
Bioinformatics, YYYY, 0–0 

doi: 10.1093/bioinformatics/xxxxx 

Advance Access Publication Date: DD Month YYYY 

Manuscript Category 

 

Subject Section 

Context-aware information selection and model 
recommendation with ACCORDION 

Yasmine Ahmed1, *, Cheryl Telmer2 and Natasa Miskov-Zivanov1,3, * 

1Electrical and Computer Engineering Department, 3Bioengineering, Computational and Systems Biology, University of 

Pittsburgh, 2Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 

*To whom correspondence should be addressed. 

Associate Editor: XXXXXXX 

Received on XXXXX; revised on XXXXX; accepted on XXXXX  

Abstract 

Querying new information from knowledge sources, in general, and published literature, in particular, aims to provide 

precise and quick answers to questions raised about a system under study. In this paper, we present ACCORDION 

(ACCelerating and Optimizing model RecommenDatIONs), a novel methodology and a tool to enable efficient 

addressing of biological questions, by automatically recommending models that recapitulate desired dynamic behavior. 

Our approach integrates information extraction from literature, clustering, simulation and formal analysis to allow for 

automated, consistent, and robust assembling, testing and selection of context-specific models. We used ACCORDION 

in nine benchmark case studies and compared its performance with other previously published tools. ACCORDION is 

comprehensive as it can capture all relevant knowledge from literature, obtained by automated literature search and 

machine reading. At the same time, as our results show, ACCORDION is selective, recommending only the most 

relevant and useful subset (15-20%) of candidate model extensions found in literature, while guided by baseline model 

context and goal properties. ACCORDION is very effective, also demonstrated by our results, as it can reduce the error 

of the initial baseline model by more than 80%, recommending models that closely recapitulate desired behavior, and 

outperforming previously published tools. In this process, ACCORDION can also suggest more than one highly scored 

model, thus providing alternative solutions to user questions and novel insights for treatment directions. 
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1. Introduction  

While modeling helps explain complex systems, guides data collection 

and generates new challenges and questions [1], it is still largely 

dependent on manual human contributions. To collect useful information 

and create reliable models in biology, modelers survey hundreds of papers, 

search model and interaction databases (e.g., Reactome [2], STRING [3], 

KEGG [4], etc.), incorporate background and common-sense knowledge 

of domain experts, and interpret results of wet-lab experiments. These 

time-consuming steps make the creation and the development of models a 

slow, laborious and error-prone process.  

On the other hand, machine learning and bioinformatics advances 

have enabled automated inference of models from data. Although very 

proficient in identifying correlations between system components, these 

methods still struggle if tasked with finding directionality of influences 

and causation [5][6]. Inferring large causal models from data requires 

significant time and computational resources, and it is strongly dependent 

on the quality of the data [7]. Moreover, as the amount of biological data 

in the public domain grows rapidly, problems of data inconsistency and 

fragmentation are arising [8].  

To overcome issues with data reliability, automating what used to be 

a manual process in model creation seems like a critical next step in 

computational modeling. In other words, automated selection of new, 

reliable, and useful information about component influences and causality, 

followed by recommendation of how to add them to models will be 

beneficial in several ways. Besides leading to more efficient modeling by 

removing slow manual steps, it will allow for more consistent, 

comprehensive, robust, and better curated modeling process.  
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In order to automate the collection of relevant and useful information 

about component influences and causality, one can begin with a query 

about the system, its components, behavior, or features of interest. The 

search query guides automated selection of articles that contain relevant 

information from published literature databases. The biomedical literature 

mining tools are essential for the high throughput extraction of knowledge 

from scientific papers, examples of such reading engines are REACH [9], 

TRIPS [10], Eidos [11]. INDRA (Integrated Network and Dynamical 

Reasoning Assembler) [12] is an automated model assembly tool designed 

for biomolecular signaling pathway models and generalized to other 

domains such as disease models. INDRA relies on collecting and scoring 

new information extracted either from the textual evidence found in the 

corpus using an ensemble of natural language processing techniques 

(including REACH, TRIPS, and Eidos) or from structured pathway 

databases such as SIGNOR [13]. To select the most valuable and high-

quality statements, INDRA computes an overall belief score for each 

statement which is defined as the joint probability of correctness implied 

by the evidence.  

Recently, several methods have been proposed to automate the 

process of model extension from the information in literature [14][15]. In 

[16], the authors describe a method that, in the context of a given baseline 

model, automatically selects a subset of element interactions from a large 

machine reading output. The goal of the work described in [16] is to build 

a model that satisfies a set of requirements or to identify new therapeutic 

targets, formally expressed as existing or desired system properties. The 

main drawback of the method in [16] is that it becomes impractical for 

large models due to adding new interactions in layers, based on their 

proximity to the existing model. Another model extension method was 

proposed in [17], it uses a genetic algorithm and it is able to select a set of 

extensions from machine reading output that lead to a new model with 

desired behavior. The two main disadvantages of this approach are issues 

with scalability and the non-determinism, as the solution may vary across 

multiple algorithm executions on the same inputs. Finally, in [18], the 

authors proposed a tool which uses several metrics that rely on interaction 

occurrences and co-occurrences in published literature, and accounts for 

the connectivity of the newly added interactions to the existing models. 

While it selects new high-confidence interactions well supported by 

published literature and connected to the baseline model, the tool 

described  in [18] focuses on the static underlying network of a model and 

does not consider its dynamic behavior. 

