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Abstract 19 

The force generated by the muscles involved in an action is produced by common synaptic inputs 20 
received by the engaged motor neurons. The purpose of our study was to identify the low-dimensional 21 
latent components, defined hereafter as neural modules, underlying the discharge rates of the motor 22 
units from two knee extensors (vastus medialis and lateralis) and two hand muscles (index and thumb 23 
muscles) during isometric contractions. The neural modules were extracted by factor analysis from the 24 
pooled motor units and no assumptions were made regarding the orthogonality of the modules or the 25 
association between the modules and each muscle. Factor analysis identified two independent neural 26 
modules that captured most of the covariance in the discharge rates of the motor units in the synergistic 27 
muscles. Although the neural modules were strongly correlated with the discharge rates of motor units 28 
in each of the synergistic pair of muscles, not all motor units in a muscle were correlated with the neural 29 
module for that muscle. The distribution of motor units across the pair of neural modules differed for 30 
each muscle: 80% of the motor units in first dorsal interosseous were more strongly correlated with the 31 
neural module for that muscle, whereas the proportion was 70%, 60%, and 45% for the thenar, vastus 32 
medialis, and vastus lateralis muscles. All other motor units either belonged to both modules or to the 33 
module for the other muscle (15% for vastus lateralis). Based on a simulation of 480 integrate-and-fire 34 
neurons receiving independent and common inputs, we demonstrate that factor analysis identifies the 35 
three neural modules with high levels of accuracy. Our results indicate that the correlated discharge 36 
rates of motor units arise from at least two sources of common synaptic input that are not distributed 37 
homogeneously among the motor neurons innervating synergistic muscles.  38 
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Introduction 44 

The motor unit is the final common pathway by which an activation signal is transmitted to muscle and 45 
transformed into contractile activity (1). As such, all voluntary actions are accomplished by varying the 46 
amount of motor unit activity. Despite early claims to the contrary (2, 3), it is not possible to control 47 
the activation of individual motor units (4). Instead, synaptic inputs are distributed broadly among the 48 
neurons that comprise a motor nucleus and the motor units that are activated in response to these inputs 49 
depends on their relative excitability (5–7). As a consequence of this scheme, the order in which motor 50 
units are recruited during a voluntary action is relatively fixed (8–10).  51 

It is the shared synaptic inputs received by the motor neurons that innervate a muscle and not the activity 52 
of individual motor units that is responsible for the force it generates (11, 12). In general, the shared 53 
inputs can arise from three sources (cortical, brain stem, spinal, and afferent pathways) with varying 54 
distributions across different motor nuclei  (5, 13–15).  One advantage of this scheme is that the shared 55 
inputs can engage the motor nuclei of the various muscles involved in an action and thereby facilitate 56 
control of the net muscle torque. 57 

It has been hypothesised that the control of multiple muscles is achieved by the activation of sets of 58 
motor neurons, that have been referred to as “neural modules” or “motor primitives” (16–20). Neural 59 
modules emerge from common synaptic inputs, or “neural manifolds” (21), that synergistically activate 60 
a group of muscles to perform a specific action. For example, evidence from animal studies indicates 61 
that the electrical stimulation of spinal interneurons produces coordinated movements that depend on 62 
the location of stimulation (22–24). The modularity of neural control in humans has been estimated by 63 
measuring the covariation in muscle activation patterns (EMG signals). The modules extracted by 64 
factorization analysis have been termed muscle synergies (19, 25) and are assumed to emerge from 65 
synaptic inputs that are common to the motor neurons involved in the action.  66 

If the synaptic input is shared among the motor neurons that innervate synergistic muscles, it should 67 
generate at least one latent neural module based on the covariance in the discharge times of the activated 68 
motor units (21). Previous work has addressed this issue by factorizing EMG signals from different 69 
muscles (19, 20, 26–29), which assumes that the motor neurons innervating the synergistic muscles 70 
receive similar proportions of common synaptic input from one or more sources.  71 

The neural modules determining coordinated control of multiple muscles can be investigated by 72 
pairwise spike train correlations, an approach that gives access to the full statistical operating principles 73 
of a neural network (30–32). The purpose of our study was to identify the low-dimensional latent 74 
components, defined hereafter as neural modules, underlying the discharge rates of the motor units from 75 
two knee extensors (vastus medialis and lateralis) and two hand muscles (index and thumb muscles) 76 
during isometric contractions (19–21, 33). We hypothesized that the discharge rates of the motor 77 
neurons innervating each muscle would be explained by more than one neural module.  78 

We found that the discharge rates of motor units in individual quadriceps and hand muscles could be 79 
characterized by two independent muscle-specific neural modules. The discharge rates of most motor 80 
units were associated with the neural module for the muscle in which they resided, but others were 81 
correlated with either the neural module for the synergistic muscle or both neural modules. We then 82 
simulated the delivery of two independent common synaptic currents into integrate-and-fire motor 83 
neurons and to validate our approach to identifying latent components. Our findings provide a greater 84 
level of detail about the distribution of common synaptic input within and across the motor nuclei that 85 
innervate synergistic muscles.  86 

Results 87 

Motor unit neural modules 88 
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Our approach involved extending the classic method for muscle synergy analysis (17, 19, 20, 25, 28, 89 
34) to motor unit recordings. Instead of treating muscles as individual elements, the discharge times of 90 
motor units from different muscles were grouped together. We used a factor analysis that maximizes 91 
the correlation between each motor unit and a set of unknown factors, referred to as neural modules. 92 
We demonstrate that the factor analysis outperforms other factorization approaches (see Methods), such 93 
as principal component analysis and non-negative matrix factorization (19, 35–37), in maximizing the 94 
correlation between individual motor unit discharge rates and the latent low-dimensional modules.  95 

Theoretical and indirect experimental observations suggest that a common motor command is 96 
distributed to sets of motor nuclei (25, 26, 33, 38–41), which results in the discharge rates of motor 97 
units across muscles being strongly correlated during voluntary contractions in humans (42–44) and 98 
non-human primates (45). In our approach, we did not assume that there is only one latent signal for 99 
each muscle (37, 46, 47). Instead, we decoded populations of motor units from surface EMG signals 100 
into series of motor unit discharge times during two tasks that involved the synergistic activation of 101 
pairs of muscles.  102 

The experimental setup and correlation analysis for the two vastii muscles is shown in Figure 1. The 103 
motor unit discharge times were decomposed with a blind source separation procedure, which identifies 104 
each event with no a-priori knowledge on the physiological information conveyed by the individual 105 
motor units (48–50). We identified on average across participants 6.9 ± 4.3 and 4.37 ± 2.34 motor units 106 
for VL and VM, respectively during isometric contractions at 10% of maximum. As described in the 107 
methods, we subsequently smoothed the motor unit discharge times with a Hann window, which 108 
retained all the frequencies responsible for muscle force (<5 Hz (11)). As the applied force has a cut-109 
off frequency of ≤20 Hz, the low-pass filtered discharge times (the time series of zeros and ones, Fig. 110 
1C) are strongly correlated with the variance in force during steady contractions (11, 51–53). 111 
Consequently, we focused on finding the latent components (i.e., the neural modules) for the low-pass 112 
filtered signals (Fig. 1D).  113 

 114 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.23.477379doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477379
http://creativecommons.org/licenses/by/4.0/


