
Fréchet ChemNet Distance (FCD) [11]. This metrics is
computed from hidden representations of molecules gen-
erated by the model trained to predict drug activities
so it can measure the similarity w.r.t both chemical and
biological perspectives. Besides FCD, we also report
results for widely-used metrics that measure the gen-
eral quality of generated molecules such as Valid (the
chemical validity rate of generated molecules), Novel
(the fraction of generated valid molecules which are not
in the training dataset), Unique (the fraction of unique
correct molecules), and Internal Diversity (the aver-
age distance between generated molecules).

4.3 Results
We conduct experiments to answer the following

questions.

• Q1. How effective is FAME for phenotypic molec-
ular design compared with previous works?

• Q2. How well does GED reduce noise in gene
expression data by contrastive loss function?

Phenotypic Molecular Design To evaluate
whether generated molecules can induce the input gene
expression profiles, we compare it with the set of ref-
erence molecules by using FCD metric to calculate the
distance with respect to chemical and biological per-
spectives between these two sets. For the internal test-
ing set, we calculate the FCD metric between generated
set and the whole testing set while for the external test-
ing set, we calculate the FCD metric between generated
and reference sets of each gene expression profile and
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Method Valid (↑) Novel (↑) Unique (↑) Int Div (↑) Int FCD (↓) Ext FCD (↓)

SMILES-based
UniAAE 0.0658 0.9991 0.8497 0.9031 26.0244 27.9492

LatentGAN 0.0284 1.0 0.9909 0.8915 27.9575 30.3811

SMILES-based (pre-trained)
UniAAE 0.3227 0.9997 0.8485 0.9047 24.7453 22.3818

LatentGAN 0.0345 0.9999 0.9959 0.8652 23.1666 29.9598

Graph-based
MolGAN 1.0 1.0 0.9268 0.8986 40.7019 46.6847

MolecularRNN 1.0 1.0 0.8993 0.9012 34.8264 36.3153

Proposed Model FAME 0.8382 0.9979 0.8665 0.8670 11.9811 21.1021

Table 3: Performances of FAME and baseline models for phenotypic molecular design. The directions of the
arrows indicate the optimized directions of the metrics. (Int Dive: internal diversity, Int FCD: FCD measured on
internal test set, Ext FCD: FCD measured on external test set).

Figure 4: Sample molecules generated by UniAAE, LatentGAN, MolGAN, MolecularRNN, and FAME.

Method
NLL Int FCD

w. GED w/o. GED w. GED w/o. GED

UniAAE 0.5442 0.6662 19.6236 24.7453

LatentGAN 4.8416 6.8799 19.6856 23.1666

Table 4: Performances of UniAAE and LatentGAN with
and without incporporating GED.

report the average result over these profiles. As shown
in Table 3, FAME achieves the smallest distances (i.e.,
FCD scores) at both internal and external testing sets
making its generated molecules to be most similar to
the reference molecules compared to other models. This
result shows the effectiveness of using graph representa-
tion, fragment-to-fragment sampling strategy, and gene
expression denoising model to estimate the conditional
distribution in Equation 3.1. For other metrics, perfor-
mances of FAME are on par with other deep generative
models, thereby showing the comprehensiveness of the
proposed model.

For baseline models, we observe that SMILES-
based models achieve significantly better performances
compared to the graph-based models in terms of FCD.

To investigate this phenomenon, we visualize the gen-
erated molecules of these models in Figure 4. We can
see that graph-based models can easily exploit common
metrics by using post-processing methods to make the
generated molecules chemically valid. However, these
methods cannot guarantee the generated molecules to
preserve substructures such as rings, thereby making
them not drug-like molecules. As shown in Figure 4,
MolGAN and MolecularRNN often generate molecules
with incomplete rings or infrequent substructures. For
SMILES-based models, these substructures can be eas-
ily recognized because they are often substrings in the
SMILES code (e.g., ‘c1ccccc1’ is the substructure/ring
of ‘NC1C[C@H]1c1ccccc1’) but these models have low
validity rates. Our proposed model combines the
strengths of these two approaches resulting in a high
validity rate and substructure preservation.

Gene Expression Denoising To investigate the
contribution of GED model to the phenotypic molecular
design, we compare the performances of UniAAE and
LatentGAN using the original gene expression profiles
with those using the gene expression embeddings gen-
erated by GED. The metrics used in this experiment
are negative log-likelihood (NLL) and FCD. As shown
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in Table 4, using denoised gene expression embeddings
improves the performances of these two generative mod-
els. Specifically, both of these models have lower NLL
(fit the learned distribution better) and FCD (generate
molecules having stronger associations with gene expres-
sion profiles) scores when incorporating GED.

5 Conclusion.

Phenotypic molecular design is a crucial problem
in drug discovery. In this paper, we propose a fragment-
based conditional molecular generation model (FAME)
for this task by formulating it under a conditional VAE
framework to learn the conditional distribution that
generates molecules from gene expression profiles. To
tackle the issues of learning this complex distribution,
FAME transforms this distribution from combinatorial
space of atoms and bonds to a fragment space and then
learns to generate the sequence of fragments in an au-
toregressive manner. Moreover, the gene expression de-
noising (GED) model is proposed to handling noises
in gene expression data by leveraging a contrastive ob-
jective function. The experimental results demonstrate
that our proposed model outperforms other state-of-the-
art deep generative models for phenotypic molecular de-
sign. Moreover, the denoising mechanism proposed in
our study could is valuable addition to be applied to
other phenotypic drug discovery applications using gene
expression data.
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