In this work, we propose ACCORDION (ACCelerating and 

Optimizing model RecommenDatIONs), a tool that identifies useful and 

relevant information from published literature, and recommends model 

modifications that lead to closely recapitulating desired system behavior, 

all in a fully automated manner. Thus, compared to the work in [18], 

ACCORDION also considers the dynamic behavior, and in contrast to 

[16] and [17], it focuses on identifying clusters of strongly connected 

elements in the newly extracted information, that can have a measurable 

impact on the dynamic behavior of the model.  

ACCORDION is versatile, it can be used to extend any model that 

has a directed graph as an underlying structure, and update functions for 

elements, allowing studies of system dynamics (also known as executable 

models). To demonstrate the efficiency and utility of the tool, we have 

selected nine different case studies using models of three systems, namely, 

the T cell differentiation model [19], the T cell large granular lymphocyte 

model [20] and the pancreatic cancer cell model [21], and seven machine 

reading outputs with varying features. Our main goal in this work is to 

show that our tool, ACCORDION, automatically, without human 

intervention, recommends model improvements to significantly reduce 

baseline model error and recapitulate desired system behavior.  

To this end, the contributions of this work include: (i) a tool that 

recommends executable models of intracellular signaling to satisfy desired 

system properties; (ii) a novel approach for integration of machine 

reading, simulation, and testing that allows for in-design model validation 

(instead of typical post-design approach); (iii) several new candidate 

models of the three systems under study, assembled automatically, 

satisfying the same set of desired properties as existing manually built 

models, and thus, enabling exploration of redundancies or discovering 

alternative pathways of regulation. Finally, ACCORDION takes at most a 

few hours to execute thousands of experiments in silico, which would take 

days, or months, or would be impractical to conduct in vivo or in vitro. 

2. Methods 

The inputs and outputs of ACCORDION, as well as the main methods 

within the tool are outlined in Figure 1. 

2.1. Baseline model 

One of the inputs to ACCORDION is a baseline model (BM), setting 

the context for other inputs and for the analysis. The baseline model can 

be obtained in many different ways, for example, it could be manually 

created with expert input, or adopted from models published in literature 

[22][20][21][23] and in model databases [4][2][24]. In general, 

ACCORDION works with models that have directed cyclic graph 

structure, G(V,E), where each node v ∈ V corresponds to one model 

element, representing a protein, gene, chemical, or a biological process, 

and each directed edge e(vi, vj) ∈ E indicates that element vj is regulated 

or influenced, directly or indirectly, by element vi.  

We refer to the set of regulators of an element as its influence set, 

distinguishing between positive and negative regulators. ACCORDION 

assigns to each element v a discrete variable x representing the element’s 

state, such as a level of its activity or amount. Each model element may 

have a state transition function, referred to as element update rule, which 

defines its state changes given the states of its regulators, thus enabling 

the study of system dynamics. While the types of elements and their 

update rules (see Sections 2.3-2.7) are not constrained by the main 

methods implemented within ACCORDION, they are largely affected by 

the information that is available in new events (see Section 2.2) and in the 

baseline model. Most often, the events described in literature are 

qualitative, for example, only two element states (e.g., inactive/active, 

absent/present) may be distinguished or relevant, or only two or three 

levels of concentration may be considered (e.g., low/high or 

low/medium/high). Causal or Boolean types of regulations and update 

rules are most suitable in such cases and ACCORDION is also compatible 

with such qualitative information. The details of model representation and 

formats accepted by ACCORDION are provided in Section 1S 

(supplement).  

2.2. Candidate event set  

Another input to ACCORDION is a set of candidate events (CEs), 

which can be collected from different sources and created manually or 

automatically. Since the machine reading of published literature results in 

large event sets, and therefore, allows for a high throughput processing of 

available information, we will assume here such automated pipeline, 

including both machine readers (e.g., the ones described in [9][10]) and 

INDRA database of interactions extracted from literature [12]. The set of 

relevant papers can be selected either using search tools such as Google or 

PubMed [25] or by providing key search terms to reading engines, which 

then directly use Medline search tools (e.g., PubMed [25], Ovid [26]) to 

find most relevant papers. The former approach includes manual user step 

(using search tools to find papers to input to machine readers), but gives 
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more flexibility to users when selecting relevant papers, while the latter 

approach allows for full automation, starting with the query entered by a 

user. In either case, machine readers process the selected papers and output 

a set of events. Examples of queries, sentences processed by machine 

readers, and events in the machine reading output are shown in Figure 1. 

As can be seen in the figure, each event has a direction (source and target 

of interaction) and sign (positive or negative regulation). 

2.3. Gnew creation and return path definition 

The CE set can be represented as a set of edges, Eext, where the source 

and target nodes of these edges form set Vext. From the baseline model 

graph GBM(VBM, EBM) and the CE set, ACCORDION creates a new graph 

Gnew(Vnew, Enew), where Vnew = VBM ∪ Vext, and Enew = EBM ∪ Eext. The edges 

e(vs,vt) in Eext, where vs is the source node and vt is the target node, can be 

classified into three categories: (i) both source node vs and target node vt 

are found in the baseline model: {vs,vt}∈VBM; (ii) either the source node or 

the target node is found in the baseline model: (vs∈VBM and vt∉VBM) or 

(vs∉VBM and vt∈VBM); (iii) neither the source node nor the target node is 

found in the baseline model: {vs,vt}∉VBM.  

