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Cancer genomes harbor a catalog of somatic mutations. The
type and genomic context of these mutations depend on their
causes, and allow their attribution to particular mutational sig-
natures. Previous work has shown that mutational signature ac-
tivities change over the course of tumor development, but inves-
tigations of genomic region variability in mutational signatures
have been limited. Here, we expand upon this work by con-
structing regional profiles of mutational signature activities over
2,203 whole genomes across 25 tumor types, using data aggre-
gated by the Pan-Cancer Analysis of Whole Genomes (PCAWG)
consortium. We present GenomeTrackSig as an extension to
the TrackSig R package to construct regional signature profiles
using optimal segmentation and the expectation-maximization
(EM) algorithm. We find that 426 genomes from 20 tumor
types display at least one change in mutational signature ac-
tivities (changepoint), and 257 genomes contain at least one of
54 recurrent changepoints shared by seven or more genomes of
the same tumor type. Five recurrent changepoint locations are
shared by multiple tumor types. Within these regions, the par-
ticular signature changes are often consistent across samples of
the same type and some, but not all, are characterized by sig-
natures associated with subclonal expansion. The changepoints
we found cannot strictly be explained by gene density, muta-
tion density, or cell-of-origin chromatin state. We hypothesize
that they reflect a confluence of factors including evolutionary
timing of mutational processes, regional differences in somatic
mutation rate, large-scale changes in chromatin state that may
be tissue type-specific, and changes in chromatin accessibility
during subclonal expansion. These results provide insight into
the regional effects of DNA damage and repair processes, and
may help us localize genomic and epigenomic changes that oc-
cur during cancer development.
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Introduction

Cancer is a disease that develops over a lifetime through a
series of somatic mutations. The vast majority of these mu-
tations are passenger mutations, which have little effect on
fitness (Dietlein et al., 2020, Martincorena et al., 2017). Mul-
tiple mutagenic processes operate in a cancer throughout its
development, which in turn determine the nature of the col-
lection of somatic mutations that accumulate. Different pro-
cesses give rise to distinct mutational patterns, called muta-
tional signatures (Alexandrov et al., 2020, Koh et al., 2021).
In nearly all cancers, multiple mutagenic processes contribute
somatic mutations to individual cancer genomes. The relative
contributions of these different processes can be quantified by

algorithms that assign an activity (or exposure) to each de-
tected mutational signature (Alexandrov et al., 2020). Recent
work (Dentro et al., 2021, Gerstung et al., 2020, Rubanova
et al., 2020) has revealed that i) these activities vary dur-
ing cancer development (i.e., tumor progression) in a cancer-
type-specific way and ii) most mutational signatures are pri-
marily active only in either early- or late-tumor progression
(Dentro et al., 2021, Gerstung et al., 2020). Computational
methods, like TrackSig, have been developed to reconstruct
the evolutionary trajectories of mutational signature activities
in individual samples (Rubanova et al., 2020, Harrigan et al.,
2020). As such, mutational signature analysis is a compelling
tool in our search for understanding of the processes shaping
tumor formation and development.

In addition to evolutionary timing of signature activity, so-
matic mutation rate and mutational signatures have been
found to be influenced by genomic and epigenomic factors
that exert their effects on the scale of several nucleotides up
to a megabase. These factors include sequence context, nu-
cleosome positioning, chromatin state, and replication tim-
ing (e.g. Gonzalez-Perez et al. (2019), Haradhvala et al.
(2016), Hodgkinson et al. (2012), Lawrence et al. (2013), Po-
lak et al. (2014, 2015), Schuster-Bockler and Lehner (2012),
Seplyarskiy and Sunyaev (2021), Supek and Lehner (2019),
Vohringer et al. (2021), Yaacov et al. (2021)). For exam-
ple, late-replicating and heterochromatic regions accumulate
more mutations than early-replicating and euchromatic re-
gions (Supek and Lehner, 2019, 2015, Zheng et al., 2014).
This results in somatic mutation accumulation patterns that
can be attributed to chromatin state in the cell of origin. For
example, in mismatch repair (MMR)-proficient tumors, the
rate of CpG>TpG mutations may correlate with replication
timing since MMR corrects mispairings due to SmC deami-
nation more efficiently in early-replicating areas (Gonzalez-
Perez et al., 2019, Supek and Lehner, 2019).

These mutation-associated genomic features vary on scales
of 1 Mb or less, so analyses of their effects on mutational
signature activity are typically confined to particular loci.
To our knowledge, larger scale relationships between chro-
mosomal location and mutational signature activity have not
been thoroughly investigated. In particular, if there exists
common evolutionary events that dictate the action of mu-
tational processes in cancers of the same type, we can expect
to observe consistent changes to mutational signature activity
across genomes.

