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 14 

Abstract 15 

Microbes typically reside in multi-species communities, whose interactions have considerable 16 

impacts on the robustness and functionality of such communities. To manage microbial 17 

communities, it is essential to understand the factors driving their assemblage and maintenance. 18 

Even though the community composition could be easily assessed, interspecies interactions during 19 

community establishment remain poorly understood. Here, we combined co-occurrence network 20 

analysis with quantitative PCR to examine the importance of each species within synthetic 21 

communities (SynComs) of pellicle biofilms. Genome-scale metabolic models and in vivo 22 

experiments indicated that the biomass of SynComs was primarily affected by keystone species that 23 

are acting either as metabolic facilitators or as competitors. Our study suggests that a combination 24 

of co-occurrence network analysis and metabolic modeling could explain the importance of 25 

keystone species in SynComs. 26 

Introduction 27 

In natural microbiome systems, hundreds or thousands of species occupy and interact with each 28 

other, as well as the environment around them. To deal with this complexity, we can utilize synthetic 29 

communities (SynComs) to identify common principles governing and structuring microbiomes 30 

(Bengtsson-Palme, 2020). Several SynComs with moderate complexity and high controllability have 31 

been developed to represent different natural environments (Blasche et al., 2017; Chan et al., 2017; 32 
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Fu et al., 2020; Lebeis et al., 2015; Weiss et al., 2021). Such knowledge is essential to disentangle 33 

complex community interactions and to provide powerful tools for biotechnological, medical, or 34 

agricultural purposes (Abram, 2015; Cavaliere et al., 2017; Cho and Blaser, 2012; Fitzpatrick et al., 35 

2020; Gómez-Godínez et al., 2021). To harness this potential, it is essential to preserve both the 36 

microenvironments in which these beneficial processes can take place, as well as the microbial 37 

populations that contribute to these processes. Based on the study of SynComs, researchers have 38 

found that the assemblage and robustness of communities can be affected by several factors 39 

including pH (Ortiz et al., 2021), spatial distribution (Liu et al., 2019), initial abundance (Gao et al., 40 

2020, 2019), niche specificity (Estrela et al., 2021), nutrient availability (Ratzke et al., 2020), 41 

keystone species (Niu et al., 2017) and so on. Nevertheless, many questions remain about how 42 

diversity is maintained, and ultimately, how the community function can be preserved and controlled.  43 

Multiple species are widely distributed in nature as surface-associated communities also referred to 44 

as biofilms (Sadiq et al., 2021). The biofilm formation process consists of the planktonic stage, initial 45 

attachment to a surface, the building of micro-aggregates, biofilm maturation, and biofilm dispersal 46 

(Lee and Yoon, 2017). These multi-species biofilm communities assemble as a result of 47 

interspecies interactions, which determine not only the composition and distribution but also their 48 

biological function. Compared with solitary bacteria, species residing in multispecies biofilms can 49 

gain fitness advantages, including enhanced biomass production (Ren et al., 2015), stress tolerance 50 

(Lee et al., 2014; Raghupathi et al., 2018), and access to complex nutrients (Breugelmans et al., 51 

2008; Nielsen et al., 2000) through cooperative interactions. In contrast, ecological competition is 52 

more pervasive in multispecies biofilms (Foster and Bell, 2012; Oliveira et al., 2015). Bacteria 53 

actively inhibit competitors by producing toxins, biosurfactants, and antimicrobials (Rendueles and 54 

Ghigo, 2012), or indirectly impair the fitness of neighbors through nutrient scavenging. The spatial 55 

structuring property of biofilms supports the intermixing of cooperating species and the partitioning 56 

of niches by competing species. Understanding how these interactions affect the formation of multi-57 

species biofilms is therefore important for their utilization or inhibition. 58 

Despite a wealth of information on microbiota composition gathered from sequencing techniques, 59 

the knowledge of microbial interactions that occur in the microbiota is severely lacking. Building a 60 

co-occurrence network from high-throughput sequence data is a common method of deriving 61 

hypotheses from these massive data (Faust et al., 2012). For instance, it has been applied to link 62 

taxa to biological functions of interest (Wei et al., 2019), to identify potential biotic interactions 63 