Adding the entire set of CEs to the baseline model all at once usually 

does not result in a useful and accurate model. Alternatively, we can add 

one interaction at a time and test each model version, which is time 

consuming, or even impractical, given that the number of models increases 

exponentially with the size of the CE set. Moreover, adding individual 

interactions does not have an effect on the model when an interaction 

belongs to category (iii), and most often when it belongs to category (ii). 

It proves much more useful to add paths of connected interactions, which 

are at the same time connected to the baseline model in their first and last 

nodes. Therefore, our approach for finding the most useful subset of the 

CE set includes finding connected interactions, that is, a set of edges in 

the graph Gnew that form a return path. We define a path of k connected 

edges as epath(vs1,vtk) = (ei1(vs1,vt1), ei2(vs2=vt1,vt2), ei3(vs3=vt2,vt3), …, 

eik(vsk=vtk-1,vtk)), and we will refer to epath(vs1,vtk) as a return path, when 

{vs1,vtk}∈VBM (Figure 1). ACCORDION searches for such return paths 

after clustering Gnew. 

2.4. Gnew clustering 

To find clusters in Gnew, we apply Markov Clustering algorithm 

(MCL) [27], an unsupervised graph clustering algorithm, commonly used 

in bioinformatics (e.g., clustering of protein-protein interaction networks 

[28][29]). In [30], the authors showed that the MCL algorithm is tolerant 

to noise, while identifying meaningful clusters. A number of previous 

studies have demonstrated that the MCL algorithm outperforms other 

clustering techniques [28][31][32][33][34]. The MCL algorithm has been 

proven to converge with undirected graphs [30], and therefore, 

ACCORDION provides to the MCL algorithm the information about node 

adjacency in Gnew. Since we are interested in clustering a graph given its 

connectivity only, the information about adjacency without directionality 

is sufficient in this step. The directionality will be used in later steps when 

exploring dynamic behavior. In other words, the adjacency matrix M 

created this way is symmetric, mapping nodes in Gnew to both row and 

column headers in M. The entries in matrix M are assigned value 1 when 

an edge between their column and row nodes exists in Gnew or when an 

entry is on the main diagonal of M (i.e., same column and row node), and 

value 0 otherwise. Next, the updated matrix M is used by the MCL 

algorithm as an initial version of a stochastic Markov matrix [35], where 

each entry represents the probability of a transition from the column node 

to the row node. Since Gnew is not a weighted graph, all transitions are 

 

Figure 1. The diagram of the flow that includes a user, machine reading and ACCORDION. Input and output examples column: (Top) Left: Example 

query used to select relevant papers. Right: example property written in BLTL format. (Middle) Main components of information extraction from relevant 
papers. Top: Two example sentences with highlighted entities and events that are extracted by machine readers. Bottom-Left: Tabular outputs from REACH 

engine with Example 1 and Example 2 sentences as input. Bottom-Right: Graphical representation of REACH outputs. (Bottom) Left: Tabular 

representation of several elements and their influence sets (positive and negative regulators) in BioRECIPES format [45] and the graphical representation 

of elements and influence sets. Right: A toy example graph Gnew of a baseline model and connected clusters: grey nodes belong to the baseline model, 

light and dark green nodes belong to the CE set obtained from machine reading, blue edges highlight a return path within one cluster, and red edges show 
a return path connecting two clusters. The multi-cluster path starts at GBM (baseline model), continues through C1 (cluster 1), then through C2 (cluster 2), 

and ends in GBM.   
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assumed to be equally likely, and the matrix M is normalized such that the 

sum of entries in each column is equal 1. As mentioned earlier, graph Gnew 

can be cyclic, and although the MCL algorithm has been previously 

applied to acyclic graphs [36], we still use the MCL algorithm for its 

speed, and our results show that it provides useful results when applied in 

automated model extension recommendation. 

MCL simulates random walks on an underlying interaction network 

(in our case, graph Gnew), by alternating two operations, expansion and 

inflation. The probability of a random walk of length l between any two 

nodes can be calculated by raising the matrix M to the exponent l, a 

process called expansion. As the number of paths is likely larger between 

nodes within the same cluster than between nodes across different clusters, 

the transition probabilities between nodes in the same cluster will typically 

be higher in a newly obtained expanded matrix. MCL further amplifies 

this effect by computing entry-wise exponents of the expanded matrix, a 

process called inflation [27], which raises each element of the matrix to 

the power r. Clusters are determined by alternating expansion and 

inflation, until the graph is partitioned into subsets such that there are no 

paths between these subsets. The final number of generated clusters, 

C1,…,Cn,  depends on the selected inflation parameter r [27]. 

As discussed above, ACCORDION clusters the entire Gnew in order 

to account for the connectivity with the baseline model, and thus, it likely 

assigns parts of the baseline model to different clusters. Once the clusters 

are generated, since we are interested in adding the components of the CE 

set from the clusters to the entire baseline model, we will refer to the CE 

(BM) part of a generated cluster l as Cl
CE (Cl

BM) and to the nodes and edges 

in such cluster subsets as 𝑉𝐶𝑙,𝐶𝐸 (𝑉𝐶𝑙,𝐵𝑀) and 𝐸𝐶𝑙,𝐶𝐸 (𝐸𝐶𝑙,𝐵𝑀), respectively. 