Also, changepoint identification yields both biological and
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potential clinical insights. Many mutational signatures are
associated with defects in DNA repair processes; these pro-
cesses can also be inhibited by clinical treatments (Gavande
et al., 2016). Changepoint analysis may help us understand
how these treatments’ effects vary across the genome. With
GenomeTrackSig, we can also explore how changes in ge-
nomic features such as copy number or chromatin state that
occur during tumorigenesis affect the activity of mutational
processes on a genome-wide scale. The changepoints we
identify can also lend insight into intra-tumor heterogene-
ity, which presents challenges from a therapeutic perspective.
Changes in signature activity may mark parts of the genome
more susceptible to particular mutational processes early vs.
late in tumor development. Further, changepoints that recur
across multiple samples and tumor types may further our un-
derstanding of tumorigenesis by identifying regional DNA
damages or repair deficiencies that are characteristic of a tu-
mor type or a group of tumor types.

To examine the occurrence of mutational signature activity
changes across the genome, we analyzed somatic mutations
of 2,203 whole genomes across 25 tumor types from the Pan-
Cancer Analysis of Whole Genomes (PCAWG) consortium
(Campbell et al., 2020). Using GenomeTrackSig, an exten-
sion of TrackSig (Rubanova et al., 2020), we identified ge-
nomic regions that recurrently exhibit mutational signature
changes. These regions frequently showed activity changes
in signatures known to be associated with evolutionary tim-
ing. Some of these regions were shared among several tissue
types, while others appeared to be exclusive to a single tissue.

Methods

GenomeTrackSig, an extension of the TrackSig algorithm
(Rubanova et al., 2020, Harrigan et al., 2020), is designed
to identify changes in mutation signature activity across the
genome. TrackSig was designed to detect changes in muta-
tional signature activity across mutations ordered by pseudo-
time. TrackSig segments a set of mutations, sorted by in-
ferred cancer cell frequency to determine changes in muta-
tional signature activity. We extended TrackSig such that
instead of considering evolutionary timing of mutations, we
can detect changes in signature activity across chromosomal
coordinates. An overview of our methodology is shown in
Figure 1. In accordance with the original TrackSig algo-
rithm, we represent a sample containing N mutations as an
N X K matrix where each mutation is given as a binary vec-
tor over K mutation types. This matrix is in turn represented
as a mixture of signature multinomials, in which the mixture
coefficients are interpreted as the signature activities, or the
probability of a given mutation n to be assigned to a given
signature, s;. The probability that mutation n was generated
by a signature s; is given by the k*"* component of s; raised
to the power of the &k component of the binary mutation
vector, multiplied across K components. We use the EM al-
gorithm (Moon, 1996) to fit the mixture coefficients in each
segment.

We identify changepoints using the Pruned Exact Linear
Time (PELT) segmentation algorithm (Killick et al., 2012).
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PELT uses dynamic programming and branch and bound
search to perform optimal segmentation which is efficient
in the number of mutations. At each iteration, PELT con-
siders adding a new changepoint out of the set of available
regions and scores the changepoint by refitting the activi-
ties in each region. Over-segmentation is penalized using
the Bayesian Information Criterion (BIC). Previous work by
Alexandrov et al. (2020) characterized canonical signatures
active within the PCAWG data. These signatured serve as
the set of reference signatures for our analyses. We fit ac-
tivity estimates to all signatures which have been previously
determined (Alexandrov et al., 2020) to be active in a given
tumor type. GenomeTrackSig extends the capabilities of the
original TrackSig algorithm to explore how mutational signa-
ture activities vary across chromosomal regions in a variety
of tumors.

Partition genome into
regions with equal i I | | et | | |
mutations

Optimal segmentation
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Fig. 1. Overview of GenomeTrackSig algorithm for profiling mutational sig-
nature activities across the genome. Stars indicate mutations (top); red bars
indicate changepoints (middle); green and purple lines indicate estimated muta-
tion signature activities; y-axis indicates exposure level (bottom). GenomeTrackSig
requires at least 100 mutations per segment, fewer mutations are shown here for
illustrative purposes.

By default, we partition the set of mutations in a genome
into bins of 100 mutations each, where the size of the chro-
mosome region (i.e., number of basepairs) spanned by a bin
will vary depending on mutation density. We require each
segment in the segmentation solution to include at least one
bin. GenomeTrackSig includes flexible options for analyz-
ing samples, either by partitioning and estimating signature
activities across an entire genome or on each individual chro-
mosome (i.e., a changepoint is always placed at chromoso-
mal boundaries). The genome-wide approach can capture
signature activities that span multiple chromosomes thereby
potentially reducing noise in activity estimates at chromo-
somal ends. On the other hand, the chromosome-wise ap-
proach may be more sensitive to activity changes within a
chromosome and substantially reduces runtime on samples
with many mutations because each chromosome can be seg-
mented in parallel (Figure S1). In general, the chromosome-
wise approach is preferred, but we use the genome-wide strat-
egy for samples (and cancers) where chromosomes have less
than 100 mutations, as we use this as a minimum segment
size to ensure accurate activity estimates. Similar to Track-
Sig, we find that GenomeTrackSig is relatively insensitive to
the choice of bin size when determining changepoint place-
ment (Figure S2).