(Durán et al., 2018), and to explore habitat differentiation (Barberán et al., 2012). Another emerging 64 

method for exploring microbial interactions is genome-scale metabolic modeling, which can provide 65 

insights into metabolic interaction potential and metabolic resource overlap in multi-species 66 

communities (Zelezniak et al., 2015; Zorrilla et al., 2021). Microbiome network analysis and 67 

metabolic modeling could guide the study of SynComs for animal and plant health (Heinken et al., 68 
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2021; Poudel et al., 2016). However, the ecological relevance of predicted interactions remains 69 

poorly understood (Faust, 2021). The connectedness and strength of positive or negative 70 

interactions are not experimentally verified. The main challenge of studying microbial interactions in 71 

SynComs is fast and accurate quantification of the abundance of each species. This can be 72 

achieved by 16S amplicon sequencing, colony-forming unit counting, fluorescent labeling, and 73 

quantitative PCR. Both of the first two approaches are simple to employ, but they can be time-74 

consuming. While the first two approaches are more convenient but time-consuming, the latter two 75 

approaches are more efficient but require extensive initial time and effort. 76 

In this study, we constructed SynComs using isolates from a rhizosphere and predicted their 77 

interaction by analyzing co-occurrence networks. The network analysis was validated by 78 

quantitative assays. The potential metabolic interactions were further investigated through 79 

experiments and metabolic modeling. The results suggested that keystone species determine 80 

community productivity through metabolic exchanges or resource competition. We propose that our 81 

study could inform the rational design of synthetic communities. 82 

Results 83 

C. rhizoplanae and P. eucrina were predicted to be keystone species in the eleven-species 84 

SynCom 85 

In a previous study, we isolated 267 bacteria from the cucumber rhizosphere (Sun et al., 2021). 86 

Eleven isolates that co-exist in the natural environment were chosen to create a synthetic biofilm 87 

community. These isolates originate from three different phyla: Firmicutes, Proteobacteria, and 88 

Bacteroidetes. We evaluated the stability of this SynCom by observing the compositional change of 89 

individual members using 16S rRNA gene amplicon sequencing. Several time points were selected 90 

to represent the development of a biofilm: initial aggregation (2d), establishment (4d), maturation 91 

(6d), and dispersal (8d). Chr (Chryseobacterium rhizoplanae) was identified to be the predominant 92 

species throughout the biofilm development (Fig. 1A). Three species Ach (Achromobacter 93 

denitrificans), Pxa (Pseudoxanthomonas japonensis), and Ste (Stenotrophomonas maltophilia) 94 

rapidly declined and could not establish themselves in the community. Network co-occurrence 95 

analysis was employed to examine the correlations among the species during succession. The 96 

correlations among the species varied from less to more (Fig. 1B). Pan (Pantoea eucrina) was 97 

consistently positively correlated with other species, while Chr was consistently negatively 98 

correlated with other species. These two species were predicted to act as hub taxa in this multi-99 

species consortium. In the subsequent experiments, we examined the interactions of six of the most 100 

abundant species, including Pan, Chr, Com (Comamonas odontotermitis), Aci (Acinetobacter 101 

baumannii), Ent (Enterobacter bugandensis), and Pse (Pseudomonas stutzeri). Other species were 102 
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excluded either due to their low abundance at the biofilm maturation stage, or due to the lack of 103 

correlation with the other species. 104 

 105 

Productivity of multi-species biofilm was affected by key members 106 

To test the central role that Pan and Chr play in biofilm development, we evaluated the relative 107 

productivity of different combinations of the six strains. “Add-in” and “Removal” strategies were 108 

applied (Fig 2A). According to the “Add-in” strategy, the “Basic community” consisted of four 109 

members (Com, Aci, Ent, and Pse), upon which we added the predicted positive or negative 110 

member to the community and compared the total biomass. Based on our hypothesis, we 111 

anticipated that supplementation of the positive member would increase total biomass, while we 112 

anticipated the opposite for the negative member. On the other hand, the “Removal” strategy 113 