2.5. Assembly of candidate model networks 

From the generated clusters and the baseline model, ACCORDION 

assembles multiple candidate models (CMs) as follows. ACCORDION 

can add clusters one at a time, or in groups. The more clusters or cluster 

groups are generated, the number of possible cluster combinations grows, 

and consequently, ACCORDION needs to assemble and test more models. 

In addition to that, in most cases VBM is smaller than Vext, and EBM is 

smaller than Eext, and thus, the number of new nodes and edges in a cluster 

tends to be relatively large compared to the size of the baseline model (we 

will show examples for our case studies later in Section 3.1). Adding a 

large number of new nodes and edges to the baseline model at once can 

significantly change the structure and the behavior of the model. 

Therefore, the default approach in ACCORDION is to evaluate only 

individual clusters generated as described in Section 2.3, as well as 

clusters Ci,j, created by merging pairs of clusters Ci and Cj (i,j = 1..n, ij). 

ACCORDION determines for each individual and merged cluster whether 

it forms a return path with the baseline model, and for each such cluster, 

ACCORDION creates a candidate model by adding the entire baseline 

model to the cluster. In other words, the number of created candidate 

models is equal the number of clusters (both individual and merged) that 

form a return path with the baseline model.  

As defined above, the clusters formed from the Gnew graph can contain 

nodes and edges of the baseline model. Therefore, for those clusters 

(individual or merged) that were used to create candidate models, 

ACCORDION computes the node overlap (NO) value [18], as a ratio of 

those nodes in a cluster C𝑙 that are present in the baseline model 

(𝑉𝐶𝑙,BM = VBM ∩ VC𝑙) and the total number of nodes within a cluster (𝑉𝐶𝑙). 

𝑁𝑂𝑙 =
|𝑉𝐶𝑙,BM|

|𝑉𝐶𝑙|
  

2.6. Executable model creation and testing  

In previous sections we mostly focused on the static graph structure of the 

two inputs, baseline model and the CE set. Here, we discuss an additional 

input to ACCORDION and how all three inputs are used to evaluate the 

dynamics of candidate models.  

The third input to ACCORDION includes a set of properties 𝒯 

defining desired dynamic behavior that the assembled model should 

satisfy. ACCORDION uses element update rules in the baseline model 

and the sign of influences (positive or negative) in the CE set to create new 

element update rules. For those elements that were already in the baseline 

model, but their influence set was extended after adding a cluster to the 

baseline model, ACCORDION modifies their update rules. When new 

elements with non-empty influence set are added to the baseline model, 

ACCORDION generates a new update rule for them. As stated previously, 

event information available in the CE set is often qualitative, for example, 

“A positively regulates B”. Furthermore, if an update rule for element B in 

the baseline model already includes two positive regulators C and D, i.e., 

𝑥𝐵 = 𝑓(𝑥𝐶, 𝑥𝐷), then the new event from the CE set can be added to the 

update rule for B as 𝑥𝐵 = 𝑓(𝑥𝐶, 𝑥𝐷) OR 𝑥𝐴, or 𝑥𝐵 = 𝑓(𝑥𝐶 , 𝑥𝐷) AND 𝑥𝐴 

(following the definition from Section 2.1, 𝑥𝐴, 𝑥𝐵, 𝑥𝐶, 𝑥𝐷 are variables 

representing level or amount or activity of elements A, B, C, D, 

respectively). For elements with more than two discrete levels, 

ACCORDION can use max and min operators to determine the maximum 

or minimum influence from a given set of regulators. 

To select the CM that allows for most closely reproducing the 

experimentally observed or desired behaviors and, given the randomness 

in time and order of events in modeled systems, ACCORDION uses a 

combination of stochastic simulation and statistical model checking. The 

DiSH simulator, described in detail in [37][38], is used to obtain the 

dynamic behavior of the baseline model and the CMs. DiSH is a stochastic 

simulator that can simulate models at different levels of abstraction, 

information resolution, and uncertainty. This range of simulation schemes 

is especially valuable when working with diverse information sources and 

inputs, such as the ones used by ACCORDION. Each simulation run starts 

with a specified initial model state, where initial values are assigned to all 

model elements to represent a particular system state (e.g., naïve or not 

differentiated cell, healthy cancer cell). The initial values for the baseline 

model elements (nodes in VBM) are usually already known, however, the 

newly added elements (nodes in Vext) need to be assigned initial values as 

well. Given that machine reading does not provide this information, we 

assume that all elements within the same cluster have the same initial 

value.  

ACCORDION runs a statistical model checker [39][40] to verify 

whether the CMs satisfy a set of properties describing expected behavior 

of the modeled system. The model checker reads properties formally 

written using Bounded Linear Temporal Logic (BLTL) [41][40] and, for 

a given model ℳ and a property 𝓉, it outputs a property probability 

estimate, 𝑝𝓉
ℳ , that model ℳ satisfies property 𝓉, under predefined error 

interval for the estimate. For instance, we can test whether at any point 

within the first s1 time steps, model element vi (i.e., its state variable xi) 

reaches value X1 and element vj (i.e., its state variable xj) reaches value X2, 

and they both keep those values for at least s2 time steps. We write this 

property formally as 𝐹𝑠1𝐺𝑠2(𝑥𝑖  = X1 ∧ 𝑥𝑗  = X2), where 𝐹𝑠1  stands for 

“any time in the future s1 steps”, and 𝐺𝑠2  stands for “globally for s2 steps”. 

An example of a property and its expected value are shown in Figure 1. 