Results

A. Mutational signature activity is not constant across
the genome. We constructed genome-wide signature ac-
tivity profiles for 2,203 tumors across 25 tumor types
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(Biliary-AdenoCA, Bladder-TCC, Bone-Osteosarc, Breast-
AdenoCA, Cervix, CNS-GBM, Colorect-AdenoCA, Eso-
AdenoCA, Head-SCC, Kidney-ChRCC, Kidney-RCC, Liver-
HCC, Lung-AdenoCA, Lung-SCC, Lymph-BNHL, Lymph-
CLL, Melanoma, Myeloid-MPN, Ovary-AdenoCA, Panc-
AdenoCA, Panc-Endocrine, Prost-AdenoCA, Stomach-
AdenoCA, Thy-AdenoCA, Uterus-AdenoCA) (Table S1).
The number and width of bins in each tumor varied from
23-2,895 and 1 Mb to 250 Mb, respectively, based on
the number and distribution of mutations in the tumor
(Figure S3, S4). In total, we observed changepoints in
426 of 2,203 samples analyzed. We found no genomic
changepoints in five types of tumor: Liver-HCC (N=326),
Ovary-AdenoCA (N=113), Biliary-AdenoCA (N=29), Panc-
Endocrine (N=76), and Myeloid-MPN (N=31). A lack of
change in signature activity could reflect an even mutational
composition across the genome, insufficient number of mu-
tations to characterize a change in signature activity, a lack
of large-scale variation in chromatin accessibility, or a lack
of substantial changes in mutational composition over tumor
development. In the remaining 20 tumor types, at least one
sample exhibited changes in signature activities across the
genome, indicating that large-scale shifts in signature activ-
ities depending on chromosomal location are a common but
not ubiquitous phenomenon (Table 1).

B. Some changepoints are shared across tissue type.
We find that changepoint regions are often shared—both
across multiple cancers from the same tissue and across mul-
tiple tissues. To determine which changepoints within sam-
ples from the same tumor type overlap, we fit a kernel den-
sity estimate across the vector of genomic locations covered
by each changepoint and constructed a possible range for that
changepoint location, which contains the changepoint locus
identified by GenomeTrackSig, +/- one standard deviation of
the density function. We then overlaid all changepoint ranges
from that tumor type and counted how many changepoints
fell within a sliding window across the genome. We then
deemed a “recurrent changepoint region” for each tumor type
as the center of the region where at least seven samples shared
an overlapping changepoint; i.e. the window within a region
in which the maximum number of changepoints fell. This
threshold corresponded to an elbow (Figure S5).

Of the 20 tumor types that show any changes in signa-
ture activity across their genomes, eight contain recurrent
changepoint regions (Figure 2). Interestingly, the changes
in signature activity at these regions are often highly sim-
ilar across samples of the same tissue type, both in direc-
tion and magnitude. For example, all 55 melanoma samples
that have a changepoint overlapping with the chromosome
1:47,000,000-1:51,000,000 region show a decrease in SBS7b
activity and increase in SBS7a activity in the direction of
the numbering (Figure 3). In Uterus-AdenoCA samples, the
signatures which changed most at every recurrent change-
point are associated with either defective DNA mismatch
repair (SBS15) or polymerase epsilon mutations (SBS10a,
SBS10b) (Figure 2). In other cancers, the most affected sig-
natures are highly variable from changepoint-to-changepoint:
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B Some changepoints are shared across tissue type

seven different signatures are represented among the most
substantial activity changes at recurrent changepoints in Eso-
AdenoCA samples, including SBS1, SBS2, SBS3, SBSS5,
SBS17a, SBS17b, and SBS40 (Figure 2).

We also find that five recurrent changepoints are shared
by two tumor types (Figure 2). The shared recurrent
changepoint at 1:47,000,000-1:51,000,000 appears most fre-
quently, in 55 Melanoma and eight Uterus-AdenoCA sam-
ples . Another recurrent changepoint region at 1:42,000,000-
1:47,000,000 is shared by 14 Eso-AdenoCA and nine
Colorect-AdenoCA samples.

Despite the consistency of changepoint locations across mul-
tiple samples and tissues, it is unlikely that all these change-
points result from mutations in specific genes near the
changepoint region. For one, changepoint regions span mul-
tiple megabases, so it is difficult to attribute the change-
point to mutations in any one particular gene. That said,
some changepoint regions contain genes that may play a
role in tumorigenesis such as Lymph-CLL changepoint re-
gions encompassing CBL proto-oncogene B and NRP2 (Goel
et al., 2012, Liyasova et al., 2015), and a changepoint region
shared by Lung-SCC and Bladder-TCC which encompasses
the DDX17 gene (Wu, 2020). However, we were unable to
detect any clear pattern of gene function at changepoint re-
gions.

C. Many changepoints are characterized by signa-
tures associated with subclonal expansion. In certain
cancers, we find that recurrent changepoints show a shift in
activity from signatures associated with early cancer develop-
ment to signatures associated with subclonal expansion. For
instance, at five of eight recurrent changepoints in Lymph-
CLL samples, the most dramatic signature activity changes
were increases in SBS9 and decreases in SBS5, or vice versa.
We validated that these changepoints indeed reflect a shift
between early and late signatures by constructing evolution-
ary trajectories for 90 Lymph-CLL samples using TrackSig
(Rubanova et al., 2020). Figure 4 shows the distribution of
activity changes from early to late development across all
samples, in which we observe a definitive decrease in SBS9,
and increase in SBSS activity. In other cancers, signatures
which account for the most dramatic activity changes at re-
current changepoint regions do not show a clear timing asso-
ciation. For example, SBS7a and SBS7b change most dra-
matically across the genome in melanoma samples (Figure
2), yet do not show as strong of an association with evolution-
ary timing (from early-occurring to late-occuring mutations,
SBS7a activity decreases by 8.7% +/- 12.2% on average and
SBS7b activity increases by 1.7% +/- 9.1% on average).