4 
 

 115 

Figure 1. Recordings of muscle force and correlation analysis of motor unit discharge times. A. Experimental 116 
setup included high-density EMG grids over the vastus lateralis and medialis muscles during isometric 117 
contractions at 10% of maximal voluntary contraction (MVC). B. The applied force. C. The decomposed motor 118 
unit discharge times represented in a raster plot for the vastus lateralis (violet) and medialis (green) muscles. D. 119 
The motor unit discharge times (series of zeros and ones) were convolved with a 400 ms Hann window, which 120 
retains the motor unit oscillations responsible for the fluctuations in force during steady contractions. E. Four 121 
bivariate correlations between different motor units belonging to the same motor nuclei (the labels are color-coded 122 
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with respect to the muscle as indicated in panels C and D). The blue lines indicate the smoothed discharge rates 123 
during the steady-state contraction. F. Confusion matrix of the correlation strength between all the identified 124 
motor units for the two muscles. Note that the discharge rates within each homonymous motor nucleus exhibited 125 
a range of correlation values. R = correlation strength, for both correlations the Pearson’s value was <0.0001. 126 

After converting the discharge times to rates and smoothing the signal, we computed pairwise 127 
correlations between each motor unit within the same muscle (Fig. 1E-F). We consistently found 128 
correlated and uncorrelated discharge rates of some motor units from the same vastus muscle, which 129 
indirectly indicates that not all motor neurons received the same common input (30, 31). Because most 130 
previous studies report high correlations among motor units within a motor nucleus (26, 42, 54), it was 131 
necessary to assess the level of cross-talk between muscles. Based on a recently developed method (55, 132 
56), we found that the identified motor units had action-potential amplitudes that were statistically 133 
similar to the other units in the homonymous muscle and, therefore, were not the result of cross-talk 134 
(see Methods).  135 

 136 

 137 

Figure 2. Recordings of muscle force and correlation analysis between the discharge times of motor units in hand 138 
muscles. A. Experimental setup involved high-density EMG grids placed over the first dorsal interosseous and 139 
thenar muscles. B-C. The applied force and the discharge times of motor units shown in a raster plot for the first 140 
dorsal interosseous (green) and thenar muscles (violet). D The motor unit discharge rates (series of zeros and 141 
ones) were convolved with a 2.5 s Hann window. E. Two bivariate correlations between different motor units 142 
belonging to the same motor nucleus (the labels are color-coded with respect to the muscle as indicated in panels 143 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.23.477379doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477379
http://creativecommons.org/licenses/by/4.0/


6 
 

C and D). The blue lines indicate the smoothed discharge rates during the steady-state contraction. F. Confusion 144 
matrix of the correlation strength between all the identified motor units the two muscles. Note that all motor units 145 
are highly correlated within each motor nucleus. R = correlation strength, for both correlations the Pearson’s value 146 
was <0.0001. 147 

The average number of identified motor units for the hand muscles was 12.2 ± 3.0 and 4.3 ± 1.2 for the 148 
first dorsal interosseous and thenar muscles, respectively, across participants. In contrast to the vastii 149 
muscles, Figure 2 shows that the discharge rates of all motor units in each hand muscle were strongly 150 
correlated (>0.9), and there were few cases of low correlations (see cluster analysis below). Because of 151 
differences in the strength of the correlations between motor units in the vastii and hand muscles, we 152 
then examined the latent components between motor units across participants and muscles with a 153 
factorization approach.  154 

Factor analysis reveals a distinct organization of common synaptic inputs  155 

Factorization analysis identifies the latent components that covary among sets of variables. This method 156 
enables the identification of the potential ‘neural modules’. Figure 3 shows the results obtained from 157 
the factor analysis for the vastii muscles of two participants. The factor analysis was applied to all motor 158 
units from both muscles; therefore, the extracted neural modules did not have any a-priori muscle-159 
specific constraint. The latent neural modules are superimposed on each muscle (grey lines indicate 160 
individual motor unit discharge rates from that muscle). The first two modules explained most of the 161 
signal (>80%); therefore, we only used these two factors in the subsequent analysis.   162 
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 163 

Figure 3 Results of the factorization analysis for the vastii muscles of two subjects. A. The smoothed 164 
motor unit discharge rates (grey lines, with the mean = 0 spikes/s) and two neural modules derived from 165 
the factor analysis (green for the vastus lateralis and violet for vastus medialis). Note the high correlation 166 
between the two factors and the discharge rates of some, but not all, motor units for the two subjects. 167 
B. The two factors were then correlated with the smoothed discharge rates of all motor units. C. The 168 
cross-correlation values between the two modules. D. Projections of the bivariate correlation values for 169 
each motor unit with respect to the neural modules. Values close to 1 indicate that a motor unit carries 170 
~100% of the respective module. Note that some vastus lateralis and medialis motor units invade the 171 
territory of the other neural module; for example, intermingling of the green and violet lines for Subject 172 
3. Also note that some motor units are only correlated with one module.  173 

We then determined the level of correlation between the discharge rate of each motor unit and the two 174 
neural modules (Fig. 3B). This analysis shows, for example, that motor unit number 2 in vastus lateralis 175 
for Subject 1 had a stronger correlation with the first neural module, whereas the two other motor units 176 
were more correlated with the second factor (Fig. 3D). However, the two modules were not correlated 177 
(Fig. 3C). Projections of the two modules (Fig. 3D) indicated that one motor unit in vastus lateralis was 178 
located in the module of the vastus medialis motor units. Subject 3 exhibited more intermingling of the 179 
motor unit data in the space of the two neural modules (Fig. 3 lower right graph).  180 
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We then looked at the overall distribution of the identified motor units within each neural module across 181 
participants for the vastii (n=8) and hand muscles (n=8) (Fig. 4). We found that although many motor 182 
units from each muscle shared the same module (Fig. 4A-D), the discharge rates of some motor units 183 
were correlated with both neural modules. There were also some motor units that showed negative 184 
correlations with one of the modules. These negative correlations were more common for the hand 185 
muscles.  186 

We clustered the correlation values of the motor units with the respective modules based on specific 187 
centroids (x and y coordinates: [0.66 1.00], [0.40 0.40], [1.00 0.65]), (Fig. 4 B-D). The largest cluster 188 
for all muscles was the group belonging to the homonymous muscle; that is, a motor nucleus-specific 189 
cluster. Interestingly, the proportion of motor units belonging to the shared cluster was greater for vastus 190 
lateralis than vastus medialis (Fig. 4B). The motor nucleus-specific cluster was stronger for the hand 191 
muscles, with few motor units present in the shared cluster (<20% for both first dorsal interosseous and 192 
thenar muscles). Moreover, there were some motor units for both sets of muscles that diverged from 193 
the homonymous control and were more correlated with the other synergistic muscle. This was more 194 
evident for the vastii (>10% of motor units) than hand muscles (<3% of motor units).  195 
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 196 