included all the six species as a full community, then one isolate was dropped out to obtain the five-114 

species reduced communities. Biofilm productivity was assessed in two ways: fresh weight and total 115 

cell numbers (Fig 2A).  116 
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Compared to the "Full community", “Rm Chr” and “Rm Com” resulted in a higher biofilm weight, 117 

whereas “Rm Ent” and “Rm Pan” resulted in a lower biofilm weight (Fig 2B). This indicated that 118 

these four species are important to maintain the productivity of this synthetic community. However, 119 

the contribution of each species to the population productivity could not be determined using this 120 

approach. The previously used amplicon sequencing method was relatively slow and could only 121 

provide information on the relative abundance. The main challenge in determining the composition 122 

is to establish a fast and accurate method for quantifying the absolute abundance of each species. 123 

To achieve this goal, we performed a genome-scale comparison and identified strain-specific genes 124 

in each species. We designed multiple primers to amplify these genes and tested their specificity 125 

against other species. Consequently, strain-specific primers were developed to selectively amplify 126 

only one isolate from the six-members community (Table 1). Using these primers, we were able to 127 

determine the contribution of each isolate to the community productivity. “Rm Chr” reached the 128 

highest number of total cell numbers, while “Rm Pan” greatly decreased the total cell numbers (Fig 129 

2C). Taken together, we identified Pan and Chr as the keystone positive and negative species in 130 

terms of community productivity, respectively. 131 

 132 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.23.477386doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477386
http://creativecommons.org/licenses/by-nc-nd/4.0/


 133 

C. rhizoplanae and P. eucrina were validated to be keystone species in the reduced 134 

community 135 

The compositions of different communities were clustered based on the Bray-Curtis dissimilarity 136 

index (Fig 3A-C). After 24 hours, the communities clustered into two main groups: “Full community”, 137 

“Basic community” (Rm ChrPan), “Rm Pan”, and “Rm Chr” communities clustered together, 138 

whereas the other communities were grouped in one branch. The upper branch was dominated by 139 

Ent, the lower branch by Pan. Based on the hierarchical clustering, Pan or Chr played deterministic 140 

roles in species composition by influencing the relative abundance of Ent. Additionally, the random 141 

forest analysis revealed that Pan played a major role in determining the differences of community 142 

compositions (Fig 3D). After 36 hours, the communities were divided into two branches without any 143 

apparent disciplinarian. We found that the proportion of Pan cells was highest in the “Rm Ent” 144 

community, while the proportion of Ent cells was highest in the “Rm Pan” community (Fig 3C). 145 

Furthermore, random forest analysis revealed that Chr was the keystone species determining the 146 

compositional differences (Fig 3E). 147 
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 148 

Metabolic facilitation explained the positive interaction 149 

To gain insights into the metabolic interaction potential of the SynCom members, we reconstructed 150 

genome-scale metabolic models, using the M9 glucose minimal medium as the input medium. We 151 

derived the likely exchanged metabolites across communities and the strength of metabolic 152 

coupling - SMETANA score (Zelezniak et al., 2015). The “Full community” and the “Add Pan” 153 

community displayed higher cross-feeding potential than the “Add Chr community” and the “Basic 154 

community” (Fig 4A-D). Pan was the principal donor in the communities with Pan, whereas Ent was 155 

the principal donor in the communities without Pan. This result explained the dominance of these 156 

two species in the SynComs. In contrast, adding Chr to the SynComs had little effect on the global 157 

metabolic exchanges. Chr acted more as a receiver rather than a donor in the “Full community” (Fig 158 

4A). In addition, the add-in or removal of keystone species also affected the proportion of 159 

exchanged compounds (Fig 4E-H). Amino acids and phosphates were the major categories of 160 
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metabolites exchanged across communities. When the positive member Pan was removed, we 161 

observed higher reliance on amino acid cross-feeding and lower dependence on organoheterocyclic 162 

compounds exchange. Moreover, we highlighted the interactions involving Pan as the donor in the 163 