To avoid a full state space search, the statistical model checker calls the 

simulator to generate element trajectories for a defined number of steps 

and then performs statistical analysis on those trajectories with respect to 

a given property [42][16].  

2.7. CM scoring and recommendation 

Usually, we are interested in a model that can satisfy a property 𝓉𝑗 ∈

𝒯 with high probability. However, in some cases, due to randomness in 
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biological systems, the 𝑝𝓉
ℳ  value lower than 1 (e.g., 𝑝𝓉

ℳ ≥ 0.7) is 

expected. In our case studies explored in Section 3 (and in Table 1S), we 

will show examples of such properties. In order to provide the 

recommendation of top CMs that are closest to expected probability values 

for properties, we use several metrics. The first metric, model property 

error, determines the difference between an estimated probability value 

for property 𝓉𝑗  for CMi, 𝑝𝓉𝑗

𝐶𝑀𝑖, and the goal property probability value for 

𝓉𝑗 , P𝓉𝑗
: 𝜀𝓉𝑗

𝐶𝑀𝑖 = |𝑝𝓉𝑗

𝐶𝑀𝑖 − P𝓉𝑗
|. Next, we compute average model error, 

across all tested properties 𝓉𝑗 ∈ 𝒯, for each CMi, 𝜀𝒯,𝑎𝑣𝑔
𝐶𝑀𝑖 , and -score for 

model CMi for the given set of properties as 𝜎𝒯
𝐶𝑀𝑖 = 1 − 𝜀𝒯,𝑎𝑣𝑔

𝐶𝑀𝑖 . The larger 

-score for a model is, the closer the model is to satisfying all desired 

properties. We also define model -score, 𝑁𝒯,𝛿

𝐶𝑀𝑖 , as the percent of 

properties out of all properties in 𝒯 for which 𝜀𝓉𝑗

𝐶𝑀𝑖 ≤ δ. In other words, 

the parameter  indicates how close the 𝑝𝓉𝑗

𝐶𝑀𝑖  value needs to be to the goal 

probability P𝓉𝑗
for the property to be considered satisfied. This parameter 

can be selected by ACCORDION users depending on their modeling 

goals.     

3. Results 

3.1. Benchmarks  

In the absence of standardized benchmarks to evaluate 

ACCORDION, we created nine case studies. These benchmarks and all 

related files will be open access and available with ACCORDION release 

[43]. In Section 2S in the supplement, we provide an overview of the 

biological background for all studied systems, the details of creating the 

baseline model, and the steps of selecting literature and creating CE set 

for each conducted case study. In Figure 2, we list the main characteristics 

of these nine cases, with models of three biological systems and different 

sets of CEs for each system. The three models include control circuitry of 

naïve T cell differentiation (T cell) [22], T cell large granular lymphocyte 

(T-LGL) leukemia model [20], and pancreatic cancer cell model (PCC) 

[21]. The studies vary in the size and graph features of baseline models 

(“BM creation” columns) and the CE sets (CE set creation” columns), and 

are named Tcell CEFA, Tcell CESA, Tcell CESM, T-LGL QSm, T-LGL QMed, 

T-LGL QDet, PCC BMAu, PCC BMAp, and PCC BMPr. As can be seen in 

Figure 2, the size of baseline models varies from several tens to several 

hundreds of nodes or edges, and the number of interactions in the CE set 

varies from half the number of interactions in the baseline model to six 

times larger (“BM and CE set relationship” columns).  

We also list in Table 1S (supplement) the sets of desired properties, 

that are not fully satisfied by baseline models and are used to guide new 

model assembly for each case study. The properties in Table 1S are 

provided in both natural language descriptions and machine readable 

BLTL format, and we also include their goal probability values (P𝓉𝑗
). For 

each system, besides a baseline model, we also found a golden model in 

literature ([19] for the T cell model, [20] for the T-LGL model, and [21] 

for the PCC model). Figure 2 includes the characteristics of golden models 

(columns “GM” and “GM and CE set relationship”).  

With these nine case studies, we evaluate ACCORDION’s 

performance and also demonstrate different research scenarios where it 

can be used, such as varying size and contents of baseline model and CE 

set (all nine case studies), varying quality of the CE set (Tcell case 

studies), varying level of detail in user selection of literature (Tcell CEFA 

and all three T-LGL case studies) reconstruction of previously published 

model (all nine case studies).  

3.2. Recommending new models with desired behavior 

In Figure 3(a), we show the minimum and maximum of the average 

model error (𝜀𝒯,𝑎𝑣𝑔
𝐶𝐸𝑀𝑖 ) found across all created CMs for each of the nine use 

cases. Additionally, in Figure 3(b), we show the δ-score, 𝑁𝒯,𝛿

𝐶𝐸𝑀𝑖 , values 

for the top CMs recommended by ACCORDION in all nine use cases. We 

also explored different δ values (0.1 to 0.5). To highlight the 

improvements in CMs when compared to the original baseline model, we 

show all results next to their corresponding baseline model values. As can 

be seen from the figure, ACCORDION achieved δ-score of 95% when 

δ = 0.3 (i.e., all but one property satisfied). Furthermore, increasing δ 

improves the model score, however, we observed that 0.2 or 0.3 value for 

δ is optimal to obtain useful models with high score. Overall, 

ACCORDION automatically selected a small fraction (e.g., ~20%, as will 

be discussed in Section 3.3) of all interactions in the CE set, sufficient to 

decrease model error by up to 83%, as shown in Figure 3(c).  