Figure 4. The output of the factor and cluster analysis across all subjects and motor units. A. The motor 197 
units from vastus lateralis (green) and vastus medialis (violet). Each line indicates the strength (line 198 
length) and sign of the correlation between the discharge rate of one motor unit and the neural module. 199 
Note that some motor units shared the same module space (indicated in grey dots), whereas others 200 
diverged from synergistic control (blue and red) and a few invaded the territory of the other muscle. B. 201 
A cluster analysis identified three main clusters. Note the grey cluster that indicates the percentage of 202 
motor units that shared both neural modules. C-D. The same analysis as in A-B but for the hand muscles. 203 
Note the smaller proportion of motor units belonging to the shared (grey) cluster in comparison with 204 
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the vastii muscles. E-F An example of two motor units that occupy different module space. The black 205 
ellipse is a visual guidance of the territory occupied by the motor unit 1 (top panel in F), which shows 206 
the firing rate of that unit correlated to both module 1 and module 2. In contrast, the lower panel in F 207 
shows a motor unit that is only correlated with module 1.  208 

We then removed the motor units that shared both neural modules and performed coherence analysis 209 
between the motor pools. We found approximately a two-fold decrease in the coherence value without 210 
the common motor units. For some subjects, the coherence in any of the physiological bandwidths (0-211 
50 Hz), did not differ than for frequencies >50 Hz, which means that there was no coherence between 212 
motor units that did not share the same neural module. Conversely, the coherence for the motor units 213 
that shared both modules was similar to what previously reported (26, 44). This finding strongly 214 
indicates that previous coherence found between muscles from thigh and from the hand is due to the 215 
shared inputs that generate the significant coherence value (26, 56). 216 

Integrate and fire model: factor analysis accurately reflects the interplay of two common inputs 217 

We performed computer simulations to generate a dataset of motor neuron discharge times to determine 218 
the optimal convergence and accuracy of factorization analysis on the extraction of neural modules 219 
from motor unit data. The aim was to assess the influence of known distributions of two synaptic inputs 220 
(Isyn1,2) and their average Isyn3 = (Isyn1 + Isyn2)/2 + independent inputs on the number of identifiable neural 221 
modules. The common and independent inputs, as well as the spike times, were approximated by tuning 222 
the parameters of an integrate-and-fire model (32, 57). 223 

Because we have no information on the dimensions of the latent components, which reflect common 224 
inhibitory and excitatory synaptic inputs, we can model these inputs realistically with an integrate-and-225 
fire model (32, 57) and study the outputs with pairwise correlations and factor analysis. Moreover, the 226 
model allowed us to test the influence of time (total duration of spike times), net synaptic currents, and 227 
the strengths of the common and independent inputs.   228 
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 229 

Figure 5. Integrate-and-fire model. We injected correlated and uncorrelated fluctuating currents (𝐼𝑖) 230 
into 480 motor neurons. Two-thirds of the population received two distinct common inputs (𝜉𝑐), and 231 
the one-third received the average of the two common inputs plus its own independent noise. The 232 
proportion of common and independent inputs ranged in values to reflect the cross-correlation values 233 
observed in the experimental data. Similarly, the injected current (20 nA) generated interspike intervals 234 
that matched in-vivo motor unit data. Each neuron received gaussian synaptic noise reflecting its unique 235 
connections (independent input, 𝜉𝑖). A. µ𝒊 is the temporal average of the current (20 nA) and 𝜎𝑖 sets the 236 
global network state. Raster plot (orange lines) showing some of the data from an 80-s simulation with 237 
the proportion of common-to-independent inputs set at 1.53. Note the output of the factorization 238 
analysis clearly depicting the space of three injected currents (top right graph), as observed in the 239 
experimental recordings. B. Pairwise correlation for the first neural module between motor neurons 1 240 
and 2 from a pool of 160 neurons that each received Isyn1. C. The averaged total current across all cells 241 
plotted between the neural modules. Note that module 1 and module 2 are uncorrelated, whereas there 242 
was a high correlation with module 3 due to the shared averaged synaptic current. D. Confusion matrix 243 
of the correlation strength across all 480 neurons. E. The output of the integrate-and-fire model was 244 
low-pass filtered at 25 Hz for a 10-s trial. The first and last second was excluded when calculating the 245 
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correlations to avoid the influence of spike frequency adaptation. Each line corresponds to one motor 246 
neuron. F. Distribution of interspike intervals across all 480 neurons for an 80-s trial. H. Accuracy of 247 
factor analysis computed as the average difference of all neurons belonging to each module (|M1 - M2|) 248 
at three time points during the simulation. The absolute difference between the modules corresponds to 249 
the accuracy of factor analysis in converging in that specific module. The values for the shared module 250 
(green) were close to 0, which indicates perfect separation from the two modules. We injected low 251 
percentages of common input (0% indicates that the common and independent input are the same). The 252 
dashed vertical lines indicate the range of values that reflect in-vivo motor unit correlation values. There 253 
was a strong influence of time, so that 10 s of data were insufficient to obtain reliable estimates of the 254 
proportion of common input, whereas there were no differences for the data at 50 s and 80 s. I. Three 255 
representative neural modules extracted by factor analysis at three time points (10, 50, and 80 s) when 256 
the common input was twice as much as the independent input.  257 

We simulated 480 integrate-and-fire neurons that were activated by applying an independent input and 258 
a common input. Two-thirds of the population of neurons received the uncorrelated inputs, Isyn1 and 259 
Isyn2, and a one-third received Isyn3, which represented the average of the two other inputs (Fig. 5A). We 260 
then looked at the correlations between the inputs and outputs (smoothed motor unit discharge rates) as 261 
well as the average and standard deviation of the neural modules extracted by the factorization method 262 
(Fig. 5).  Due to the influence of low-pass filtering of the discharge rates, there was a strong influence 263 
of trial duration with the 10-s data being unable to distinguish between the unique and shared inputs. 264 
With longer time signals, we were able to retrieve the full dimensions of the three common synaptic 265 
input signals by increasing the simulation to 50 s or 80 s (Fig 5. H-I), independently of common and 266 
independent input strength.  267 

Discussion  268 

We analysed the correlation between the discharge times of motor units from different synergistic 269 
muscles during isometric contractions with the knee extensors and index finger and thumb muscles. We 270 
found two neural modules for the motor units of the vastii muscles, which contrasts with previous 271 
findings of only one dominant common input to individual (42) or synergistic muscles (26). As shown 272 
in Figure 6, large groups of motor units innervating the VL and VM muscles were associated with 273 
specific neural module for each of these muscles, but some motor units were associated with both neural 274 
modules. In contrast, fewer motor units innervating the hand muscles (<20%) were associated with both 275 
neural modules. Moreover, the discharge rates of some motor units were not correlated with the neural 276 
module for the muscle in which they reside, but instead were correlated with the neural module for the 277 
synergistic muscle.  278 
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 279 

Figure 6. Schematic representation of the results and suggested neural connectivity of voluntary motor 280 
commands to motor neuron pools. A. Previous studies that have grouped the vastii or hand muscles 281 
based on global EMG signals have found strong coherence between the two muscles, indicating a 282 
unique common input to the synergistic muscles. After we removed those motor units that shared both 283 
neural modules, the correlation between the two pools of motor units was significantly reduced, as 284 
indicated in the coherence graph. This indicates that the coherence found in previous studies is mainly 285 
attributable to those motor units that shared two distinct sources of common synaptic. B. Visual 286 
representation of our current findings. With factorization dimensionality techniques, we found that there 287 
are at least two sources of common synaptic input to motor neurons that innervate the vastii and hand 288 
muscles. Most motor neurons, but not all of them, innervating each vastus muscle receive common 289 
input from a unique source (green and violet lines), but some motor neurons receive inputs from the 290 
source directed to the other muscle (dashed green and violet lines; upper graph) and some receive inputs 291 
from both sources (lower graph).  292 
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The correlation between each motor unit and its neural module reveals the potential nature of shared 293 
synaptic inputs by the motor neuron pools that is inevitably obscured in the global EMG signal. With 294 
this analysis we show that the motor neurons from two hand muscles during an independent task can 295 
by fully retrieved by the module they carry, but the motor units for each knee extensor muscle receives 296 
common input from two unique sources.  297 