Chronic lymphocytic leukemias (Lymph-CLL) tend to ex-
hibit high SBS9 activity early in development, and show de-
creasing SBS9 and increasing SBS5 and SBS40 activities as
subclones form (Figure 4), (Dentro et al., 2021). SBS9 ac-
tivity is attributed to mutagenesis induced via DNA poly-
merase eta. These mutations can occur in healthy lymphoid
cells as part of a somatic hypermutation process, which in-
troduces mutations to antibody-coding sequence in order to
generate sequence variability and produce antibodies with
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Fig. 2. Recurrent changepoint regions across eight tumor types. 54 genomic regions include a changepoint found in seven or more samples for a given tumor type.
Each of these recurrent changepoint regions are indicated by a point, where COSMIC V3 signatures Alexandrov et al. (2020), Tate et al. (2019) are indicated by color.
Changepoints are summarized by the signature whose activity decreases the most on average (left half) and the signature whose activity increases the most on average
(right half). Proportion of samples exhibiting a changepoint is encoded by size, and the number of samples affected is indicated in the tumor type label (n/N). Changepoints

that appear in fewer than seven samples are omitted.

Samples with at least one Mean . Median. Mean . Median_ SBS signatures . .
Tumor Type X # changepoints ~ # changepoints ~ changepoint  changepoint . ° Clonal signatures Subclonal signatures
changepoint / N total samples = ! oo . with greatest changes
per sample per sample magnitude magnitude
Melanoma 74/107 11 4 0.15 0.13 b, Ta, 2 7a, 7b 5
Lung-SCC 35/48 9 4 0.05 0.04 4,13,8 4 5,2,13
Eso-AdenoCA 50/97 5 4 0.09 0.07 17b, 40, 1 17 5,40
Lung-AdenoCA 5/33 2 2 0.16 0.11 5,13,2 4 2,13
Colorect-AdenoCA  21/60 27 5 0.04 0.03 10b, 15, 10a 1,44 18, 40
Bladder-TCC 16/23 6 3 0.06 0.05 13,8,5 2,13 5
Stomach-AdenoCA  8/67 3 2 0.13 0.11 17b, 40, 15 1 18
Head-SCC 1/54 2 2 0.15 0.15 40,4,5 5 2,13
Lymph-BNHL 29/106 3 2 0.2 0.15 3,9,6 9 17a, 17b, 40
Uterus-AdenoCA 9/51 41 48 0.06 0.05 15,44,6 1 2,13, 40, 44
CNS-GBM 24/41 6 4 0.05 0.03 40,5, 1 1 40
Kidney-RCC 8/144 1 1 0.08 0.02 5,40, 13 40 1
Breast-AdenoCA 18/193 3 2.5 0.25 0.2 2,5,13 3,5 2,3,13,18
Panc-AdenoCA 12/238 2 2 0.38 0.34 2,13, 1 1,5 2,3,13,17a, 17b, 18, 40
Bone-Osteosarc 13/39 3 2 0.31 0.35 2,53 2,13 40
Prost-AdenoCA 11/145 2 2 0.17 0.16 13,5, 40 5 40
Lymph-CLL 66/95 3 3 0.22 0.19 5,40,9 9 5
Kidney-ChRCC 5/38 4 4 0.24 0.22 2,5,40 5 1,2,13,40
Cervix 13/20 2 2 0.08 0.07 40,13,5 1,2,13,5 40
Thy-AdenoCA 8/29 2 1 0.2 0.15 5,40, 1 5 2,13

Table 1. Overview of changepoints discovered across 20 cancer types. Magnitude of each changepoint is measured as the cosine distance of the signature activity
vector on either side of the changepoint. For each cancer type containing changepoints, the three signatures with the greatest absolute value of activity changes across all
changepoints in that cancer are listed. Signatures are indicated as “clonal” or “subclonal” respectively based on where their activity is highest, as described by Dentro et al.

(2021).

higher specificity (Seki et al., 2005). SBS9 activity is ele-
vated in Lymph-CLL samples that possess immunoglobulin
gene hypermutation (Alexandrov et al., 2020, Gerstung et al.,
2020), a mutational process that typically occurs early in tu-
mor development (Dentro et al., 2021, Seifert et al., 2012).
Interestingly, changes in signature activity were distributed
at many loci in Lymph-CLL samples, whereas in B-cell non-
Hodgkin lymphoma (Lymph-BNHL), which also undergoes
polymerase eta dependent somatic hypermutation, changes
in signature activity were concentrated on chromosome 14,
close to the immunoglobulin gene hypermutation (IGH) lo-
cus. While the etiologies of SBS5 and SBS40 are unknown,
their activity correlates with patient age, and SBS5 has been
associated with proliferation (Alexandrov et al., 2020, Franco
et al., 2019).