Furthermore, we compared ACCORDION’s performance in terms of 

average model error of the top recommended model 𝜀𝒯,𝑎𝑣𝑔
𝐶𝑀𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 with 

two other previously published methods for model extension from [16] 

and [18]. Figure 3(d) shows that ACCORDION obtains the lowest 

𝜀𝒯,𝑎𝑣𝑔
𝐶𝑀𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑. We applied the layered approach from [16] only on the 

T cell case study, since it has been shown to mainly work on smaller 

models, and we applied the approach from [18] on all three baseline 

 

Figure 2. (Top) Description of each use case in terms of 1-how each CE set is acquired (using a query or a preselected set of papers, how many papers 

are read, the number of edges in the entire machine reading output file, 𝑬𝑹𝑶, the number of nodes or entities 𝑽CE, the unique number of interactions in 

each CE set 𝑬CE), 2-how each baseline model (BM) is created, whether it is fixed across all three studies for the same system, or it is different for the 

three studies of the same system, 3-the relationship between each BM and the corresponding CE set in terms of the number of common nodes (entities) 

and edges (interactions), 4-the golden model (GM) specifications, 5-the relationship between each GM and the corresponding CE set (the number of 

common edges, the number of edges that are in GM but not in BM, the number of edges that are in GM but not in BM and are found in the CE). 

(Bottom) Venn diagrams showing the overlap between three sets, 𝑬CE, 𝑬BM and 𝑬GM for the nine case studies. 
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models. The method in [18] relies only on the event occurrences and co-

occurrences in literature, without accounting for dynamic behavior, and 

therefore, ACCORDION outperforms it, as it is guided by the desired 

system behavior (i.e., the set of properties 𝒯 and their corresponding goal 

property probabilities P𝓉𝑗
).  

As can be concluded from Figure 3, automated reading and model 

assembly are not able to reduce model errors 𝜀𝒯,𝑎𝑣𝑔
𝐶𝑀𝑖  all the way to 0 in our 

use cases. ACCORDION outputs 𝑝𝓉𝑗

𝐶𝑀𝑖  values for all properties and all 

CMs it creates, and the list of extensions from CEs that are used in each 

CM. We show in Figure 1S in the supplement the 𝑝𝓉𝑗

𝐶𝑀𝑖  heatmaps that 

ACCORDION computed for all nine case studies. The heatmaps provide 

details per each individual property and CM, and this information can be 

especially useful if users decide to manually inspect and further modify 

CMs recommended by ACCORDION.  

Although we show in Figure 1S results for all properties, several of 

the CE sets did not fulfill the necessary requirement for all properties to 

be used. In other words, all the elements that are listed in properties (Table 

1S, supplement) need to be present in at least one of the sets VBM and VCE. 

As shown in Figure 4 (“Properties” columns), in six out of nine studies, 

these elements are either already in the baseline model or in the CE set. 

However, in all three T-LGL studies element GAP is not found in either 

of the two sets, VBM and VCE, and in the T-LGL QSm case two elements, 

Ceramide and SOCS, are also not present. These element omissions occur 

in ACCORDION’s input and are due to machine reading not finding those 

elements in selected papers. While the properties that correspond to such 

omitted elements are not suitable for evaluating ACCORDION, we 

included them in our results to demonstrate realistic cases with imperfect 

CE sets. As part of our future work on ACCORDION, we plan to include 

pre-processing methods to automatically exclude such tests before 

clustering the CE set, or to inform the user at the beginning that property 

elements are not found in the input. On the other hand, we were especially 

interested in ACCORDION’s performance in the cases where property 

elements are not present in VBM but are in VCE. Thus, we defined “criterion 

A” (Figure 4) to evaluate ACCORDION in such cases. As can be seen 

from the figure, ACCORDION is able to recover all property elements 

missing from a baseline model in at least one of the recommended CMs. 

Finally, when ACCORDION recovers all necessary property 

elements, most often the reason for non-zero model property errors 

(𝜀𝓉𝑗

𝐶𝑀𝑖 > 0) is in update rules. For instance, in the Tcell cases, for the best 

recommended model per case, ACCORDION was able to recover FOXO1 

which was not in VBM but was in VCE. Moreover, ACCORDION recovered 

the update function of FOXO1 in all three cases and therefore, the 

properties that correspond to the dynamic behavior of FOXO1(𝓉9, 𝓉18 and 

𝓉27) under three different scenarios were all satisfied as shown in Figure 

1S (supplement). However, in the case of update function for AKT, 

ACCORDION added a number of new AKT regulators to the baseline 

model which affected the dynamic behavior of AKT. Again, this 

demonstrates the dependance of ACCORDION output on the CE sets 

provided by machine reading. There are two ways in which this could be 

overcome. First, one could either use other tools to filter or score 

individual interactions in CE set [44][12] before they are used by 

ACCORDION, which we are planning to incorporate as one of our next 

steps. Second, ACCORDION can be used to identify cases where human 

input is necessary, for example, cases where many element regulators 

appear in literature, not all of which can be used to form regulatory rules. 

3.3. Finding most relevant set of new interactions   

We created the use cases such that the relationship between the number of 

elements and interactions in baseline models (|𝑉𝐵𝑀|, |𝐸𝐵𝑀|), and in their 

corresponding CE sets (|𝑉𝐶𝐸|, |𝐸𝐶𝐸|) varies, from the CE set being smaller 

than baseline model in the T-LGL QSm case, to being up to six times larger 

than baseline model in other use cases (Figure 2). We also determined the 

size of the overlap, |𝑉𝐵𝑀 ∩ 𝑉𝐶𝐸| (see Figure 2), further highlighting that 

indeed the number of new elements that could be added to the model is 

much larger than the number of elements in the model.  