Previous experiments reported a single dominant common input governing coordination of the vastus 298 
medialis and lateralis muscles  (26). Similarly, previous studies on one motor unit pool have identified 299 
a single common synaptic input (42, 44). The identification of a single dominant common input in 300 
previous studies is based on a pooled-coherence approach to estimate neural connectivity. This analysis 301 
averages the correlation between motor unit spike trains with several permutations, therefore, the 302 
averaging process inevitably generates significant correlations because ~50% of the homonymous 303 
motor unit pool receives a similar input. Because we found that the motor units innervating an individual 304 
muscle can receive more than one common input, our results demonstrate that pooled coherence is not 305 
an appropriate approach to assess neural connectivity.  306 

It is important to note that our experimental task involved isometric contractions in contrast to the 307 
dynamic actions typically used to identify ‘muscle synergies’. Perhaps, the sources of common input, 308 
such as the type and intensity of feedback from sensory receptors (58, 59), differ during isometric and 309 
dynamic contractions and the common input received by the motor neurons innervating the synergistic 310 
muscles is more homogeneous. For example, we found that in macaque monkeys during rapid high 311 
force contractions most motor units share the same neural module (60).  312 

Even for isometric contractions, however, the sources of common input may differ with the details of 313 
the task being performed. Based on the interpretation that the fluctuations in force during steady 314 
isometric contractions are attributable to the variance in the common synaptic input (11, 12, 53), 315 
differences in the coefficient of variation for force during a specific action suggest adjustments in the 316 
common input across tasks. For example, the coefficient of variation for force during index finger 317 
abduction, which is mainly due to the activity of the first dorsal interosseus muscle, was 2x greater 318 
when participants performed index finger abduction and wrist extension at the same time even though 319 
the abduction force was the same in both tasks (61). Based on the finding of an increase in the coefficient 320 
of variation for force during the double-action task (index finger abduction + wrist extension) in the 321 
study by Almuklass et al. (2016), it seems reasonable to predict that the neural modules for the two 322 
hand muscles in the current study would differ from those observed during the independent actions. 323 
Consistent with this possibility, Desmedt and Godaux suggested that the synaptic inputs delivered to 324 
the motor neurons that innervate the first dorsal interossei muscle differed when the direction of the 325 
force applied by the index finger changed from abduction to flexion (62). The basis for this conclusion 326 
was the finding that the recruitment order for some pairs of motor units (~8%) consistently reversed 327 
recruitment order when the task was changed from abduction to flexion. They hypothesized that this 328 
effect, although relatively modest, was attributable to differences in the distribution of the motor 329 
command for each task.  330 

Despite the limited scope of the tasks examined in our current study, the findings indicate that the 331 
derivation of muscle synergies is based on the common synaptic input that is shared by the motor 332 
neurons involved in the action but that this common input is not shared among most of the motor 333 
neurons within a given motor nucleus. Moreover, we found that the modulation of discharge rate for all 334 
motor units could be classified into three clusters distributed across two neural modules.  These results 335 
indicate that synergistic motor neuron pools receive common synaptic inputs from at least two different 336 
sources during submaximal isometric contractions.  337 

Methods 338 

Participants 339 
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Eight subjects were recruited for each experiment (hand and knee extensor). All procedures were 340 
approved by the local ethical committees at the University of Rome Foro Italico (approval number 341 
44680, knee extension experiments) and Imperial College London (approval number 18IC4685, hand 342 
experiments) and conformed to the standards set by the Declaration of Helsinki. The subjects signed an 343 
informed consent before participating in the study. Some results from these datasets  have been 344 
published previously (56, 63). 345 

As described subsequently, high-density EMG recordings (Quattrocento, OTBioelettronica, Turin, 346 
Italy) and decomposition of the acquired signals (64) were performed in both experiments.  347 

Experiment 1 (knee extensors) 348 

Participants visited the laboratory on two occasions. In the first visit, they were familiarized with the 349 
experimental procedures by performing a series of maximal and submaximal isometric contractions 350 
with the knee extensors. In the second visit, which occurred 24 hours after the familiarization session, 351 
simultaneous recordings of the force generated by the knee extensors during maximal and submaximal 352 
voluntary contractions and HDsEMG signals were recorded from vastus lateralis and vastus medialis. 353 
After standardized warm-up contractions, participants were verbally encouraged to push 'as hard as 354 
possible' for ∼3-5 s to achieve peak maximal voluntary force (MVC). They performed ≤4 trials with 355 

∼60 s of rest between trials. Approximately 5 min later, they performed steady contractions (2 x 10 % 356 
MVC for 70 s) and submaximal trapezoidal contractions at three target forces (2 × 35, 50, 70% MVC 357 
force). The trapezoidal contractions required participants to match a prescribed trajectory that 358 
comprised a ramp-up phase (5% MVIF s-1), a plateau (10 s of constant force at target), and a ramp-359 
down phase (-5% MVIF s-1). Three minutes of rest was provided between all submaximal contractions. 360 
In this study we only used the submaximal steady state contractions at 10% of maximum.  361 

All measurements were performed with both legs with the order determined randomly. Participants 362 
were asked to avoid exercise and caffeine intake for 48 hours before testing. Participants were 363 
comfortably seated and secured in a Kin-Com dynamometer (KinCom, Denver, CO, USA) by means 364 
of three Velcro straps (thigh, chest, pelvis), with the knee joint fixed at 45° of flexion (full knee 365 
extension at 0°). HDsEMG signals were acquired from the vastii muscles with two grids of 64 electrodes 366 
each (5 columns × 13 rows; gold-coated; 1 mm diameter; 8 mm inter-electrode distance; OT 367 
Biolettronica, Turin, Italy) (Fig. 1A). Placement of the electrode grids was based on existing guidelines 368 
(Barbero et al. 2012) and adjusted as necessary. After shaving and cleaning the skin (70% ethanol), 369 
both electrode grids were attached to muscle surfaces using two layers of disposable double-sided foam 370 
(SpesMedica, Battapaglia, Italy). Skin-electrode contact was ensured by filling the holes of the foam 371 
layer with conductive paste (SpesMedica). A ground electrode was placed on the contralateral wrist, 372 
whereas the reference electrodes for both vastus lateralis and vastus medialis grids were attached to the 373 
skin over the ipsilateral patella and medial malleolus, respectively. Monopolar HDsEMG signals were 374 
recorded using a multichannel amplifier (EMG-Quattrocento, A/D converted to 16 bits; bandwidth 10-375 
500 Hz; OT Bioelettronica).  376 