4 | bioRxiv

Lymph-CLL signature activity has previously been seen to
be associated with evolutionary timing. Similar cancers also
evolve in consistent patterns (Dentro et al., 2021, Rubanova
et al., 2020, Campbell et al., 2020). In keeping with this,
we observe recurrent changepoints that may be indicative of
important evolutionary (and shared) changes that occur over
the progression of these tumors, such as timing-dependent
changes in chromatin state at these regions. Regional muta-
tion rates and mutational signatures are influenced by chro-
matin state, and under normal cell growth conditions we
would expect to see higher mutation rates in heterochromatic
than euchromatic regions (Vohringer et al., 2021, Yaacov
et al., 2021). However, the compounding DNA damage and
dysfunction in DNA repair that occurs as cancers develop
could induce changes in chromatin state, making regions vul-
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D Changepoints are not associated with any single phenomenon
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Fig. 3. Similar signature changes at the 1:47,000,000-1:51,000,000 region in 55/107 melanoma samples. Each boxplot shows the distribution of activity changes for a

particular signature at the recurrent changepoint region 1:47,000,000-1:51,000,000.
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Fig. 4. Activity change in four SBS signatures during cancer evolution in 90
Lymph-CLLs. Violin plots showing the distribution of signature activity changes
(y-axis) from early to late stages of cancer development constructed using TrackSig
(Dentro et al., 2021, Rubanova et al., 2020, Harrigan et al., 2020) for 90 chronic
lymphocytic leukemia samples. Dot indicates means, vertical line spans +/- one
standard deviation. From early to late development, SBS1 changes on average
by -1.8% +/- 4.0%, SBS5 by 10.6% +/- 21.9%, SBS9 by -13.6% +/- 20.1%, and
SBS40 by 4.7% +/- 13.6%. Brackets display p-values for Kolmogorov-Smirnov tests
between activity change distributions, adjusted for multiple comparisons with Bon-
ferroni corrections. * indicates adj. p < 1e-2, ** indicates adj. p < 1e-5, *** indicates
adj. p < 1e-8.
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nerable to mutations late in development that were not vul-
nerable during early cancer formation. As such, if the chro-
matin state at a particular region changes during tumor evolu-
tion, this may also manifest as a regional change in signature
activities.

D. Changepoints are not associated with any sin-
gle phenomenon. We examined the correlation between
changepoint locations and changes in gene density, mutation
density, and when available, tissue-specific measures of chro-
matin accessibility (Polak et al., 2015) to investigate what un-
derlying genomic or epigenomic features could account for
the observed distribution of changepoints. Given that tissue-
specific or cancer-specific DNAse-Seq data is not available
for all tumor types in our dataset, we cannot draw broad
conclusions about the relationship between local changes in
chromatin accessibility and changepoint placement. How-
ever, it is interesting to note that most melanoma samples
display low correlation between DNAse-I accessibility index
and changepoint occurrence (mean Pearson correlation coef-
ficient, R=0.12), thus it does not seem that local chromatin
state changes alone can explain changes in signature activity
(Figure 5). Changes in gene density or mutation density alone
also fail to explain the distribution of observed changepoints.
For instance, the mean correlations between changepoint oc-
currence and gene and mutation density across 74 melanoma
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samples are R=0.13 and R=0.11, respectively (Figure 3).
Changepoints occur in both gene and mutation-dense and
gene and mutation-poor regions, changes in both variables
are often unaccompanied by changepoints, and we could ob-
serve no obvious biased placement of changepoint with re-
spect to these variables. Furthermore, recurrent changepoints
occur across multiple samples and cancer types, where these
features vary.

To further investigate if changes in mutation density af-
fect changepoint placement, we also analyzed the dis-
tances between changepoints and copy number aberra-
tions (CNAs), and the distances between changepoints and
kataegis events. We conducted a randomization test to
determine, for each sample, if a significant proportion of
the changepoints in the sample overlap with a CNA. We
found that overall, 22/426 samples with changepoints have a
higher proportion of changepoints overlapping with a CNA
than would be expected at random (Table S2). Cervical
cancers have the highest degree of changepoint/CNA co-
occurrence, with three of 20 samples displaying significant
overlap. No Melanoma, Lung-SCC, Colorect-AdenoCA,
Lung-AdenoCA, Head-SCC, Stomach-AdenoCA, Prost-
AdenoCA, Lymph-CLL, or Thy-AdenoCA samples showed
significant changepoint/CNA overlap. These results empha-
size that the changepoints detected by GenomeTrackSig re-
flect genuine shifts in mutational composition, not just mu-
tation density. Further, we find that structural variation in
the genome cannot explain the observed distribution of mu-
tational signature activity changes.