“Full community” (Fig 4I) and in the “Add Pan” (Rm Chr) community (Fig 4J). We observed that the 164 

metabolic contribution of Pan benefited all community members. 165 

Growth assays were used to determine the accuracy of the metabolic models. Firstly, all species 166 

except Chr were able to grow individually in the M9 glucose minimal medium (data not shown), thus 167 

five of them have the potential to serve as donors. Secondly, growth in the spent culture medium 168 

was utilized to determine metabolic interaction potential. Each isolate was cultured in the M9 169 

glucose medium until the glucose was undetectable. We obtained sterile spent medium and used it 170 

to cultivate every other member of the community and themselves. The maximum growing capacity 171 

was determined and defined as growth facilitation (Fig 4K). Results showed that the spent medium 172 

from Pan and Ent could support the growth of all other isolates. Pse's metabolic by-products were 173 

also capable of supporting the growth of three isolates. Aci, Com, and Chr acted only as receivers 174 

but not donors. These results fully supported the metabolic models, suggesting Pan and Ent 175 

contributed to the overall productivity by cross-feeding, whereas Chr acted as a cheater. 176 

 177 
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 178 

Resource competition explained the negative interaction 179 

Higher-order interactions may further be explained by metabolic competition. Using metabolic 180 

modeling, the metabolic resource overlap was simulated (Fig 5A). We observed high metabolic 181 

resource overlap across all communities, indicating intense resource competition among SynCom 182 

members. The addition of the negative member Chr resulted in the highest metabolic resource 183 

overlap while adding the positive member Pan resulted in a reduction of resource competition. To 184 

test the possibility of direct competition, we performed spot-on-lawn and pair-wise spot assays on 185 

TSB agar plates (Fig 5B-C). Both Aci and Ent completely inhibited the growth of Com. Similarly, Chr 186 

and Ent inhibited Pse growth. However, these inhibitions were not caused by direct antagonism as 187 

no inhibition zones were observed in the respective spot-on-lawn assay plates (Fig 5B, red square). 188 

In light of these results, no clear boundary was observed between two strains when they were 189 

spotted adjacent to one another (Fig 5C). Interestingly, Pan and Ent could change the colony color 190 

of Chr from light yellow to white (Fig 5B, yellow square). We also assessed the carbon source 191 

metabolic ability by high-throughput phenotypic microarrays (Fig 5D). Ent and Pan were generalists 192 

that can utilize a wide variety of carbon sources. Other community members were specialized in 193 

using amino acids and organic acids as carbon sources while having a limited ability to utilize 194 

nucleotides, sugar alcohols, and sugars. Collectively, resource competition was widespread among 195 

the SynCom members.  196 
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 197 

Discussion 198 

A key concern in SynCom research is to understand how microbial interactions affect community 199 

composition and productivity. In our study, we evaluated the contribution of each individual to 200 

community productivity and revealed the metabolic interactions. Our SynCom system identified Pan 201 

(P. eucrina) and Chr (C. rhizoplanae) as important drivers of community interaction networks 202 

through metabolic cross-feeding and resource competition. 203 

Manipulating microbial consortia has a variety of applications; however, attempts to engineer 204 

microbial consortia often fail to achieve the expected results owing to the unexpected effects of 205 

interactions within the community. Although the practical application of this SynCom is not yet clear, 206 

accurate prediction of the species composition is the first step toward manipulating microbial 207 

consortia (Widder et al., 2016). In this study, we assessed the SynCom composition using the 208 

amplicon sequencing method and qPCR. In the initial eleven-species biofilm community, Chr was 209 

the dominant species across all the timepoints. In the reduced six-species biofilm community, 210 

however, Ent and Pan became the most abundant species. These findings indicated that other 211 

species, although less abundant or not associated with community members, also affect the final 212 
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composition of the SynCom. This result was consistent with a previous study that showed rare 213 

species were indispensable to the synergistic effects in multi-species biofilms (Ren et al., 2015). 214 

Furthermore, higher-order interactions only occur in the presence of additional species, 215 

emphasizing the importance of studying microbial interactions in the context of communities 216 