Experiment 2 (hand muscles) 377 

The experimental setup involved a chair, table, and computer monitor. Participants were comfortably 378 
seated with both arms resting on the table. A custom-made apparatus that was secured to the table 379 
supported the dominant hand (self-reported) in a position midway between pronation and supination 380 
and the forearm and wrist were immobilized. The index finger was aligned with the longitudinal axis 381 
of the forearm, and the thumb was held in a resting position at the same height as the index finger. The 382 
applied force was displayed on a monitor that was positioned 60 cm in front of the subject. The visual 383 
gain was fixed at 66 pixels per percentages of MVC force for each muscle (axis). The forces exerted by 384 
the index finger and thumb were measured with a three-axis force transducer (Nano25, ATI Industrial 385 
Automation, Apex, NC, USA), digitized at 2048 Hz (USB-6225, National Instruments, Austin, TX, 386 
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USA), and low-pass filtered with a cut-off frequency of 15 Hz. HDsEMG signals were recorded with a 387 
multichannel amplifier (OT Bioelettronica Quattrocento, Turin, Italy; bandwidth: 10-500 Hz; 388 
resolution: 16 bits) at a sampling rate of 2048 Hz. Two flexible grids of high-density EMG electrodes 389 
(13 × 5 pins, 4 mm interelectrode spacing) were placed on the skin over the FDI and thenar muscles 390 
(flexor pollicis brevis and abductor pollicis brevis).  391 

Participants performed force-matching tasks (10% MVC force) involving concurrent abduction of the 392 
index finger and flexion of the thumb (Fig. 2A). Subjects performed two sustained index finger 393 
abduction and thumb flexion contractions for 60 s. Visual feedback was provided as a moving dot cursor 394 
in which the x-axis and y-axis corresponded to the thumb and index finger forces, respectively. Subjects 395 
had to maintain the force signal within 10% of the target.  396 

The experiments began with MVCs (as described in Experiment 1). After the MVCs were determined, 397 
the required target forces were displayed on a monitor. Participants performed two 60-s trials with a 30 398 
s of rest between trials. As noted in the introduction, we designed our tasks to determine the extent to 399 
which distinct motor neuron pools would receive common inputs. To achieve this goal, subjects were 400 
instructed to exert forces in the same sagittal plane, which required ~10 minutes of practice.  401 

Data analysis 402 

The 64 monopolar HDsEMG signals were filtered offline with a zero-lag, high-pass (10 Hz) and low-403 
pass filter (500 Hz). The force signals were corrected for the influence of gravity and normalized to 404 
MVC force. HDsEMG channels with poor signal-to-noise ratios were inspected with a semi-automated 405 
function that identified spurious EMG signals based on the power spectrum. Those channels with a poor 406 
signal-to-noise ratio (defined as 3 standard deviations from the mean, power spectrum averaged across 407 
all signals in the band 10 - 500 Hz) were visually inspected and removed from the analysis. The number 408 
of EMG channels containing noise was low; > 95% of the channels had good signal-to-noise ratios.  409 

Subsequently, the HDsEMG signals were decomposed with a gradient convolution kernel compensation 410 
algorithm (48). The general decomposition procedures have been described previously (49). Briefly, 411 
the EMG signals can be described as time-series of Dirac delta functions that contain the sources (s) 412 
representing the discharge times of motor units. The time series of the motor unit discharge times can 413 

be described as delta (𝛿) functions:  414 

 415 

𝑠𝑗(𝑘) = ∑  𝑟 𝛿 (𝑘 − 𝜑𝑗𝑟)    (1) 416 

 417 

where 𝜑𝑗𝑟 corresponds to the spike times of the jth motor unit. Each channel of the EMG signal can be 418 

then described as convolution of the motor unit discharge times (s) into the muscle fiber action 419 
potentials. Because each motor unit innervates multiple muscle fibres, it is possible to observe a 420 
compound action potential from the muscle fibers innervated by that motor axon. Therefore, the 421 
HDsEMG recordings can be described mathematically in a matrix x form as: 422 

  423 

𝑥 (k) =∑  𝐿−1
𝑙=0 H (l)s (k - l) + n (k)               (2) 424 

  425 

where s (k) = [s1 (k), s2 (k),…, sn (k)]T  represents the n motor unit discharge times derived from the 426 
EMG signal (x) and n is the noise to for each electrode. The matrix H contains the two-dimensional 427 
information of the motor unit action potential and has size m x l with lth sample of motor unit action 428 
potentials for the n motor units and m channels. 429 
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Before the beginning the blind source separation procedure, the spatial sparsity of the matrix x was 430 
enhanced by extending the observation numbers. This procedure improves the decomposition as the 431 
gradient descent update rule maximises the diversity of the motor unit waveform to converge the 432 
discharge times of each motor unit (the sources, s). Because this process is blind, it is possible to inspect 433 
the shapes of the motor unit action potentials obtained by spike triggered averaging and to perform 434 
visual inspections of the 2D and 3D waveforms (see 50, 60).  435 

Factorization analysis 436 

The neural control of muscles by motor neurons can be described and predicted analytically. If the 437 
discharge times of the motor units are known, it is possible to predict modulation of muscle force with 438 
near perfect correlations (52, 65). By recording of large samples of motor units, it is possible to 439 
reconstruct modulation of muscle force (11) due the low-pass filtering properties of the muscle to a 440 
given neural drive (51, 52). When motor unit discharge rates are filtered in the low-frequency range 441 
(muscle bandwidth <20 Hz), it is possible to predict oscillations in the applied force close to ~1% MVC 442 
(51). Consequently, the factorization analysis used in the current study focussed on the low-pass filtered 443 
motor unit discharge rates. The discharge rates were filtered by convolving with a Hann window of 400 444 
ms (2.5 Hz). The motor unit discharge times were factorized with three methods: factorization analysis 445 
(66, 67), principal component analysis, and non-negative matrix factorization (see Figure 1 in 446 
supplementary materials).  447 

These factorization methods were applied on the matrix containing the smoothed discharge rates with 448 
rows equal to the number of motor units identified for both muscles and columns equal to the smoothed 449 
discharge times. Figures 1 and 2 shows examples of this procedure for the vastii and hand muscles. 450 

Factorization analysis is based on the rationale that muscle force is the consequence of the activation of 451 
many motor units, which can be represented as time sequences of M dimensional vectors (see equation 452 
1) due to the activation of the motor neurons m(t) in response to various common and independent 453 
synaptic inputs. Thus, the response of the motor neuron population can be described as combinations 454 
of N varying synaptic inputs that are constrained by the non-linear properties of the motor neuron, which 455 
construct a specific motor unit characteristic, or neural module, expressed as {𝑤𝑖(𝑡)}𝑖=1,…𝑁  456 

𝑚(𝑡) = ∑ 𝑐𝑖𝑤𝑖
𝑁
𝑖=1                                                 (3) 457 

where 𝑐𝑖 is a non-negative scaling coefficient of the i-th neural module. We were interested in finding 458 
the matrix 𝑤𝑖 without making any assumptions about the relations between muscles or motor neurons. 459 
We found that factor analysis was the best method in terms of correlations of the neural modules to the 460 
discharge times of individual motor units. Moreover, we demonstrate with an integrate-and-fire model 461 
(see below) that factor analysis can separate the neural modules with high levels of accuracy. We also 462 
examined the performance of non-negative matrix factorization and principal component analysis by 463 
using previous approaches to identify muscle synergies (i.e., >100 iterations and reconstruction of the 464 
original signal, (19, 20, 25)). 465 