Additionally, we created these nine case studies such that they have 

baseline models with varying level of network connectivity. As described 

in Section 2S in the supplement, the baseline model in the T cell studies is 

a previously published, thus functional, model, while the T-LGL and PCC 

 

Figure 3. ACCORDION evaluation on nine case studies, three Tcell studies SM, SA, FA, three T-LGL studies SM (Sm), MD (Med), DT (Det), and 

PCC studies AU, AP, PR: (a) minimum (best) and maximum (worst) average model error 𝜀𝒯,𝑎𝑣𝑔
𝐶𝑀𝑖  across all recommended models for each case study, 

compared to the average error of the baseline model in each study; (b) maximum across all CM 𝛿-scores 𝑁𝒯,𝛿
𝐶𝑀𝑖  obtained in each case study expressed in 

%; the results are compared for different values of 𝛿 (10%, 20%, 30%, 40%, 50%); (c) error reduction ACCORDION achieves in each case study; (d) 

the comparison between BM error and the top recommended model by ACCORDION and other previously published methods in [16] and [18].  
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baseline models were created by removing nodes and interactions from a 

published model. Since by construction the clusters that ACCORDION 

generates are usually connected only to a part of the baseline model, we 

used the node overlap metric NO, defined in Section 2.5, to determine the 

relationship between the number of new nodes that are added to the 

baseline model and the part of the model those nodes are connected to. 

The NO numbers in Figure 1S in the supplement, together with the ratios 
|𝐸𝐶𝑀\𝐸𝐵𝑀|

|𝐸𝐶𝐸|
 listed in Figure 4, show that ACCORDION is very selective, 

and it only adds to the baseline model a subset of new interactions that are 

well connected with the model.  

We further investigated the percentage of these interactions selected 

from the entire CE set that were included in the top recommended CM 

(Figure 4(a)). For the Tcell cases, ACCORDION recommended on 

average 14% of the interactions as candidates for model extension, 

whereas for T-LGL and PCC cases, ACCORDION identified on average 

26% and 15% of such interactions, respectively. These numbers 

emphasize an important characteristic of ACCORDION: while it provides 

a comprehensive overview of literature, it significantly reduces the 

number of selected interactions, such that, if human input is still necessary, 

the number of interactions to manually review is significantly smaller than 

the original CE set.  

Interestingly, when observed together with the model error results, in 

the T cell and T-LGL studies, the higher NO values seem to correlate well 

with larger reduction in model error. However, in the PCC studies this 

correlation does not hold, where the CMs with a large number of new 

interactions compared to the size of the baseline model significantly 

decrease the baseline model error (~80% reduction). This demonstrates 

another important characteristic of ACCORDION: when the baseline 

model is already well-built, a smaller number of extensions can help 

improve it (e.g., Tcell and T-LGL cases), while for baseline models that 

are not very well connected and not functional or usable to start with (e.g., 

when the user starts only with a seed set of interactions and not a complete 

model), a larger number of interactions needs to be added to improve them 

(e.g., PCC case). 

3.4. Identifying alternative networks   

As described in Section 3.1, and also detailed in Section 2S in the 

supplement, we identified golden models for our case studies. Our goal 

with using golden models was twofold: we were interested in exploring 

how closely ACCORDION can reproduce previously published models 

(“criterion B” and “criterion C” in Figure 4) as well as comparing and 

contrasting them to automatically created models that satisfy the same set 

of properties.    

In all three T cell case studies, ACCORDION adds all the interactions 

from the 𝐸𝐺𝑀\𝐸𝐵𝑀 set to its top recommended CMs (columns “GM” in 

Figure 4, dark yellow cells). For example, the merged cluster C1,2
SM, with 

NO=0.7, restored all the missing interactions that were removed from the 

golden model. In the T-LGL and PCC studies, ACCORDION adds 30% 

and 32% of missing golden model interactions to recommended CMs. 

However, while in all three T cell studies all missing golden model 

interactions, i.e., interactions from the 𝐸𝐺𝑀\𝐸𝐵𝑀 set are present in CE sets, 

the CE sets in the T-LGL and PCC studies do not contain all the 

interactions from the 𝐸𝐺𝑀\𝐸𝐵𝑀  sets, as shown in Figure 4 (columns 

“GM”, dark yellow cells). This is due to either papers that were selected 

using queries do not include those missing interactions or machine reading 

does not recognize these interactions in the papers.  

An important outcome from this exercise is that ACCORDION 

recommends new CMs, different from golden models, which have high -

score and δ-score and contain new interactions that form return paths with 

the baseline model. Moreover, in the T-LGL studies, a significant portion 

of interactions (41%) was removed from the golden model to obtain the 

baseline model. In such cases, ACCORDION selected from the large CE 

sets many additional interactions that form stronger connections with the 

baseline model (as part of clusters with high NO values and return paths) 

than the ones that are in the golden model, while also being able to find 

CMs that have high -score and δ-score. For instance, the regulators of 

AKT in the golden model are PIP3 and mTORC2, while the models 

recommended by ACCORDION also include regulations by TGFB, 

IFNgamma, CK2, CTLA4, SHIP1, all of which are suggested in literature. 