(Friedman et al., 2017).  217 

Resource competition plays a major role in shaping bacterial communities, while metabolic 218 

exchanges promote group survival (Goldford et al., 2018; Zelezniak et al., 2015). In the present 219 

study, we simulated the metabolic interactions using metabolic models and assessed their 220 

predictability using phenotypic assays. Specifically, communities with negative species exhibited 221 

higher resource competition, whereas communities with positive species displayed greater 222 

metabolite exchange. These results indicate that metabolic interactions play a key role in 223 

determining the composition of communities. Other mechanisms, such as niche partitioning created 224 

by spatial and temporal heterogeneity, and trade-offs between nutrient acquisition and 225 

environmental tolerance, can also promote coexistence between species (Louca et al., 2018). Our 226 

research provides insights into how metabolic competition and cooperation simultaneously shape 227 

the community composition. The methodology of network co-occurrence analysis combined with 228 

qPCR quantification, metabolic modeling, and pair-wise interaction can be applied to various 229 

SynComs studies. Ultimately, such studies should translate to a deeper understanding of how 230 

microbial communities behave in their native environments, and this knowledge may be applied to 231 

wastewater treatment, disease suppression, and crop yield enhancement.  232 

Materials and methods 233 

Strains and growth condition 234 

As shown in Table 1, eleven bacterial isolates were selected from the rhizosphere of cucumber 235 

plants by (Sun et al., 2021) were selected for this study. 236 

Table 1. Strains and abbreviations 

Strain Abbreviation 

Achromobacter denitrificans XL100 Ach 

Acinetobacter baumannii XL380 Aci 

Bacillus velenzensis SQR9 Bac 

Burkholderia contaminans XL73 Bur 

Chryseobacterium rhizoplanae XL97 Chr 

Comamonas odontotermitis WLL Com 

Enterobacter bugandensis Ent 

Pantoea eucrina XL123 Pan 
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Pseudomonas stutzeri XL272 Pse 

Pseudoxanthomonas japonensis XL7 Pxa 

Stenotrophomonas maltophilia XL133 Ste 

 237 

The start inoculum was prepared by mixing equal volumes of species at an optical density at 600 238 

nm (OD600) of 1. The eleven-species biofilm was cultivated by mixing 4ml of the mixed-species 239 

community (1%) with 400 ml of tryptic soy broth (TSB) and incubating at 30°C for two to eight days. 240 

The four-, five- and six-species biofilms were grown in 6-well microtiter plates (VWR) insert with 100 241 

μm sterile nylon mesh cell strainers (Biologix Cat #15-1100). 10 ml of TSB liquid medium and 100 μl 242 

of start inoculum were added. The plates were incubated for 24 h at 30 °C to allow the biofilm to 243 

grow on top of the nylon mesh cell strainer. 244 

Whole-genome sequencing, annotation, and comparison 245 

The whole genomes of the six species were sequenced by different companies at different times. 246 

The genomes of Aci and Com were sequenced using a combination of PacBio RS II and Illumina 247 

HiSeq 4000 sequencing platforms. The genome of Aci was sequenced at the Beijing Genomics 248 

Institute (BGI, Shenzhen, China). The Illumina data were used to evaluate the complexity of the 249 

genome. Raw sequencing data and the assembled genome have been deposited to the National 250 

Center for Biotechnology Information (NCBI) under the BioProject accession number PRJNA593376. 251 

The genome of Com was sequenced at Majorbio Bio-Pharm Technology Co., Ltd. Raw sequencing 252 

data and the assembled genome have been deposited to the NCBI under the BioProject accession 253 

number PRJNA762695.  254 

The genomes of Chr, Ent, and Pan were sequenced using PacBio Sequel platform and Illumina 255 

NovaSeq PE150 at the Beijing Novogene Bioinformatics Technology Co., Ltd. Raw sequencing data 256 

and the assembled genomes have been deposited to the NCBI under the BioProject accession 257 

number PRJNA721858, PRJNA761942, and PRJNA762676. Pse was sequenced by (Sun et al., 258 

2021). Genomes were automatically annotated by NCBI PGAP. Genome comparison was 259 

performed using Roary (Page et al., 2015). This generated core and accessory gene tables. 260 