The factor analysis models the associations between variables into fewer latent variables (factors). It 466 
assumes that for a collection of observed variables (𝑥) there are a set factors (f) that explain most of the 467 
total variance, which is the common variance. The function factoran (in Matlab) computes the 468 

maximum likelihood estimate of the factor loadings matrix (Λ) 469 

𝑥 = 𝜇 + Λ𝑓 + 𝑒 470 

where 𝑒 is the vector of independent specific factors. Alternatively, the model can be specified as  471 

𝑐𝑜𝑣(𝑥) = ΛΛT + Ψ 472 

Where ΛΛT is the common variance matrix and Ψ = 𝑐𝑜𝑣(𝑒) is the diagonal matrix of specific variances.  473 
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The unique variance in the model with no a priori assumption of orthogonality between factors (when 474 
allowing for factor rotations such as promax) makes the factor analysis an appropriate choice to extract 475 
the latent discharge rate of the synergistic motor nucleus. It is supposed that the model mimics the 476 
common and independent inputs impinging into the two motor nuclei. 477 

Crosstalk and realigning  478 

Motor unit action potentials from the first dorsal interosseous into the thenar muscles (and vice versa) 479 
and from the vastus medialis into vastus lateralis can experience cross-talk up to 95%; that is, 95% of 480 
motor units from one muscle being conducted with minimal shape distortion to the neighbouring muscle 481 
(55). Consequently, we examined the level of cross-talk with a validated method (55, 56). Briefly, this 482 
procedure takes advantage of the distance from the activated muscle fibers (muscle unit) to the 483 
electrode, which is less for motor units in a targeted muscle. Motor units from a targeted muscle are 484 
expected to show greater action potential amplitudes with minimal shape distortion (action potential 485 
conduction velocity in the grid, see Germer et al. 2021 for the detailed assessment of statistically 486 
significant crosstalk of individual motor units).  487 

Another step was to realign motor unit action potentials with respect to the averaged motor unit action 488 
potential that was obtained after spike-triggered averaging. Because the action potential at individual 489 
time instants shows some variability due to surface EMG stochasticity, we convoluted the average 490 
action potential to retrieve the time instants of activation of the motor units. Although this procedure 491 
was critical for assessing accurate brain-spinal transmission latencies (68), it did not influence our 492 
results because corticospinal latencies are so small (<50 ms). In our study, the firing rate was smoothed 493 
in the frequency of force production (2.5 Hz, 400 ms). The effects of action potential onset timing, 494 
therefore, are removed when low-pass filtering the motor unit discharge timings at <2.5 Hz.    495 

Computer simulations 496 

We simulated 480 integrate-and-fire motor neurons, each of which received a computer-generated 497 
current input (set at 20 nA). The synaptic currents that were shared among all neurons to represent the 498 
common synaptic input, but the neurons also received some independent synaptic inputs. Because motor 499 
neurons can exhibit synchronous discharge times, the common input currents were close to maximal 500 
values in the low frequency range <2.5 Hz (see below). The resting membrane potential and reset 501 
voltage was set at -70 mV, the spike threshold was set at -50 mV, and a membrane time constant was 502 
20 ms. The timestep duration was set at 0.1 ms.  503 

Our model comprised randomly distributed gaussian noises at each time step to represent the common 504 
and independent synaptic inputs. Figure 6 shows the overall architecture of the model. Two random 505 
uncorrelated gaussian input currents were created at each time step to represent the neural modules that 506 
were identified experimentally. One-third of the neurons (160 neurons) received Isyn1 as a unique 507 
common input. Isyn2 received the same common input strength but orthogonal to Isyn1. Isyn3 was the 508 
average of Isyn1 and Isyn2 plus its unique independent noise (see eq. 5). The input current for each neuron 509 
i and population j (j = 1,2,3) can be summarized by the following equation: 510 

                                          𝐼𝑖,𝑗 = µ𝑖 + 𝜎𝑖(𝜉𝑖(𝑡) + 𝜉𝑐(𝑡))                                      (4) 511 

where µi is the temporal average of the current that was set at 20 nA and σi sets the global network state 512 
by taking into account the unique independent inputs for each cell (𝜉𝑖) and the gaussian-distributed 513 

random common inputs (𝜉𝑐) The tuning of these parameters was matched to those observed in vivo. 514 

The values of µ, 𝜉𝑖, and 𝜉𝑐 were adjusted to reflect physiological values for the variability in motor unit 515 

interspike intervals and common input. Interspike interval variability was examined with histogram 516 
distributions, as found in the current study and by others (69). The common and independent inputs 517 
were tuned based on the cross-correlogram function derived from previously reported motor unit data 518 
(44). Therefore, each combination of three randomly assigned groups of 160 neurons from the total 519 
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pool (n=480) received two independent synaptic currents (𝐼𝑖1,2 equal to equation 4) and a third 520 

randomized subpopulation (j = 3) of motor neuron received the average of the two inputs:  521 

                                           𝐼𝑖,𝑗 =
𝐼𝑖1+𝐼𝑖2 

2
+ 𝜉𝑖(𝑡)                                        eq. 5 522 

The bivariate correlations between the synaptic currents are shown in Figure 5. The total duration of 523 
the simulation was set at 10, 50, and 80 s. We removed the first and last 2 s of spiking activity for all 524 
simulations to minimize the influence of spike-frequency adaptation. The spike trains emitted by the 525 
Ith neuron after generating the spike times were stored as a binary time series, which was equal to 1 526 
when the neuron reached voltage threshold. The successive analysis followed the same steps as the 527 
experimental data. Briefly, the binary spike trains were low-pass filtered with a 2.5 Hann window and 528 
the factorization analysis was then performed on the low-pass filtered signals. Because the distribution 529 
of inputs to each neuron were known (i.e., 𝐼𝑖1−3), it was possible to retrieve the performance accuracy 530 

of the factorization analysis. Moreover, it was possible to investigate the relation between motor neuron 531 
responses to increased synaptic currents with changes in common and independent inputs. As reported 532 
in the results, we found that when a large number of spikes was included in the analysis (simulation of 533 
80 s), the factorization analysis provided a perfect prediction of the three sources of common synaptic 534 
inputs.  Our model confirmed that the three clusters observed experimentally in the neural modules arise 535 
due from two distinct oscillatory common synaptic inputs and that the third component (the shared 536 
neural modules) is an average of the two other modules.  537 

Statistical analysis 538 

We performed linear regression analysis between the smoothed motor unit discharge rates within and 539 
between muscles. The significant level was extracted from bivariate Pearson’s correlations and 540 
Bonferroni method was applied with multiple comparisons. The same procedure was used to find the 541 
modules carried by each neuron (decoding function). Each neural module extracted by the factorization 542 
algorithm (66, 67) was compared to the firing rate of the individual motor units. Significance was 543 
accepted for P values < 0.05.  544 

References 545 

1.  J. Duchateau, R. M. Enoka, Human motor unit recordings: Origins and insight into the 546 
integrated motor system. Brain Res. 1409, 42–61 (2011). 547 