Across the 2044/3059 changepoints within samples contain-
ing a kataegis event (Dentro et al., 2021, Nik-Zainal et al.,
2012), these events were often distantly separated. The mean
and median distances of changepoints to the nearest kataegis
event were 214 Mb and 32 Mb, respectively, although some
are relatively close: 357/2044 changepoints were located
within 1 Mb from a kataegis event. These results are con-
sistent with kataegis being one cause of a changepoint but
not their primary cause. We observed a similar pattern when
analyzing recurrent changepoints. The mean and median dis-
tances to a kataegis event among recurrent changepoints were
201 Mb and 18 Mb respectively, and 173/783 changepoints
were located >1 Mb away from their nearest kataegis event.
One reason for the partial association of kataegis and change-
points may be that the vast majority of kataegis events in-
volve APOBEC deaminases, which are represented by SBS2
and SBS13 (Alexandrov et al., 2020, Nik-Zainal et al., 2012).
In this case, the hypermutation would result in a significant
change in the local activity of these signatures, which would
be detected by GenomeTrackSig. The localized hypermuta-
tion of the IGH locus in Lymph-BNHL may result in a SBS9-
enriched kataegic event, which may explain both the high in-
cidence of kataegis in Lymph-BNHL as well as the proximity
of kataegis to the recurrent changepoints in that cancer (mean
and median distances = 7 Mb and 6 Mb, respectively).

Lymph-BNHL exhibits at least one polymerase eta-driven
hypermutation hotspot on every chromosome (Campbell
et al., 2020), however changepoints were almost exclusively
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found on chromosome 14 (Figure 2). In contrast, Lymph-
CLL contains eight recurrent changepoints across different
chromosomes (Figure 2) but relatively few kataegis foci
(Campbell et al., 2020). Although these two cancers have
commonalities in their activities of SBS1, SBS9, SBS5,
and SBS40 (Alexandrov et al., 2020) as well as being the
only two cancer types known to display polymerase eta-
driven kataegis (Campbell et al., 2020), within them we ob-
serve nearly opposite relationships between GenomeTrack-
Sig changepoints and kataegis foci. In summary, kataegis has
some association with GenomeTrackSig changepoints but it
does not explain the majority of changepoints and its pres-
ence does not always give rise to a changepoint.

Related Work

Wojtowicz et al. (2019) introduced SigMa, a composite
multinomial mixture model and Hidden Markov Model to
assign each mutation to a mutational signature. Transition
probabilities between signatures are considered for adjacent
clustered mutations, which are predominantly generated by
kataegis events. GenomeTrackSig expands the number of
regions which can be queried for a change in mutational
signature activity to include regions of non-clustered muta-
tions (Wojtowicz et al. (2019)’s “sky”’mutations that are more
than 2 kb from the next nearest mutation). However, transi-
tion points found by SigMa are not easily comparable with
GenomeTrackSig changepoints, as a transition between gen-
erating processes may occur between individual mutations
without necessarily accompanying a change in the relative
activities of these mutational processes in the surrounding re-
gion.

Discussion

Here we have introduced a new method, GenomeTrackSig,
to detect region-specific changes in mutational signature ac-
tivity within cancer genomes. Using this method we have
demonstrated frequent changes in mutational signature activ-
ities over large chromosomal domains in a variety of can-
cers. We have also found a surprising number of recurrent
changepoints in signature activities shared across cancers of
the same type and among cancers of different types.

The scale, >1 Mb, at which GenomeTrackSig can generally
detect changes in mutational signature activity is larger than
regional factors already known to influence mutation rates,
which makes it interesting that we see so many changepoints.
For example, regional mutation rate varies due to changes in
replication timing, differential activity of DNA repair mech-
anisms, and chromatin accessibility (Schuster-Bockler and
Lehner, 2012, Supek and Lehner, 2019, Vohringer et al.,
2021, Yaacov et al., 2021, Supek and Lehner, 2015, Zheng
et al., 2014). In samples with many mutations, in which a
changepoint can demarcate smaller regions (<= 1 Mb in size),
we may be able to attribute changes in signature activities to
some of these factors that cause regional differences in the
somatic mutation rate, especially if these factors change sub-
stantially over tumor development (see below). However, our
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Fig. 5. The association of signature activity profiles and chromatin accessibility, gene density, and mutation density profiles. A: Signature activity profile
(chromosome-wise) for a representative melanoma sample with 168,604 mutations and 13 changepoints. Colored lines denote signature activities across bins of 200
mutations. Alternating gray and white bars denote chromosomal boundaries, and vertical blue lines show centromere positions. Red vertical lines show changepoint lo-
cations, and the opacity of these lines denotes confidence in that changepoint’s location. Above, black line plot depicts mutation density at each bin across the genome.
Mutation density is normalized such that the bin with the highest density throughout the genome is scaled to one and the bin with the minimum density is scaled to zero.
Above, blue area plot represents the average gene density at each bin, as determined from gene counts in hg19. Gene density is normalized in the same manner as mutation
density. Above, green line plot depicts chromatin accessibility throughout a primary melanocyte genome as determined via DNAse-| accessibility index (Polak et al., 2015).
Horizontal lines at each bin show the average chromatin accessibility across each bin, and vertical lines depict the range of chromatin accessibility values within each bin. B,
C, and D show the distribution of correlation values between changepoint locations and DNAse-| accessibility index, gene density, and mutation density, respectively, across
the 74 melanoma samples which contain changepoints. Mean correlation is highlighted in red on each plot.

effort to quantify this phenomenon using readily-measured
genomic features — gene density, mutation density, structural
and copy number variants, or kataegis (Table S2, Figure 5) —
established that the signature changes we are detecting re-
flect a genuine shift in underlying mutational distributions
and cannot be fully explained by these local, smaller-scale
factors alone (Figure 5).