Eleven-species SynCom quantification and analysis 261 

Biofilms formed at the air-liquid interface were collected on days 2, 4, 6, and 8. Each time point had 262 

eight biological replicates. Genomic DNA of the biofilm samples was extracted using an E.Z.N.A. 263 

Bacterial DNA Kit (Omega Bio-tek, Inc.) following the manufacturer’s instructions. Universal primers 264 

targeting the V3-V4 regions of the 16S rRNA gene were used to construct the DNA library for 265 

sequencing. Paired-end sequencing of bacterial amplicons was performed on the Illumina MiSeq 266 

instrument (300 bp paired-end reads). Raw sequencing data have been deposited to the NCBI SRA 267 

database under BioProject accession number PRJNA739098. Reads were processed using the 268 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.23.477386doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477386
http://creativecommons.org/licenses/by-nc-nd/4.0/


USEARCH pipeline. The paired-end reads were merged using the “fastq_mergepairs” command. 269 

High-quality sequences were then selected using the “fastq_filter” command and dereplicated using 270 

the “derep_fulllength” command. The singletons were removed using “unoise3” algorithm and 271 

chimeric sequences were removed using “uchime_ref” command. The remaining sequences were 272 

used to create ASV table. Taxonomy of the ASVs was assigned to the species with a reference 273 

database consisting of the full 16S rRNA gene sequences of the eleven species. The compositional 274 

changes were visualized in Microsoft Office Excel 2019. Microbial co-occurrence networks were 275 

constructed to show the interactions among species during biofilm development. Spearman 276 

correlations among all taxa were calculated using the R psych package. Only edges with correlation 277 

scores > 0.6 were kept (p < 0.05, FDR-adjusted). Correlation networks were visualized via Gephi 278 

using the Fruchterman Reingold layout (Bastian et al., 2009). 279 

Reduced SynCom biomass quantification 280 

Biomass was defined by the fresh weight of biofilm. To measure the biomass, the cell strainer was 281 

taken out, removed visible drops with paper, and weighed. The fresh weight was total weight minus 282 

the weight of the nylon mesh. Each treatment had six biological replicates. 283 

Cell numbers quantification by qPCR 284 

To quantify the cell numbers of each species within the multi-species biofilm, strain-specific primers 285 

were designed for the selected six species based on the whole-genome comparison. These primers 286 

target the single-copy gene of the corresponding species. Conventional PCR and qPCR melt curves 287 

were used to evaluate the specificity of the primers obtained. Primer sequences and target genes 288 

were listed in Table 2. Standard curves were generated using plasmids containing corresponding 289 

fragments. qPCR was performed with Applied Biosystems Real-Time PCR Instrument. Reaction 290 

components are as follow 7.2 μl H2O, 10 μl 2× ChamQ SYBR qPCR Master Mix (Vazyme), 0.4 μl 10 291 

μM of each primer and 2 μl template DNA. The PCR programs were carried out under the following 292 

conditions: 95 °C for 10 min, 40 cycles of 95 °C for 30 s, 60 °C for 45 s, followed by a standard 293 

melting curve segment. Each treatment had six biological replicates, and each sample was run in 294 

triplicates (technical replicates).  295 

Table 2. Primers used in this study 

Primer Sequence Product 

size (bp) 

Target gene 

locus_tag 

(Genbank) 

Aci_F ATTTAGTATCTGGTGAAGTCATCCGTA 92 GOD87_RS00290 

Aci_R CCGACAAATAAAGCTTGAGTAACTCC 

Com_F CTCAAAACCAGTGTGATCGTGGAA 109 LAD35_RS00960 

Com_R TATTGCCCATCAGCAGAGTGTAGC 
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Chr_F GAACATCAGTTATCTTGTGAGCGGTA 94 KB553_RS00055 