2.  J. V. Basmajian, Control and Training of Individual Motor Units. Science (80-. ). 141, 440–548 
441 (1963). 549 

3.  V. F. Harrison, O. A. Mortensen, Identification and voluntary control of single motor unit 550 
activity in the tibialis anterior muscle. Anat. Rec. 144, 109–116 (1962). 551 

4.  E. Henneman, B. Shahani, R. Young, R, “Voluntary control of human motor units” in The 552 
Motor System: Neurophysiology and Muscle Mechanisms, M. Shahani, Ed. (Elsevier, 1976), 553 
pp. 73–78. 554 

5.  C. J. Heckman, R. M. Enoka, Motor Unit. Compr. Physiol. 2, 2629–2682 (2012). 555 

6.  E. Henneman, C. Olson, Relations between structure and function in the design of skeletal 556 
muscles. J Neurophysiol 28, 581–598 (1965). 557 

7.  E. Henneman, G. Somjen, D. O. Carpenter, Functional Significance of Cell Size in Spinal 558 
Motoneurons. J. Neurophysiol. 28, 560–580 (1965). 559 

8.  J. E. Desmedt, E. Godaux, Fast motor units are not preferentially activated in rapid voluntary 560 
contractions in man. Nature 267, 717–9 (1977). 561 

9.  J. E. Desmedt, E. Godaux, Ballistic contractions in fast or slow human muscles; discharge 562 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.23.477379doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477379
http://creativecommons.org/licenses/by/4.0/


20 
 

patterns of single motor units. J. Physiol. 285, 185–196 (1978). 563 

10.  H. S. Milner-Brown, R. B. Stein, R. Yemm, The contractile properties of human motor units 564 
during voluntary isometric contractions. J. Physiol. 228, 285–306 (1973). 565 

11.  F. Negro, A. Holobar, D. Farina, Fluctuations in isometric muscle force can be described by 566 
one linear projection of low-frequency components of motor unit discharge rates. J. Physiol. 567 
587, 5925–5938 (2009). 568 

12.  C. K. Thompson, et al., Robust and accurate decoding of motoneuron behaviour and prediction 569 
of the resulting force output. J. Physiol. 0, 1–5 (2018). 570 

13.  M. J. Ferreira-Pinto, L. Ruder, P. Capelli, S. Arber, Connecting Circuits for Supraspinal 571 
Control of Locomotion. Neuron 100, 361–374 (2018). 572 

14.  E. Henneman, L. M. Mendell, Functional Organization of Motoneuron Pool and its Inputs. 573 
Compr. Physiol. (2011) https:/doi.org/10.1002/cphy.cp010211. 574 

15.  C. G. Phillips, R. Porter, The Pyramidal Projection to Motoneurones of Some Muscle Groups 575 
of the Baboon’s Forelimb. Prog. Brain Res. 12, 222–245 (1964). 576 

16.  S. Grillner, Biological Pattern Generation: The Cellular and Computational Logic of Networks 577 
in Motion. Neuron 52, 751–766 (2006). 578 

17.  F. Sylos-Labini, et al., Distinct locomotor precursors in newborn babies. Proc. Natl. Acad. Sci. 579 
117, 9604–9612 (2020). 580 

18.  E. Bizzi, V. C. K. Cheung, The neural origin of muscle synergies. Front. Comput. Neurosci. 7, 581 
1–6 (2013). 582 

19.  M. C. Tresch, C. C. K. V., A. d’Avella, Matrix Factorization Algorithms for the Identification 583 
of Muscle Synergies: Evaluation on Simulated and Experimental Data Sets. J. Neurophysiol. 584 
95, 2199–2212 (2005). 585 

20.  Y. P. Ivanenko, R. E. Poppele, F. Lacquaniti, Five basic muscle activation patterns account for 586 
muscle activity during human locomotion. J. Physiol. 556, 267–282 (2004). 587 

21.  J. A. Gallego, M. G. Perich, L. E. Miller, S. A. Solla, Neural Manifolds for the Control of 588 
Movement. Neuron 94, 978–984 (2017). 589 

22.  M. C. Tresch, P. Saltiel, E. Bizzi, The construction of movement by the spinal cord. Nat. 590 
Neurosci. 2, 162–167 (1999). 591 

23.  E. Bizzi, F. Mussa-Ivaldi, S. Giszter, Computations underlying the execution of movement: a 592 
biological perspective. Science (80-. ). 253, 287–291 (1991). 593 

24.  M. A. Lemay, Modularity of Motor Output Evoked By Intraspinal Microstimulation in Cats. J. 594 
Neurophysiol. 91, 502–514 (2003). 595 

25.  A. D’Avella, P. Saltiel, E. Bizzi, Combinations of muscle synergies in the construction of a 596 
natural motor behavior. Nat. Neurosci. 6, 300–308 (2003). 597 

26.  C. M. Laine, E. Martinez-Valdes, D. Falla, F. Mayer, D. Farina, Motor Neuron Pools of 598 
Synergistic Thigh Muscles Share Most of Their Synaptic Input. J. Neurosci. 35, 12207–12216 599 
(2015). 600 

27.  A. d’Avella, A. Portone, L. Fernandez, F. Lacquaniti, Control of Fast-Reaching Movements by 601 
Muscle Synergy Combinations. J. Neurosci. 26, 7791–7810 (2006). 602 

28.  C. Alessandro, et al., Coordination amongst quadriceps muscles suggests neural regulation of 603 
internal joint stresses, not simplification of task performance. Proc. Natl. Acad. Sci. 117, 604 
201916578 (2020). 605 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.23.477379doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477379
http://creativecommons.org/licenses/by/4.0/


21 
 

29.  S. Muceli, A. T. Boye, A. D’Avella, D. Farina, Identifying representative synergy matrices for 606 
describing muscular activation patterns during multidirectional reaching in the horizontal 607 
plane. J. Neurophysiol. 103, 1532–1542 (2010). 608 

30.  J. Shlens, et al., The structure of multi-neuron firing patterns in primate retina. J. Neurosci. 26, 609 
8254–8266 (2006). 610 

31.  E. Schneidman, M. J. Berry, R. Segev, W. Bialek, Weak pairwise correlations imply strongly 611 
correlated network states in a neural population. Nature 440, 1007–1012 (2006). 612 

32.  J. de la Rocha, B. Doiron, E. Shea-Brown, K. Josić, A. D. Reyes, Correlation between neural 613 
spike trains increases with firing rate. Nature 448, 802–6 (2007). 614 

33.  A. d’Avella, E. Bizzi, Shared and specific muscle synergies in natural motor behaviors. Proc. 615 
Natl. Acad. Sci. 102, 3076–3081 (2005). 616 

34.  D. D. Lee, H. S. Seung, Learning the parts of objects by non-negative matrix factorization. 617 
Nature 401, 788–791 (1999). 618 

35.  J. E. Ting, et al., Sensing and decoding the neural drive to paralyzed muscles during attempted 619 
movements of a person with tetraplegia using a sleeve array. J. Neurophysiol. (2021) 620 
https:/doi.org/10.1152/jn.00220.2021. 621 

36.  S. Tanzarella, S. Muceli, A. Del Vecchio, A. Casolo, D. Farina, Non-invasive analysis of 622 
motor neurons controlling the intrinsic and extrinsic muscles of the hand. J. Neural Eng. 17, 623 
046033 (2020). 624 