Perhaps, instead our changepoints demarcate large-scale
chromosomal organization, with each large domain having
its own underlying mutational distribution driven by domain-
specific DNA damage and repair dynamics. Given that sig-
nature changes at recurrent changepoints are often consistent
within a tissue yet variable across tissues, it is possible that
such chromosomal domains can occur at similar locations in
multiple tissue types yet exert tissue-specific effects on the
mutational landscape. One intriguing possibility is that these
large-scale domains are delineated by the 3D organization of
the cancer genome — representing, for example, larger topo-
logically associating domains (TADs) Yu and Ren (2017).

The signature dynamics at the most common changepoint
in melanoma samples support our hypothesis that change-
points are driven by chromatin state variation over large
scales. The changepoint region at 1:47,000,000-51,000,000
is found in 63 samples from two tumor types, 55 of those
melanomas. As shown in Figure 3, all 55 melanomas dis-
play strikingly consistent decreases in SBS7b activity and
increases in SBS7a activity at this changepoint. An analy-
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sis of the genomic properties influencing mutational signa-
ture activities by Vohringer et al. (2021), using a de novo
signature extraction method, identified two signatures ex-
clusively occurring in skin cancers which highly resemble
SBS7a and SBS7b in terms of their mutational distributions
and associations with UV exposure. Their study found that
the SBS7a-like signature has high activity in quiescent chro-
matin, whereas SBS7b-like is enriched in active chromatin
and has a strong transcriptional strand bias. They suggested
this differential signature activity across chromatin states re-
flects different operative DNA repair mechanisms. In this
scenario, SBS7a-like activity reflects UV damage cleared by
global genome nucleotide excision repair (GG-NER), which
operates in quiescent and active regions, and SBS7b-like
activity reflects damage cleared by a combination of GG-
NER and transcription-coupled nucleotide excision repair
(TC-NER), the latter of which operates in open chromatin
and is activated by template strand lesions on actively tran-
scribed genes (Vohringer et al., 2021). Therefore, the activ-
ity shifts between SBS7a and SBS7b that we observe at re-
current changepoint regions in melanomas may reflect large-
scale changes in chromatin state, coupled with changes in
active DNA repair processes.

Based on signature activity profiles from Lymph-CLL
samples, we also hypothesize that large-scale changes in
chromatin state sometimes occur in a timing-dependent man-
ner. We observe changepoints in which early-development
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signatures decrease in activity and late-development signa-
tures increase in activity, and vice versa. Cancer development
is marked by a redistribution of the mutational landscape, as
exposures to mutagens and DNA repair failures strip active
genes in euchromatic regions of the preferential repair that
they normally receive (Supek and Lehner, 2019). Thus, we
may see higher activity of late-development signatures in
regions that normally have a low mutation rate, but which
become vulnerable to mutation during subclonal expansion
when different mutational processes are active than were
early on. Conversely, late-replicating regions of closed chro-
matin might display higher activity of early-development
signatures since these tend to have higher mutation rates
under normal conditions.

Via mutational signature analysis, we have identified that
mutational signature activities change over chromosomal do-
mains. These changes can be highly consistent on multiple
levels. We hypothesize that, among other factors, our method
is detecting the impacts of large-scale regional changes in
chromatin state. Recurrent changepoints in melanoma sam-
ples (Figure 2) provide compelling evidence that regions on
either side of a changepoint differ in terms of their chromatin
accessibility and DNA repair dynamics (Vohringer et al.,
2021). Furthermore, changepoints that appear in multiple
tissue types raise the possibility that such wide-scale epige-
nomic changes are common events in the course of cancer de-
velopment. These results call for further exploration into how
factors like chromatin state and DNA repair mechanisms vary
over wider domains, and which elements of these changes are
characteristic of many cancers and which are tissue-specific.
Interestingly, changepoints sometimes reflect a shift in ac-
tivity between signatures characteristic of early tumor devel-
opment and signatures characteristic of subclonal expansion.
Thus, we hypothesize that large-scale changes in chromatin
accessibility may also occur in a timing-dependent manner,
and can demarcate regions that are more likely to be impacted
by mutations early or late in a cancer’s evolutionary trajec-
tory. This finding may be clinically relevant given that intra-
tumor heterogeneity is a mechanism of therapeutic resistance
and therefore presents significant challenges for treatment
(Maley et al., 2006, McGranahan and Swanton, 2017, Mroz
et al., 2013). Therefore, genome-wide mutational signature
analysis can help us further characterize and localize the ge-
nomic and epigenomic changes that occur during tumor de-
velopment.
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Tumor type Abbreviation
Biliary adenocarcinoma Biliary-AdenoCA
Bladder transitional cell carcinoma Bladder-TCC