Chr_R CATACAGGCTCCCATTCCTATTGTG 

Ent_F AGCGTTACAGCAGCTACAGGATATTCACC 96 K9O83_RS00400 

Ent_R CTTTTCACCATCACCCCATCCCTCGGTA 

Pan_F TTAACATCGAAAAGCCTTCCCACCGTA 101 LAC65_RS01220 

Pan_R ATTCATCAGAAGCGCATGTATTACACT 

Pse_F GAAATTCATCTTCGAACACAGCACAC 124 GOM96_RS02845 

Pse_R CTAGCTAACGGGGTTAAGTGCTTC 

 296 

Pair-wise assay 297 

The direct competition of these isolates against each other was evaluated using the spot-on-lawn 298 

assay and the pair-wise spot assay. Spot-on-lawn assay: 5 ml of lawn species (OD600 ~ 0.02) grown 299 

in TSB medium was spread onto a 25 ml TSB plate (1.5% agar) and removed by pipetting. Plates 300 

were dried for 20 min. 5 μl of spot species (OD600~ 0.4) grown in TSB medium was spot on the 301 

center of the plates. Pair-wise spot assay: 5 μl of the dual-species (OD600~ 1) grown in TSB medium 302 

were spot on TSB plate (1.5% agar) at 5 mm between the center of each colony. Plates were grown 303 

at 30 °C and imaged at 48 h. The experiments were performed twice. 304 

Growth promotion assay 305 

The potential growth promotion of the bacterial metabolites to another species was evaluated using 306 

a spent medium growth curve assay (Sun et al., 2021). Donor bacteria were grown in the M9 307 

medium with 1% glucose till the glucose was under detection. The cell culture was spun down, then 308 

the spent medium was filter-sterilized and directly used as the medium of growth curve assay. 2 μl 309 

of recipient species (OD600~ 1) was inoculated to 200 μl spent medium or M9 glucose medium in a 310 

10×10 well Honeycomb Microplate. OD600 was measured every 30 minutes at 30 °C with Bioscreen 311 

C Automated Microbiology Growth Curve Analysis System. Each treatment has 3 replicates. The 312 

experiments were performed twice. The carrying capacity (maximum population size) was 313 

compared. 314 

Genome-scale metabolic modeling 315 

Metabolic models were reconstructed using the CarveMe pipeline (Machado et al., 2018). The 316 

quality of the metabolic models was validated using MEMOTE (Lieven et al., 2020). The metabolic 317 

interaction potential and metabolic resource overlap for each community were analyzed using 318 

SMETANA (Zelezniak et al., 2015; Zorrilla et al., 2021). The simulated cross-feeding results were 319 

summarized as SMETANA score, which estimates the strength of metabolic exchanging (Zelezniak 320 

et al., 2015). 321 
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Carbon source metabolic activity measurement 322 

We used PM1 (BIOLOG Cat #13101) and PM2 (BIOLOG Cat #13102) phenotypic microarrays to 323 

assess the carbon source utilization ability of the community members (Bochner et al., 2001). The 324 

assays were performed following the manufacturer’s instructions. Briefly, 100 μl of diluted cell 325 

suspension of each species mixed with the BiOLOG redox dyes were added to each well of the PM 326 

plates, and the plates inoculated with water and dyes were used as negative controls. All of the 327 

plates were then incubated at 30 °C for up to 48 h. If the species could utilize the carbon source in a 328 

well, the colorless tetrazolium dye will be reduced to purple formazan by cell respiration. The color 329 

changes were measured by an endpoint absorbance at 590 nm with a microplate reader. The 330 

variable level of color changes indicates the carbon source metabolic activity.  331 

Data analysis and figures 332 

All the data needed to evaluate the conclusions in this paper are provided in the figures. Source 333 

data related to this paper would be available online upon publication. Data were analyzed using R 334 

studio. A random forest approach was used to identify the contribution of the six species 335 

responsible for the differences in community composition. The analysis was performed using the R 336 

randomForest package (Andy Liaw et al., 2018). Plots were generated using Microsoft Office Excel 337 

2019 (stacked bar plot), Graphpad prism 8 (heatmap), R ggplot2, ggpubr, ggalluvial, pheatmap 338 

packages, and Adobe Illustrator CC 2020 (Adobe Inc.). Schematic diagrams were generated using 339 

BioRender. 340 
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