37.  S. Tanzarella, S. Muceli, M. Santello, D. Farina, Synergistic Organization of Neural Inputs 625 
from Spinal Motor Neurons to Extrinsic and Intrinsic Hand Muscles. J. Neurosci. In press 626 
(2021). 627 

38.  G. B. Hockensmith, S. Y. Lowell, A. J. Fuglevand, Common input across motor nuclei 628 
mediating precision grip in humans. J. Neurosci. 25, 4560–4 (2005). 629 

39.  T. L. McIsaac, A. J. Fuglevand, Motor-Unit Synchrony Within and Across Compartments of 630 
the Human Flexor Digitorum Superficialis. J. Neurophysiol. 97, 550–556 (2006). 631 

40.  S. A. Winges, M. Santello, Common input to motor units of digit flexors during multi-digit 632 
grasping. J. Neurophysiol. 92, 3210–20 (2004). 633 

41.  G. S. Sawicki, O. N. Beck, I. Kang, A. J. Young, The exoskeleton expansion : improving 634 
walking and running economy (2020) https:/doi.org/10.1186/s12984-020-00663-9. 635 

42.  C. J. De Luca, Z. Erim, Common drive of motor units in regulation of muscle force. Trends 636 
Neurosci. 17, 299–305 (1994). 637 

43.  B. Y. A. J. Fuglevand, et al., Impairment of neuromuscular propagation during human 638 
fatiguing contractions at submaximal forces. J. Physiol. 460, 549–572 (1993). 639 

44.  F. Negro, U. Ş. Yavuz, D. Farina, The human motor neuron pools receive a dominant slow-640 
varying common synaptic input. J. Physiol. 594, 5491–5505 (2016). 641 

45.  A. Del Vecchio, et al., Interfacing Spinal Motor Units in Non-Human Primates Identifies a 642 
Principal Neural Component for Force Control Constrained by the Size Principle (2021) 643 
https:/doi.org/https://doi.org/10.1101/2021.12.07.471592. 644 

46.  F. Hug, S. Avrillon, A. Sarcher, Networks of common inputs to motor neurons of the lower 645 
limb reveal neural synergies that only partly overlap with muscle innervation. 1–34 (2021). 646 

47.  S. Avrillon, et al., Individual differences in the neural strategies to control the lateral and 647 
medial head of the quadriceps during a mechanically constrained task. J. Appl. Physiol. 130 648 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.23.477379doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477379
http://creativecommons.org/licenses/by/4.0/


22 
 

(2021). 649 

48.  A. Holobar, D. Zazula, Multichannel blind source separation using convolution Kernel 650 
compensation. IEEE Trans. Signal Process. 55, 4487–4496 (2007). 651 

49.  D. Farina, A. Holobar, Characterization of Human Motor Units from Surface EMG 652 
Decomposition. Proc. IEEE 104, 353–373 (2016). 653 

50.  A. Del Vecchio, et al., Spinal motoneurons of the human newborn are highly synchronized 654 
during leg movements. Sci. Adv. 6, eabc3916 (2020). 655 

51.  A. Del Vecchio, et al., Central nervous system modulates the neuromechanical delay in a 656 
broad range for the control of muscle force. J. Appl. Physiol. 125, 1404–1410 (2018). 657 

52.  F. Baldissera, P. Cavallari, G. Cerri, Motoneuronal pre-compensation for the low-pass filter 658 
characteristics of muscle. A quantitative appraisal in cat muscle units. J. Physiol. 511, 611–627 659 
(1998). 660 

53.  D. F. Feeney, D. Mani, R. M. Enoka, Variability in common synaptic input to motor neurons 661 
modulates both force steadiness and pegboard time in young and older adults. J. Physiol. 596, 662 
3793–3806 (2018). 663 

54.  D. Farina, F. Negro, J. L. Dideriksen, The effective neural drive to muscles is the common 664 
synaptic input to motor neurons. J. Physiol. 49, 1–37 (2014). 665 

55.  C. M. Germer, et al., Surface EMG cross talk quantified at the motor unit population level for 666 
muscles of the hand, thigh, and calf. J. Appl. Physiol. 131, 808–820 (2021). 667 

56.  A. Del Vecchio, et al., The human central nervous system transmits common synaptic inputs 668 
to distinct motor neuron pools during non‐synergistic digit actions. J. Physiol. 597, 5935–5948 669 
(2019). 670 

57.  L. . Abbott, Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Res. 671 
Bull. 50, 303–304 (1999). 672 

58.  J. B. Nielsen, Human Spinal Motor Control. Annu. Rev. Neurosci. 39, 81–101 (2016). 673 

59.  A. R. Sobinov, S. J. Bensmaia, The neural mechanisms of manual dexterity. Nat. Rev. 674 
Neurosci. 22, 741–757 (2021). 675 

60.  A. Del Vecchio, et al., Interfacing Spinal Motor Units in Non-Human Primates Identifies a 676 
Principal Neural Component for Force Control Constrained by the Size Principle (2021) 677 
https:/doi.org/https://doi.org/10.1101/2021.12.07.471592. 678 

61.  A. Almuklass, R. Price, J. Gould, R. Enoka, Force steadiness as a predictor of time to complete 679 
a pegboard test of dexterity in young men and women. J. Appl. Physiol. in press (2016). 680 

62.  J. E. Desmedt, E. Godaux, Spinal Motoneuron Recruitment in Man: Rank Deordering with 681 
Direction But Not with Speed of Voluntary Movement. Science (80-. ). 214, 933–936 (1981). 682 

63.  S. Nuccio, et al., Deficit in knee extension strength following anterior cruciate ligament 683 
reconstruction is explained by a reduced neural drive to the vasti muscles. J. Physiol. 599, 684 
5103–5120 (2021). 685 

64.  A. Del Vecchio, et al., Tutorial: Analysis of motor unit discharge characteristics from high-686 
density surface EMG signals. J. Electromyogr. Kinesiol. 53, 102426 (2020). 687 

65.  L. D. Partridge, Modifications of neural output signals by muscles: a frequency response 688 
study. J. Appl. Physiol. 20, 150–156 (1965). 689 

66.  K. G. Jöreskog, Some contributions to maximum likelihood factor analysis. Psychometrika 32, 690 
443–482 (1967). 691 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.23.477379doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477379
http://creativecommons.org/licenses/by/4.0/


23 
 

67.  A. E. Maxwell, H. H. Harman, Modern Factor Analysis. J. R. Stat. Soc. Ser. A 131 (1968). 692 

68.  J. Ibáñez, A. Del Vecchio, J. C. Rothwell, S. N. Baker, D. Farina, Only the fastest 693 
corticospinal fibers contribute to B corticomuscular coherence. J. Neurosci. 41, 4867–4879 694 
(2021). 695 

69.  C. T. Moritz, B. K. Barry, M. A. Pascoe, R. M. Enoka, Discharge Rate Variability Influences 696 
the Variation in Force Fluctuations Across the Working Range of a Hand Muscle. J. 697 
Neurophysiol. 93, 2449–2459 (2005). 698 

Supplementary materials  699 

 700 

 701 

Figure 1S. Reconstruction accuracy (% variance explained) for each subject (dotted black lines). The 702 
black dots in A and B represent the average neural modules across subjects. C. The correlation values 703 
(mean ± SD) between the modules and the motor units discharge rates.  704 
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