Bone-Osteosarc
Breast-AdenoCA
Cervix

CNS-GBM
Colorect-AdenoCA
Eso-AdenoCA

Bone osteosarcoma

Breast adenocarcinoma
Cervical cancer
Glioblastoma

Colorectal adenocarcinoma
Esophageal adenocarcinoma

Head and neck squamous cell carcinoma Head-SCC
Kidney chromophobe renal cell carcinoma  Kidney-ChRCC
Kidney renal cell carcinoma Kidney-RCC
Liver hepatocellular carcinoma Liver-HCC
Lung adenocarcinoma Lung-AdenoCA
Lung squamous cell carcinoma Lung-SCC
Lymph B-cell non-Hodgkin lymphoma Lymph-BNHL
Chronic lymphocytic leukemia Lymph-CLL
Melanoma Melanoma

Myeloproliferative neoplasm
Ovarian adenocarcinoma
Pancreatic adenocarcinoma
Pancreatic neuroendocrine cancer
Prostate adenocarcinoma
Stomach adenocarcinoma
Thyroid adenocarcinoma

Uterine adenocarcinoma

Myeloid-MPN
Ovary-AdenoCA
Panc-AdenoCA
Panc-Endocrine
Prost-AdenoCA
Stomach-AdenoCA
Thy-AdenoCA
Uterus-AdenoCA

Table S1. Abbreviations of tumor types analyzed in the study.

Samples with at Samples with

Tumor Type least one changepoint  significant changepoints
/ N total samples / N total samples
Melanoma 74 /107 0/107
Lung-SCC 35/48 0/48
Eso-AdenoCA 50/97 3/97
Lung-AdenoCA 5/33 0/33
Colorect-AdenoCA 21/60 0/60
Bladder-TCC 16/23 1/23
Stomach-AdenoCA 8/67 0/67
Head-SCC 1/54 0/54
Lymph-BNHL 29 /106 3/106
Uterus-AdenoCA 9/51 1/51
CNS-GBM 24 /41 1/41
Kidney-RCC 8/144 1/144
Breast-AdenoCA 18/193 4/193
Panc-AdenoCA 12 /238 0/238
Cervix-SCC 13/20 3/20
Bone-Osteosarc 13739 1/39
Prost-AdenoCA 11/145 0/145
Lymph-CLL 66 /95 0/95
Kidney-ChRCC 5/38 2/38
Thy-AdenoCA 8/29 0/29

Table S2. Co-occurrence of changes in mutational signature activities and
copy number aberrations across 20 tumor types. For each tumor type, we con-
ducted a randomization test to determine how many samples have a significant
proportion of their changepoints overlapping with a copy number aberration (CNA).
Randomization tests were conducted by generating 10,000 random samples with
the same number of changepoints and same changepoint region spans as the orig-
inal samples with changepoint locations randomized. Each random set of change-
points was compared to the original sample copy number profile to calculate the
proportion of changepoints overlapping with a CNA. This set of proportions formed
the null distribution against which the sample proportion was compared to deter-
mine a p-value («=0.05). P-values were adjusted for multiple comparisons with
Bonferroni corrections.
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Fig. S1. Comparison of genome-wise (A) and chromosome-wise (B) activity
profiles constructed by GenomeTrackSig. Input data is a Lung-SCC genome
with 78,839 mutations. A bin size of 200 mutations was used and 5 bootstraps were
performed for each experiment. Each point is a signature activity estimate at one
bin of mutations. Alternating gray and white bars distinguish chromosomes and blue
vertical lines show centromere positions. Red vertical lines denote changepoints,
and the opacity of changepoints represents their bootstrap support.

Fig. S2. Lung-SCC changepoint density across the genome at four different
bin sizes. GenomeTrackSig was run genome-wise on 32 Lung-SCC samples with
a bin size of either 100, 150, 200, or 300. Density plot across the genome of pooled
changepoint positions in all samples is shown for each bin size analyzed.
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Fig. S3. Number of bins per sample across cancer types. Stacked bar chart
depicting the distribution of bin numbers across samples, colored by cancer type.
Minimum number of bins is 23 (Melanoma, Lung-AdenoCA, Lymph-BNHL, Kidney-
RCC, Prost-AdenoCA, Lymph-CLL, Kidney-ChRCC, Thy-AdenoCA) and maximum
number of bins is 2,895 (Colorect-AdenoCA). Sample size and geometric mean
TMB are shown for each cancer type.
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Fig. S4. Distribution of bin widths by cancer type. Boxplots showing the range
of bin widths, in megabases, for all samples analyzed in the study. Boxplots are out-
lined according to the type of bin plotted, either all bins or bins containing change-
points. Sample size and geometric mean TMB are shown for each cancer type.
Boxplots are colored according to geometric mean TMB.
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Fig. S5. Number of recurrent changepoints identified at different sample
thresholds. Top: Number of recurrent changepoints identified across all cancer
types depending on which number of samples is used as the threshold to deter-
mine which changepoints are considered ‘recurrent. Bottom: Number of recur-
rent changepoints identified in each cancer type compared to the sample threshold.
Sample size and median tumor mutational burden are shown for each cancer type.
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