 

Figure 4. (a) Characterization of CMs created by ACCORDION for the nine case studies. (b) Three criteria definitions and ACCORDION’s criteria 

outcomes in the nine case studies (vproperty is the element included in the property as listed in Table 1S; CMrecommended is the top recommended model). 
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This highlights another possible use of ACCORDION, when examining 

redundancies in signaling networks or discovering alternative pathways 

regulating the same target element. 

3.5. Assistance in query answering  

We also explored the relationship between the design of queries and 

ACCORDION’s effectiveness, that is, whether the selection of search 

terms to mine literature affects the usefulness of extensions selected by 

ACCORDION. As described in the supplement, for the Tcell CEFA case, 

we used a search query as an input to PubMed to identify the most relevant 

papers. We investigated the influence of this query on the percentage of 

interaction in clusters used to create CMs with top scores. In Figure 4, we 

show the average and the maximum percentage of selected interactions, 

i.e., (
|𝑬𝑪𝑴\𝑬𝑩𝑴|

|𝑬𝑪𝑬|
)

𝒂𝒗𝒈

 and (
|𝑬𝑪𝑴\𝑬𝑩𝑴|

|𝑬𝑪𝑬|
)

𝒎𝒂𝒙

, which are 10% and 33%, 

respectively. For the best recommended model of this particular case 

study, ACCORDION was able to recover all the missing elements that are 

in VGM and not in VBM, namely, FOXO1, NEDD4, CK2 and MEK1. 

Furthermore, as can be seen in Figure 1S (supplement), ACCORDION 

recapitulated the dynamic behavior of FOXO1, an element that was in the 

search query used to collect interactions for the CE set (Section 2S), in all 

three scenarios (properties 𝓉9, 𝓉18and 𝓉27). However, the dynamic 

behavior of AKT (also in the search query), IL2 and STAT5 was not 

recovered in one out of three scenarios, (high TCR scenario, properties 

𝓉19, 𝓉22and 𝓉24). This is due to potentially erroneous interactions in the 

CE set extracted by machine readers, e.g., CD8 → AKT, proliferation → 

AKT, differentiation -| AKT, differentiation -| IL2 and differentiation -| 

STAT5 (“→” represents positive regulation, “-|” represents negative 

regulation, also used in Figure 1). As mentioned above, we plan to add 

pre-processing of CE sets (e.g., using interaction filtering [44]).     

For the T-LGL model study, we used three different queries as 

described in Section 2S in the supplement. The most elaborate query, in 

the T-LGL QDet case study, introduced more descriptive search terms, led 

to selecting more relevant papers, and consequently, extraction of relevant 

events and element regulators resulting in recommendation of a CM with 

high -score (0.76) and δ-score (0.75). Additionally, the update rules of 

most of the elements were retrieved except three elements, S1P, GAP and 

IL2RB. The properties that correspond to these three elements are 

properties 𝓉5, 𝓉7 and 𝓉12. In contrast, for T-LGL QSm and T-LGL QMed 

cases, less properties have been satisfied. For example, the baseline model 

error in property 𝓉17, related to the behavior of element JAK, is not 

corrected in the T-LGL QSm case, while property 𝓉19, related to element 

NFB, is not corrected in both T-LGL QSm and T-LGL QMed cases. This is 

mainly due to the key regulatory interactions for these elements not being 

extracted from literature, or due to the interactions that are recovered not 

forming proper update functions. Overall, by comparing the results for the 

three queries in the T-LGL case studies, we have confirmed that a better 

query design leads to more useful and relevant information in the input 

CE sets. 

3.6. Runtime 

In Figure 4(a), we list the time that ACCORDION takes to generate 

clusters when run on a 3.3 GHz Intel Core i5 processor. The time required 

by ACCORDION to generate clusters increases with larger CE sets. For 

the PCC case studies, the runtime same across studies since the same CE 

set has been used. However, for the T cell and T-LGL case studies, the CE 

sets have different sizes, and thus, result in different runtime.  The runtime 

of the overall extension algorithm is proportional to the number of 

properties that we need to test against. In other words, if we have NC 

clusters and NP properties, the time required for the extension algorithm is 

at the order of O(NC*NP). However, the runtime can be significantly 

reduced if testing for all properties and clusters is carried out in parallel, 

which is part of our immediate future work.  

4. Conclusions 

In this paper, we have described a novel methodology and a tool, 

ACCORDION, that can be used to automatically assemble the information 

extracted from literature into models and to recommend models that 

achieve desired dynamic behavior. Our proposed approach combines 

machine reading with clustering, simulation, and model checking, into an 

automated framework for rapid model assembly and testing to address 

biological questions. Furthermore, by automatically extending models 

with the information published in literature, our methodology allows for 

efficient collection of the existing information in a consistent and 

comprehensive way, while also facilitating information reuse and data 

reproducibility, and often helping replace tedious trial-and-error manual 

experimentation, thereby increasing the pace of knowledge advancement. 

The results we presented here demonstrate different research scenarios 

where ACCORDION can be used. Both the benchmark set we presented, 

and the ACCORDION tool with detailed documentation are prepared for 

open access. As our next steps, we are planning to improve the input pre-

processing in order to provide more useful candidate event sets, to make 

ACCORDION compatible with other model representation formats (e.g., 

SBML), as well as to work on parallelizing the tool implementation to 

improve the runtime when testing large number of properties.    
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